Stem cell repair kit for glaucoma could mean a treatment for the most common cause of blindness

By Fiona Macrae

Last updated at 1:55 AM on 8th March 2012

Important breakthrough: One in ten glaucoma sufferers go blind, due to late diagnosis, drugs not working or the disease being particularly severe (file picture)

A treatment for one of the most common causes of blindness could soon be available.

British researchers have used stem cells to heal the damage caused by glaucoma.

The treatment has only been tested on rats, but scientists say it could be tested on humans by 2015 and in widespread use four years later.

At present one in ten glaucoma sufferers go blind, due to late diagnosis, drugs not working or the disease being particularly severe.

Researchers at University College London took healthy stem cells master cells capable of turning into other types of cell and widely seen as a repair kit for the body from human eyes.

They used a cocktail of chemicals to turn them into retinal ganglion cells those that die in glaucoma. They then injected these into the eyes of rats with glaucoma-like damage.

After just four weeks, the cells had connected with existing nerve cells, and the animals eyes worked 50 per cent better, the journal Stem Cells Translational Medicine reports.

Original post:
Stem cell repair kit for glaucoma could mean a treatment for the most common cause of blindness

Nuvilex Forecasts Vast Partnership Opportunities Using Breakthrough Stem Cell Technology

SILVER SPRING, Md.--(BUSINESS WIRE)--

Nuvilex, Inc. (OTCQB:NVLX), an emerging biotechnology provider of cell and gene therapy solutions, today pointed out the potential for substantial partnership and licensing opportunities using the companys cell encapsulation technology for applications in stem cell research and medicine. Migration of implanted cells away from the target site and host rejection have been recognized as fundamental challenges faced by the stem cell community regarding their use in therapy, which the companys technology overcomes.

The technology being acquired from associate SG Austria is used to place live stem cells into strong, flexible and permeable capsules. These capsules can then be implanted into animals or humans for specific therapies. Stem cells can then exist at the desired location inside the capsules, prevented from migrating and protected from the immune system that aims to eliminate such foreign cells from the body.

Stem cell therapy is being used by clinicians throughout the world for treating such diverse diseases as spinal cord injury, amyotrophic lateral sclerosis, burns, glioma, multiple myeloma, arthritis, heart disease, stroke, Stargardt's Macular Dystrophy, and age-related macular degeneration, among others, most of which can be found at ClinicalTrials.gov.

Historically, researchers have faced numerous difficulties in succeeding with certain stem cell treatments, because of the problems associated with keeping stem cells alive for significant periods of time, stopping rejection and destruction by the recipients immune system, and keeping stem cells from migrating away from the desired sites. Cells encapsulated in SG Austrias porous beads have been shown to remain alive for long periods of time in humans, surviving intact for at least two years. Once encapsulated, cells are protected from the bodys immune system. Furthermore, encapsulated cells remain within the beads and are unable to migrate to other sites in the body.

In the February 29, 2012 research report, Goldman Small Cap Research stated, The Cell-in-a-Box approach could significantly advance the implementation and utilization of stem cells for a host of debilitating diseases and conditions, making it a uniquely valuable commodity. We believe that by partnering with leading players in the field, Nuvilex could find that companies with deep pockets would be happy to collaborate or license the delivery system and engage in further research which could result in meaningful development and licensing revenue.

Dr. Robert Ryan, Chief Executive Officer of Nuvilex, discussed the value for licensing the companys stem cell therapy, adding, By overcoming traditional barriers to effective stem cell therapy, namely viability, migration, and host rejection, we believe these new advances in medical science utilizing stem cells and encapsulation will enable us to take quantum leaps forward now and in the future. As a result of challenges SG Austria has overcome, new advances will be surprisingly close at hand and are part of the driving force behind our desire to work with a number of companies in this endeavor. Our primary goal has been and remains to use our technology to bring life changing treatments to patients on an expedited basis.

About Nuvilex

Nuvilex, Inc. (OTCQB:NVLX) is an emerging international biotechnology provider of clinically useful therapeutic live encapsulated cells and services for encapsulating live cells for the research and medical communities. Through our effort, all aspects of our corporate activities alone, and especially in concert with SG Austria, are rapidly moving toward completion, including closing our agreement. One of our planned offerings will include cancer treatments using the companys industry-leading live-cell encapsulation technology.

Safe Harbor Statement

Read more from the original source:
Nuvilex Forecasts Vast Partnership Opportunities Using Breakthrough Stem Cell Technology

Cryo-Cell's Affiliate, Saneron CCEL Therapeutics, Releases Pre-clinical Data Indicating That Cord Blood Stem Cells …

Repeated injections of human umbilical cord blood cells improved motor neuron survival, delayed disease progression and increased lifespan

Oldsmar, FL (PRWEB) March 06, 2012

Dr. Julie G. Allickson, PhD. Vice President of Laboratory Operations and R&D, stated This groundbreaking study demonstrates the amazing capacity of cord blood stem cells to potentially treat a devastating neurodegenerative disease through the secretion of trophic factors that resulted in neuroprotection in the ALS mouse model. The data certainly justifies additional pre-clinical investigations using umbilical cord blood stem cells. This source of cells has mainly been used in hematopoietic and immune diseases in more than 25,000 transplants to date.

Cryo- Cell is excited about the results of the research Saneron CCEL Therapeutics has completed and proud of the progress Saneron has made in the treatment for ALS. The investment community does not appreciate the value of Cryo-Cells holdings in Saneron and its world-class research initiatives, commented David Portnoy, Cryo-Cells Chairman and CEO.

Given the delay between the onset of symptoms and the actual diagnosis of ALS, the data obtained from this study was critically important to show that multiple low-doses of cord blood cells started after the symptomatic disease stage in the ALS mouse model could benefit disease outcomes, said co-author Nicole Kuzmin-Nichols, President and COO of Saneron CCEL Therapeutics, Inc. Our continuing studies are aimed at translating the preclinical data into future clinical studies.

About Cryo-Cell International, Inc.

Cryo-Cell International, Inc. was founded in 1989 and was the worlds first private cord blood bank to separate and store stem cells in 1992. Today, Cryo-Cell has over 240,000 clients worldwide from 87 countries. Cryo-Cells mission is to provide our clients with the premier stem cell cryopreservation service and to support the advancement of regenerative medicine.

Cryo-Cell operates in a state-of-the-art Good Manufacturing Practice and Good Tissue Practice (cGMP/cGTP)-compliant facility, is ISO 9001:2008 certified and accredited by the AABB. Cryo-Cell is a publicly traded company. OTC:QB Markets Group Symbol: CCEL. Expectant parents or healthcare professionals may call 1-800-STOR-CELL (1-800-786-7235) or visit http://www.cryo-cell.com.

About Saneron CCEL Therapeutics, Inc.

Saneron CCEL Therapeutics, Inc. is a biotechnology R&D company, focused on neurological and cardiac cell therapy for the early intervention and treatment of several devastating or deadly diseases, which lack adequate treatment options. Saneron, a University of South Florida spin-out company is located at the Tampa Bay Technology Incubator. An affiliate of Cryo-Cell International, Inc., Saneron is committed to providing readily available, noncontroversial stem cells for cellular therapies and has patented and patent-pending technology relating to our platform technology of umbilical cord blood and Sertoli cells.

View original post here:
Cryo-Cell's Affiliate, Saneron CCEL Therapeutics, Releases Pre-clinical Data Indicating That Cord Blood Stem Cells ...

UNC Hospitals preps for triple-tandem stem cell transplant

CHAPEL HILL, N.C. --

A Carrboro man is getting the first triple-tandem stem cell transplant performed at UNC Hospitals to treat a testicular cancer recurrence.

David Alston was diagnosed with testicular cancer a year ago. He went through chemotherapy at UNC and thought he'd beat it, but doctors discovered the cancerhad come back during a routine blood test.

"I was devastated", said Alston. "I completely fell apart."

He found hope again when Dr. Paul Armstead at UNC Hospitalssuggested a treatment that involved stem cell transplants.

"It's good for someone young like David whose already tolerated all the chemotherapy we've given him," said Dr. Armstead. "We think this is his best chance of being cured of this disease."

Alston's stem cells were recovered in a process that Alston says is like giving blood.

"Once we give a high dose of chemotherapy we then take some of his frozen bone marrow stem cells and give those back to him," explained Dr. Armstead. "This allows his blood count to recover and that's transplant number one."

Alston's treatment is unique because he'll receive three transplants. It's a process that will keep him in the hospital for about nine weeks and take a major toll on his immune system.

"I'm nervous because I know there's going to be a point where I just feel terrible," said Alston.

Read more here:
UNC Hospitals preps for triple-tandem stem cell transplant

Influencing stem cell fate

Public release date: 6-Mar-2012 [ | E-mail | Share ]

Contact: Megan Fellman fellman@northwestern.edu 847-491-3115 Northwestern University

Northwestern University scientists have developed a powerful analytical method that they have used to direct stem cell differentiation. Out of millions of possibilities, they rapidly identified the chemical and physical structures that can cue stem cells to become osteocytes, cells found in mature bone.

Researchers can use the method, called nanocombinatorics, to build enormous libraries of physical structures varying in size from a few nanometers to many micrometers for addressing problems within and outside biology.

Those in the fields of chemistry, materials engineering and nanotechnology could use this invaluable tool to assess which chemical and physical structures -- including size, shape and composition -- work best for a desired process or function.

Nanocombinatorics holds promise for screening catalysts for energy conversion, understanding properties conferred by nanostructures, identifying active molecules for drug discovery or even optimizing materials for tissue regeneration, among other applications.

Details of the method and proof of concept is published in the Proceedings of the National Academy of Sciences.

"With further development, researchers might be able to use this approach to prepare cells of any lineage on command," said Chad A. Mirkin, who led the work. "Insight into such a process is important for understanding cancer development and for developing novel cancer treatment methodologies."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology (IIN).

The new analytical method utilizes a technique invented at Northwestern called polymer pen lithography, where basically a rubber stamp having as many as 11 million sharp pyramids is mounted on a transparent glass backing and precisely controlled by an atomic force microscope to generate desired patterns on a surface. Each pyramid -- a polymeric pen -- is coated with molecules for a particular purpose.

Continue reading here:
Influencing stem cell fate

Influencing stem cell fate: New screening method helps scientists identify key information rapidly

ScienceDaily (Mar. 6, 2012) Northwestern University scientists have developed a powerful analytical method that they have used to direct stem cell differentiation. Out of millions of possibilities, they rapidly identified the chemical and physical structures that can cue stem cells to become osteocytes, cells found in mature bone.

Researchers can use the method, called nanocombinatorics, to build enormous libraries of physical structures varying in size from a few nanometers to many micrometers for addressing problems within and outside biology.

Those in the fields of chemistry, materials engineering and nanotechnology could use this invaluable tool to assess which chemical and physical structures -- including size, shape and composition -- work best for a desired process or function.

Nanocombinatorics holds promise for screening catalysts for energy conversion, understanding properties conferred by nanostructures, identifying active molecules for drug discovery or even optimizing materials for tissue regeneration, among other applications.

Details of the method and proof of concept is published in the Proceedings of the National Academy of Sciences.

"With further development, researchers might be able to use this approach to prepare cells of any lineage on command," said Chad A. Mirkin, who led the work. "Insight into such a process is important for understanding cancer development and for developing novel cancer treatment methodologies."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology (IIN).

The new analytical method utilizes a technique invented at Northwestern called polymer pen lithography, where basically a rubber stamp having as many as 11 million sharp pyramids is mounted on a transparent glass backing and precisely controlled by an atomic force microscope to generate desired patterns on a surface. Each pyramid -- a polymeric pen -- is coated with molecules for a particular purpose.

In this work, the researchers used molecules that bind proteins found in the natural cell environment, such as fibronectin, which could then be attached onto a substrate in various patterns. (Fibronectin is a protein that mediates cell adhesion.) The team rapidly prepared millions of textured features over a large area, which they call a library. The library consisted of approximately 10,000 fibronectin patterns having as many as 25 million features ranging in size from a couple hundred nanometers to several micrometers.

To make these surfaces, they intentionally tilt the stamp and its array of pens as the stamp is brought down onto the substrate, each pen delivering a spot of molecules that could then bind fibronectin. The tilt results in different amounts of pressure on the polymeric pens, which dictates the feature size of each spot. Because the pressure varies across a broad range, so does the feature size.

Original post:
Influencing stem cell fate: New screening method helps scientists identify key information rapidly

Tonsils make T-cells, too

ScienceDaily (Mar. 5, 2012) A new study provides evidence that a critical type of immune cell can develop in human tonsils. The cells, called T lymphocytes, or T cells, have been thought to develop only in the thymus, an organ of the immune system that sits on the heart.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC -- James), could improve the understanding of T-cell cancers and autoimmune diseases, and how stem-cell transplantation is done.

The study identified T cells at five distinct stages of development in the tonsil. These stages, identified using molecular signposts on the cells, were very similar to the stages of T-cell development in the thymus, although some differences were found as well.

The study also discovered that the cells develop in a particular region of the tonsil, in areas near the fibrous scaffold of the tonsil.

The findings are published in the Journal of Clinical Investigation.

"We've known for a long time that a functional thymus is necessary to develop a complete repertoire of T-cells, but whether a T-cell factory existed outside the thymus has been controversial," says principal investigator Dr. Michael A. Caligiuri, director of Ohio State's Comprehensive Cancer Center and CEO of the James Cancer Hospital and Solove Research Institute.

"I believe our study answers that question. It is the first report to describe a comprehensive, stepwise model for T-cell development outside the thymus."

It also raises a number of questions. Caligiuri notes that it's still unclear whether T-cells that develop in the tonsil also mature there or whether they leave the tonsil to mature elsewhere.

"The complete implications of this phenomenon for human health and disease are not entirely known," adds first-author Susan McClory, a graduate fellow in Caligiuri's laboratory. "It could be important in the development of T-cell cancers and autoimmune diseases, or it might suggest a location for T-cell development when thymus function is poor. We hope to do additional studies to explore these possibilities," she says.

Caligiuri, McClory and their colleagues conducted the study using tonsil tissue obtained from children undergoing routine tonsillectomy at Nationwide Children's Hospital in Columbus, and thymic tissue obtained from children undergoing thoracic surgery.

Go here to read the rest:
Tonsils make T-cells, too

Tonsils make t-cells, too, Ohio State study shows

Public release date: 5-Mar-2012 [ | E-mail | Share ]

Contact: Darrell E. Ward Darrell.Ward@osumc.edu 614-293-3737 Ohio State University Medical Center

COLUMBUS, Ohio A new study provides evidence that a critical type of immune cell can develop in human tonsils. The cells, called T lymphocytes, or T cells, have been thought to develop only in the thymus, an organ of the immune system that sits on the heart.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC James), could improve the understanding of T-cell cancers and autoimmune diseases, and how stem-cell transplantation is done.

The study identified T cells at five distinct stages of development in the tonsil. These stages, identified using molecular signposts on the cells, were very similar to the stages of T-cell development in the thymus, although some differences were found as well.

The study also discovered that the cells develop in a particular region of the tonsil, in areas near the fibrous scaffold of the tonsil.

The findings are published in the Journal of Clinical Investigation.

"We've known for a long time that a functional thymus is necessary to develop a complete repertoire of T-cells, but whether a T-cell factory existed outside the thymus has been controversial," says principal investigator Dr. Michael A. Caligiuri, director of Ohio State's Comprehensive Cancer Center and CEO of the James Cancer Hospital and Solove Research Institute.

"I believe our study answers that question. It is the first report to describe a comprehensive, stepwise model for T-cell development outside the thymus."

It also raises a number of questions. Caligiuri notes that it's still unclear whether T-cells that develop in the tonsil also mature there or whether they leave the tonsil to mature elsewhere.

View original post here:
Tonsils make t-cells, too, Ohio State study shows

New Stem Cell Research Shows Promising Results — Advanced Cell Tech and NeoStem Poised to Benefit

NEW YORK, NY--(Marketwire -03/05/12)- February was a challenging month for stem cell stocks. TickerSpy's Stem Cell Stocks Index (RXSTM) has slipped nearly 13 percent over the last month -- underperforming the S&P 500 by close to 17 percent over that time frame. Despite the drop in investor optimism, new research continues to propel the industry forward. Five Star Equities examines the outlook for companies in the Biotechnology industry and provides equity research on Advanced Cell Technology, Inc. (OTC.BB: ACTC.OB - News) and NeoStem, Inc. (AMEX: NBS - News). Access to the full company reports can be found at:

http://www.fivestarequities.com/ACTC

http://www.fivestarequities.com/NBS

A new study at Johns Hopkins University has shown that stem cells from patients' own cardiac tissue can be used to heal scarred tissue after a heart attack. "This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it," Eduardo Marban, director of the Cedars-Sinai Heart Institute and one of the study's co-authors, said in a statement. "The effects are substantial."

In another study, researchers led by Jonathan Tilly, director of the Vincent Center for Reproductive Biology at Massachusetts General Hospital, argue they've discovered the ovaries of young women harbor very rare stem cells capable of producing new eggs.

Five Star Equities releases regular market updates on the biotechnology industry so investors can stay ahead of the crowd and make the best investment decisions to maximize their returns. Take a few minutes to register with us free at http://www.fivestarequities.com and get exclusive access to our numerous stock reports and industry newsletters.

Advanced Cell Technology, Inc., a biotechnology company, focuses on the development and commercialization of human embryonic and adult stem cell technology in the field of regenerative medicine. The Company recently issued a press release stating that it utilized $13.6 million in cash for operations during 2011, compared to $8.8 million in the year-earlier period. The increase in cash utilization resulted primarily from ACT's ongoing clinical activities in the US and Europe.

NeoStem, Inc., a biopharmaceutical company, engages in the development and manufacture of cellular therapies for oncology, immunology, and regenerative medicines in the United States and China. In January, Amorcyte, LLC, a NeoStem, Inc. company, announced the enrollment of the first patient in the Amorcyte PreSERVE Phase 2 trial for acute myocardial infarction.

Five Star Equities provides Market Research focused on equities that offer growth opportunities, value, and strong potential return. We strive to provide the most up-to-date market activities. We constantly create research reports and newsletters for our members. Five Star Equities has not been compensated by any of the above-mentioned companies. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at: http://www.fivestarequities.com/disclaimer

Go here to see the original:
New Stem Cell Research Shows Promising Results -- Advanced Cell Tech and NeoStem Poised to Benefit

Histogen Signs License Agreement with Suneva Medical for Cell Conditioned Media-based Aesthetic Products

SAN DIEGO, March 5, 2012 /PRNewswire/ --Histogen Inc., a regenerative medicine company, and Suneva Medical, a privately-held aesthetics company, today announced that they have entered into a license agreement for physician-dispensed aesthetic products containing Histogen's proprietary multipotent cell conditioned media (CCM).

Under the terms of this license agreement, Suneva Medical has acquired exclusive U.S. licensing rights to Histogen's multipotent CCM and the ReGenica branded line of products for topical applications in the licensed market. Suneva Medical will manufacture the ReGenica product line and market it to aesthetic practitioners throughout the U.S. Histogen will receive a transfer price on the CCM, as well as royalties on future sales of ReGenica and product line extensions.

"First, let me say that, as the first step in expanding our business, we are very excited about this particular opportunity as the advent of regenerative medicine is upon us. One of our key business objectives is to find novel products that complement our rapidly growing dermal filler business. We believe Histogen's innovative technology coupled with our proven experience of developing and marketing aesthetic products is a winning combination as it enables us to offer our customers a differentiated product line," stated Nicholas Teti, Chairman and Chief Executive Officer of Suneva Medical.

Through Histogen's technology process, which mimics the embryonic environment including conditions of low oxygen and suspension, cells are triggered to become multipotent, and naturally produce proteins associated with skin renewal and scarless healing. The result is a soluble cell conditioned media containing cell-signaling proteins such as KGF, follistatin, stem cell factor, collagens and laminins, which support the epidermal stem cells that renew skin throughout life. In addition, factors associated with scarring, such as TGF-beta, are decreased or nonexistent.

"The applications for this proprietary multipotent CCM within the field of medical aesthetics are numerous and, based upon the way the proteins within the complex signal the body's own stem cells to rejuvenate and regenerate skin, potentially groundbreaking," said Dr. Gail K. Naughton, CEO and Chairman of the Board at Histogen. "This recognition from Suneva's expert team, with a rich background in developing and marketing aesthetics, validates Histogen's technology and supports the fact that it is different from anything currently in the market."

About Histogen Histogen, launched in 2007, seeks to redefine regenerative medicine by developing a series of high value products that do not contain embryonic stem cells or animal components. Through Histogen's proprietary bioreactors that mimic the embryonic environment, including low oxygen and suspension, newborn cells are encouraged to naturally produce the vital proteins and growth factors from which the Company has developed its rich product portfolio. Histogen has two product families a proprietary cell conditioned media, and a human Extracellular Matrix (ECM) material. For more information, please visit http://www.histogen.com.

About Suneva Medical Suneva Medical, Inc. is a privately-held aesthetics company focused on developing, manufacturing and commercializing novel, differentiated products for the dermatology, plastic and cosmetic surgery markets. The Company's long-lasting injectable product is marketed as Artefill in the U.S. and Bellafill in Canada to correct facial wrinkles. For more information visit http://www.sunevamedical.com.

Contacts:

For Histogen Inc.:

Eileen Brandt Phone: (858) 200-9520 ebrandt@histogeninc.com

See more here:
Histogen Signs License Agreement with Suneva Medical for Cell Conditioned Media-based Aesthetic Products