Gut Cells Turned To Insulin Factories – New Type l Diabetes Treatment

Editor's Choice Academic Journal Main Category: Diabetes Article Date: 13 Mar 2012 - 12:00 PDT

email to a friend printer friendly opinions

Current Article Ratings:

The study was carried out by Chutima Talchai, Ph.D, a New York Stem Cell Foundation-Druckenmiller Fellow, and Domenico Accili, M.D., professor of medicine at Columbia University Medical Center.

Type 1 diabetes is an autoimmune disease that kills cells in the pancreas which produce insulin, resulting in high levels of glucose in the blood. As the pancreas is unable to replace these cells, individuals suffering with the disease must inject insulin into themselves in order to manage their blood sugar. Patients must also monitor their sugar levels numerous times a day, as blood glucose that is too low or too high can be fatal.

For scientists researching type 1 diabetes, one of the leading goals is to replace lost insulin-producing cells with new cells that release insulin into the bloodstream as needed. Even though researchers are able to generate these cells in the laboratory from embryonic stem cells, they are not suitable for transplant in patients as they do not release insulin appropriately in response to sugar levels, potentially resulting in a deadly condition called hypoglycemia.

In the intestine of mice, the researchers found that certain gastrointestinal progenitor cells are able to generate insulin-producing cells.

Usually, progenitor cells are responsible for generating a vast range of cells, such as gastric inhibitory peptide, cells that produce serotonin, as well as other hormones secreted into the GI tract and bloodstream.

The researchers discovered that when they switched off Foxo1 (a gene known to contribute in cell fate decisions), the progenitor cells also generated cells that produced insulin. In addition, the team found that although more cells were produced when Foxo1 was switched off early in development, they were also produced when the Foxo1 was switched off in adult mice.

Dr. Accili, explained:

Originally posted here:
Gut Cells Turned To Insulin Factories - New Type l Diabetes Treatment

TEDMED 2012 Conference Offers $2 Million in Scholarships to Health and Medicine Leaders and Innovators; Free National …

WASHINGTON, March 13, 2012 /PRNewswire/ -- TEDMED, http://www.TEDMED.com, the annual gathering where science, medical and technology leaders focus on "imagination, innovation and inspiration" to advance the art of health and medicine, today announced two new programs that will vastly increase the size and scope of its audience.

TEDMED is the world's only TED-licensed event focused solely on innovation and breakthrough thinking across all of health and medicine. It will be held at the John F. Kennedy Center for the Performing Arts in Washington, D.C., April 10 - 13.

Speakers, attendee-Delegates and participants will range from biologists (Dr. E.O. Wilson) and writers (Ben Goldacre), to physicists (Albert-Laszlo Barabasi) and public health leaders like the director of the National Institutes of Health (Dr. Francis Collins). Topics to be explored by TEDMED speakers will include neuroscience, microbiology, surgery, oncology, stem cell therapy, bad science, Alzheimer's, robotics, game science, wearable tech, disease evolution, patient choice, virtual anatomy models, the nature of imagination, and dozens more.

For the first time this year, TEDMED will offer a free simulcast, TEDMEDLive, to teaching hospitals, medical schools, research institutions, university life science departments, state and federal government agencies, health-oriented corporations and non-profits across the nation. Participants, forecasted at more than 50,000, will be able to view a high-definition live stream of each presentation and performance. Using the TEDMED Connect mobile app, remote participants can also ask questions of the speakers in real time, which may be answered directly from the TEDMED stage.

Over 2,000 TEDMEDLive simulcast locations will participate, including institutions such as: Case Western Reserve University, Harvard University, University of California (Davis and Irvine), University of Pennsylvania, University of Washington, University of Virginia, Tulane University, Vanderbilt University and Yale University.

Another new TEDMED initiative is the Front-Line Scholarship Program, which offers up to $2 million in half- and full-fee scholarships to those leaders and innovators who are on the front lines of health and medicine. It assists those who would both contribute to the TEDMED conference as attendees, and would greatly benefit from joining the conference in Washington, D.C. in person as a Delegate. The Front-Line Scholarship Program is underwritten by the TEDMED Patron Fund, whose major contributors include Humana and The California Endowment.

"TEDMED is for everyone who is passionate about the future of health and medicine," said Jay Walker, curator of TEDMED."Accordingly, TEDMED is committed to bringing even more expertise and perspective to the table for a national discussion of health and medicine, regardless of ability to pay through our Front-Line Scholarship program. Front-Line Scholarships will permit the broadest possible group of healthcare providers, first responders and other contributors to attend so they can share even more ideas that will save lives."

More than 1,200 TEDMED onsite attendees including researchers, physicians, technologists and policy experts will foster cross-disciplinary collaboration and learning at the Kennedy Center this April. Institutions of excellence represented by speakers and attendees will include The American Cancer Society, The American Red Cross, Biodigital Systems, The Boulis Laboratory, Brandeis University, Brigham and Women's Hospital, The California Institute of Technology, Center for Complex Network Research, The Centers for Disease Control and Prevention, Duke University, Emory University, Harvard University, mc10, Methodist Institute for Technology, Innovation, and Education, The National Institutes of Health, New York University, Penn State University, Quest Diagnostics, The Center for Alzheimer Research and Treatment, Reuters Health, Children's Hospital Boston, The U.S. Department of Health and Human Services, and the Young Professionals Chronic Disease Network.

TEDMED Speaker List (as of 3/12/2012)

Additional speakers will be announced prior to the conference start date.

The rest is here:
TEDMED 2012 Conference Offers $2 Million in Scholarships to Health and Medicine Leaders and Innovators; Free National ...

StemCells, Inc. Reports Fourth Quarter and Year End 2011 Financial Results and Provides Business Update

NEWARK, Calif., March 13, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (Nasdaq:STEM - News), a leading stem cell company developing and commercializing novel cell-based therapeutics and tools for use in stem cell-based research and drug discovery, today reported financial results for the fourth quarter and year ended December 31, 2011 and provided a business update.

"The StemCells team made significant progress in 2011 with regard to two critical goals for the Company, namely accelerating and broadening our HuCNS-SC neural stem cell clinical trial agenda for diseases of, and injuries to, the central nervous system, while at the same time reducing our operating cash burn. We are now uniquely positioned as the only stem cell company pursuing clinical trials for disorders of all three organs of the CNS, the brain, spinal cord and eye," said Martin McGlynn, President and CEO of StemCells, Inc. "We have strong preclinical data underlying all our clinical trials, much of which has already been published in peer-reviewed journals, but we realize that the true test of our proprietary cell-based technology will be in the clinic. In this regard, I am pleased to confirm StemCells remains on track to report safety and efficacy data from our recently completed Phase I Pelizeaus-Merzbacher disease trial at the European Leukodystrophy Association meeting to be held in Paris, March 31-April 1. We are confident that executing our clinical trial agenda, while controlling our cash burn, is the best way to build lasting shareholder value."

Fourth Quarter and Recent Business Highlights

Therapeutic Product Development

Tools and Technologies Programs

Other Business Activities

Fourth Quarter 2011 Financial Results

For the fourth quarter of 2011, the Company reported a net loss of $7,212,000, or $(0.47) per share, compared with a net loss of $8,957,000, or $(0.70) per share, for the fourth quarter of 2010. Loss from operations in the fourth quarter of 2011 was $7,313,000, which was 5% lower when compared to the $7,706,000 loss from operations in the fourth quarter of 2010. Included in net loss and loss from operations in the fourth quarter of 2011 is a charge of $655,000 for the write-off of an acquired intangible asset.

Total revenue during the fourth quarter of 2011 was $541,000, compared to $699,000 in the same period of 2010. The decrease of 23% from 2010 to 2011 was due to both lower product sales and lower licensing and grant revenues. Total revenues in the fourth quarter of 2010 were higher due to a particularly strong quarter in our SC Proven business as well as the receipt of a milestone payment under a licensing agreement of approximately $438,000 in 2010.

Total operating expenses in the fourth quarter of 2011 were $7,807,000, compared to $8,341,000 in the fourth quarter of 2010. Excluding the impairment of the intangible asset, which is included as an operating expense, total operating expenses in the fourth quarter of 2011 were $7,152,000, or 14% lower than the same period in 2010. In the fourth quarter of 2011, research and development expenses totaled $4,834,000, or 18% less than in the same period of 2010, while selling, general and administrative expenses totaled $2,290,000, or 8% lower. The significant reduction in operating expenses was primarily attributable to the Company's cost containment efforts, including the reduction in force effected in May 2011.

Originally posted here:
StemCells, Inc. Reports Fourth Quarter and Year End 2011 Financial Results and Provides Business Update

Stem Cell Therapy at Newkirk Family Veterinarians – Hunter’s Story – Video

12-03-2012 17:41 Dr.Mark Newkirk is once again on the cutting edge of medicine. Newkirk Family Veterinarians now offer STEM CELL THERAPY for pets. Dr. Mark Newkirk combines traditional medicine and surgery with Holistic Alternatives to access the best of both worlds. As a Veterinarian, Dr. Newkirk has been serving Southern New Jersey for over 25 years. He is extensively trained in medicine and surgery and also is skilled in the care of exotic pets such as reptiles and birds. Dr. Newkirk is also one of only 5 doctors in the country currently undergoing training by the nationally renowned Dr. Martin Goldstein, the author of "The Nature of Animal Healing", and founder of immuno-augmentative therapy for animals, a true alternative cancer therapy. Dr. Newkirk is a member of American Holistic Veterinary Medical Society, the American Veterinary Medical Association, New Jersey Veterinary Medical Association and the Colorado Veterinary Medical Association. For more information check out Stem Cell Therapy on The Animal Planet's dogs 101 http://www.youtube.com

See the article here:
Stem Cell Therapy at Newkirk Family Veterinarians - Hunter's Story - Video

Biostem U.S., Corp. Appoints Thomas Prendergast to SAMBA

More Topics: Choose a Sector Accounting Firms Advertising/Media/Communications Capital CEO/Board General Business Health/Biotech Internet/Technology Investment Firms Law Firms Mergers & Acquisitions Money Managers People Private Companies Public Companies Venture Capital

Posted March 12, 2012

Thomas W. Prendergast

Cardiothoracic Surgeon Specializes in Heart Transplantation

CLEARWATER, FL -- Biostem U.S., Corporation (OTCQB: BOSM) (PINKSHEETS: BOSM) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transpla ntation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Read more:
Biostem U.S., Corp. Appoints Thomas Prendergast to SAMBA

BrainStorm Cell Therapeutics Expands Pipeline with the Initiation of a Study for Multiple Sclerosis

NEW YORK & PETACH TIKVAH, ISRAEL--(BUSINESS WIRE)--

BrainStorm Cell Therapeutics Inc. (OTCBB: BCLI.OB - News), a developer of adult stem cell technologies and CNS therapeutics, announces plans to initiate a preclinical study assessing the efficacy of its NurOwn stem cell technology in patients with Multiple Sclerosis (MS). Positive proof-of-concept results for MS have been confirmed in a set of in-vitro and in-vivo experiments, and the Company is working to advance MS into preclinical development in Q2 2012.

Based on initial promising pre-clinical data published by the Company's Chief Scientist, Prof. Daniel Offen of Tel Aviv University, BrainStorm has decided to explore MS as an additional indication for its NurOwn technology. The Company will draw plans to initiate pre-clinical safety trials, after which it will seek a leading medical center specializing in MS for clinical trials.

We have been focused on growing our pipeline of indications using our NurOwn stem-cell technology, commented Dr. Adrian Harel, Acting CEO of BrainStorm Cell Therapeutics. As we continue our ongoing trials to evaluate the safety, tolerability and therapeutic effects of NurOwn in ALS patients, we have determined through positive preliminary animal data that MS will be the next indication to pursue using our technology.

About NurOwn BrainStorms core technology, NurOwn, is based on the scientific achievements of Professor Eldad Melamed, former Head of Neurology, Rabin Medical Center, and Tel-Aviv University, and Professor Daniel Offen, Head of the Neuroscience Laboratory, Felsenstein Medical Research Center at the Tel-Aviv University.

The NurOwn technology processes adult human mesenchymal stem cells that are present in bone marrow and are capable of self-renewal as well as differentiation into many cell types. The research team is among the first to have successfully achieved the in-vitro differentiation of adult bone marrow cells (animal and human) into cells capable of releasing neurotrophic factors, such as glial-derived neurotrophic factor (GDNF), by means of a specific differentiation-inducing culture medium.

About Multiple Sclerosis (MS) Multiple sclerosis (MS) is believed to be an autoimmune disorder that affects the central nervous system (CNS). Autoimmune means that the bodys immune system mistakenly attacks its own tissue, in this case, the tissues of the CNS. With MS, autoimmune damage to neurons disrupts the bodys ability to send and receive signals, thus causing MS-related symptoms. Symptoms may vary due to the location and extent of the damage. Worldwide, MS may affect more than 2 million individuals, including approximately 400,000 people in the United States.

About BrainStorm Cell Therapeutics Inc. BrainStorm Cell Therapeutics Inc. is a biotechnology company engaged in the development of adult stem cell therapeutic products derived from autologous bone marrow cells and intended for the treatment of neurodegenerative diseases. The Company holds the rights to develop and commercialize its NurOwn technology through an exclusive, worldwide licensing agreement with Ramot, the technology transfer company of Tel-Aviv University. For more information, visit the companys website at http://www.brainstorm-cell.com.

Safe Harbor Statement Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. The potential risks and uncertainties include risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect the technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. The Company does not undertake any obligation to update forward-looking statements made by us.

The rest is here:
BrainStorm Cell Therapeutics Expands Pipeline with the Initiation of a Study for Multiple Sclerosis

Insulin, nutrition prevent blood stem cell differentiation

LOS ANGELES UCLA stem cell researchers have shown that insulin and nutrition prevent blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as blood stem cells are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, the Irving and Jean Stone Professor and chairman of molecular, cell and developmental biology in the UCLA Division of Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appeared Sunday (March 11) in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly blood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

In the fruit fly, the only mature blood cells present are myeloid cells, Shim said. Diabetic patients have many activated myeloid cells that could be causing disease symptoms. It may be that abnormal activation of myeloid cells and abnormal metabolism play a major role in diabetes.

"Metabolic regulation and immune response are highly integrated in order to function properly dependent on each other. Type II diabetes and obesity, both metabolic diseases, are closely associated with chronic inflammation, which is induced by abnormal activation of blood cells," Shim said. "However, no systemic study on a connection between blood stem cells and metabolic alterations had been done. Our study highlights the potential linkage between myeloid-lineage blood stem cells and metabolic disruptions."

Originally posted here:
Insulin, nutrition prevent blood stem cell differentiation

UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Public release date: 11-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

More here:
UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies