TiGenix : Presenting at Key Conferences – Spring 2012

LEUVEN, BELGIUM--(Marketwire -05/08/12)- TiGenix (TIG), a leader in the field of cell therapy, announced today that during the months of May and June the company will present at a number of key events in Europe and the U.S. geared at investor, industry, and academic audiences to highlight the commercial potential of ChondroCelect, the only approved cell therapy in Europe, and of the company's innovative proprietary allogeneic stem cell platform with programs in Phase I, II, and III for a range of inflammatory and autoimmune diseases.

May 15-16 BioEquity, Marriott Hotel, Frankfurt, Germany Presenter: Eduardo Bravo, CEO Date & time: Tuesday, May 15, 16:00-16:25 Room: Level 1, Room Gold 1

May 21-23 World Stem Cells and Regenerative Medicine Congress, Victoria Park Plaza, London, UK Presenter: Eduardo Bravo, CEO Date & time: Monday, May 21, 15:25 -15:50 Title: Cell Therapy & Regenerative Medicine - Progressing into phase III with an orphan indication

May 24 Knowledge for Growth, ICC Ghent, Belgium Presenter: Eduardo Bravo, CEO Time: 11:30 Keynote speech - Advanced therapies: this time it is for real

June 5-8 18th International Stem Cell Therapy Sociey Annual Meeting, Sheraton Seattle, WA, U.S. Presenter: Eduardo Bravo, CEO Date & time: June 7, 13:45-15:15 Title: Plenary Session 4 - Regenerative Medicine and Positioning for Commercial Success - Lessons from the commercial roll out of ChondroCelect in Europe

June 18-21 BIO International Convention, Boston Convention & Exhibition Center, MA, U.S. Presenter: Eduardo Bravo, CEO Date & time: June 20, 15:00-15:45 Title: Stem Cell Therapies...Fact or Fiction?

June 23 VFB Biotech Congres, Leuven, Belgium Location: Imec, Kapeldreef 75, Leuven Presenter: Gil Beyen, Chief Business Officer Time: 11am

June 23 Dag van de Biotechnologie, Leuven, Belgium Location: TiGenix headquarters, Leuven Event: Open day event throughout Flanders for all biotech companies & academic labs Time: 10am-5pm

About TiGenixTiGenix NV (TIG) is a leading European cell therapy company with a marketed product for cartilage repair, ChondroCelect, and a strong pipeline with clinical stage allogeneic adult stem cell programs for the treatment of autoimmune and inflammatory diseases. TiGenix is based out of Leuven (Belgium) and has operations in Madrid (Spain), and Sittard-Geleen (the Netherlands). For more information please visit http://www.tigenix.com.

Forward-looking information This document may contain forward-looking statements and estimates with respect to the anticipated future performance of TiGenix and the market in which it operates. Certain of these statements, forecasts and estimates can be recognised by the use of words such as, without limitation, "believes", "anticipates", "expects", "intends", "plans", "seeks", "estimates", "may", "will" and "continue" and similar expressions. They include all matters that are not historical facts. Such statements, forecasts and estimates are based on various assumptions and assessments of known and unknown risks, uncertainties and other factors, which were deemed reasonable when made but may or may not prove to be correct. Actual events are difficult to predict and may depend upon factors that are beyond TiGenix' control. Therefore, actual results, the financial condition, performance or achievements of TiGenix, or industry results, may turn out to be materially different from any future results, performance or achievements expressed or implied by such statements, forecasts and estimates. Given these uncertainties, no representations are made as to the accuracy or fairness of such forward-looking statements, forecasts and estimates. Furthermore, forward-looking statements, forecasts and estimates only speak as of the date of the publication of this document. TiGenix disclaims any obligation to update any such forward-looking statement, forecast or estimates to reflect any change in TiGenix' expectations with regard thereto, or any change in events, conditions or circumstances on which any such statement, forecast or estimate is based, except to the extent required by Belgian law.

Visit link:
TiGenix : Presenting at Key Conferences - Spring 2012

NY medical schools chart progress with stem cells

ALBANY, N.Y. (AP) -- Almost halfway through a $600 million state program supporting stem cell research, eight medical schools around New York are reporting progress on projects such as replicating liver cells and eradicating leukemia cells.

A new report from Associated Medical Schools of New York updates work at the institutions where hundreds of researchers are starting to unravel causes and potential treatments for conditions ranging from autism to heart disease and cancer. Stem cells are self-renewing and have the ability to develop into other types of cells.

The Mount Sinai School of Medicine reported finding a method to transform human skin cells into stem cells and turned differentiated human stem cells into heart cells. Those findings are expected to result in better understanding of how heart disease develops and allow initial testing of new treatments on stem cells before they are used on human subjects.

Dr. Ihor Lemischka, director of the Black Family Stem Cell Institute at Mount Sinai, said recreating heart cells in a dish from a patient with LEOPARD Syndrome, a disease caused by a genetic mutation, has opened ongoing avenues for researching the disease and screening potential drugs.

"It was a major achievement," Lemischka said. The initial work was reported in June 2010 in the journal Nature.

The shared research facility at Mount Sinai supports the work at 80 different labs, Lemischka said.

The Empire State Stem Cell Program was intended to fund projects in early stages, including those that initially have been unable to get federal or private funding. Grants have also been used for capital projects like renovating labs and establishing new stem cell centers.

The Albert Einstein College of Medicine reported replicating liver cells that could help reduce the need for liver transplants using live donors and cadavers.

Dr. Allen Spiegel said 12 new researchers have been hired with state funding at the Bronx school, which also lists anemia, brain disorders, heart disease and obesity among its stem cell research subjects.

"It offers tremendous potential for understanding the causes of and developing better treatments for diseases like cancer, type 1 diabetes and Parkinson's," he said.

Originally posted here:
NY medical schools chart progress with stem cells

Neuralstem Updates ALS Stem Cell Trial Progress

ROCKVILLE, Md., May 8, 2012 /PRNewswire/ --Neuralstem, Inc. (CUR) announced that the Federal Drug Administration (FDA) has approved the return of three patients from earlier cohorts in its ongoing Phase I safety trial to treat amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) with its spinal cord stem cells (HSSC's). These patients will be permitted to return to the trial for second treatments as the next cohort of patients, provided they meet inclusion requirements at the scheduled time. They will be the first to receive stem cell transplantation along the length of the spinal cord.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

The first twelve patients in the trial, which is taking place at Emory University Hospital in Atlanta, Georgia, received stem cell transplants in the lumbar (lower back) region of the spinal cord only. Thelast cohort of three, completed in April, received transplants in the cervical (upper back) region of the spinal cord, where stem cell transplantation could help support breathing, a key function that is lost as ALS progresses. The next cohort of three patients is designed to receive 10 HSSC injections in the lumbar region and 5 in the cervical, for a total of 15 injections along the length of the spinal cord. In the case of the returning patients, who have already received 10 lumbar injections, they will receive five cervical injections. These patients are between 15-17 months out from their first dosing and appear to have tolerated the first procedure well.

Additionally, Neuralstem has submitted a trial amendment to the FDA to increase both the number of patients treated as well as the dose in future cohorts. The amendment would also expand the trial to include certain efficacy endpoints. The trial was initially designed as a safety trial to treat 18 patients.

"The return of these patients to the trial for second treatments is a continuing validation of the trial's safety. Typically, Phase I trials do not bring study subjects back, as that could increase their exposure to potentially harmful treatments," said Karl Johe, PhD, Neuralstem Chairman and Chief Scientific Officer. "Treating these patients who have already received injections in one part of their spine allows us to both increase the overall dosage for each patient as well as transplant them in regions of the spine where they have not been treated," Dr. Johe continued. "Thisnext cohort of patients will be the first in the world to receive stem cell transplants in both cervical and lumbar regions of their spinal cord. With cervical injections of the lumbar patients, for example, we could also potentially support their breathing function, which is vital for preserving quality of life."

"Patients 10-12, who might return to the trial, were among those studied in a paper examining the first safety data from the trial, published online in STEM CELLS last month," said Eva Feldman, MD, PhD, Director of the A. Alfred Taubman Medical Research Institute and Director of Research of the ALS Clinic at the University of Michigan Health System. "As the paper showed, we believe that the cells and the route of administration are safe. It is a further validation of the safety profile to be able to bring patients back for additional dosing several months past the period which was reported on in the journal." Dr. Feldman is also principal investigator (PI) of the ALS trial and an unpaid Neuralstem consultant.

The FDA-approved amendment to the protocol requires approval of the Emory Institutional Review Board before it can be implemented.

About the Study

The ongoing Phase I study is designed to assess the safety of Neuralstem's spinal cord stem cells (HSSC's) and transplantation technique in up to 18 patients with amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease).

The first twelve patients were all transplanted in the lumbar (lower back) region of the spine. Of these, the initial six (Cohort A) were all non-ambulatory with permanent paralysis. The first patient was treated on January 20, 2010. Successive surgeries have followed at the rate of one every one-to-two months. The first three patients (Cohort A1) were each treated with five unilateral HSSC injections in L2-L4 lumbar segments, while the next three patients (Cohort A2) received ten bilateral injections (5 on each side) in the same region. The next six patients (Cohort B and C) were all ambulatory. Of these, the first three (Cohort B) received five unilateral injections in the L2-L4 region. The last three patients (Cohort C) in this study group received ten bilateral injections in the same region.

Continued here:
Neuralstem Updates ALS Stem Cell Trial Progress

JS man needs stem cell transplant

JERSEY SHORE-Donnie Laubscher of Jersey Shore, seemed a healthy, 47-year-old husband and father when blood work from a routine colonoscopy suggested something was wrong.

After a marrow biopsy and appointments at the local cancer center, he received his diagnosis: myelodysplastic syndrome, a rare and potentially fatal stem cell disorder.

"I looked at my wife of 15 years and our 13-year-old son and was devastated at the thought of our family walking this walk," Donnie said.

He is now undergoing chemotherapy, and his doctors believe his best shot at survival is to receive a stem cell transplant, but he must first find a matching donor. To increase his odds of finding that match, his community is rallying to hold a donor drive where anyone can do a cheek swab to register as a donor.

"Somebody out there could be our hero; we just need to find them," his wife, Angie, said. "The more people who swab, the better the chances are."

Anyone can register as a donor from 10 a.m. to 4 p.m. on May 12 at Elks Lodge No. 1057, 203 N. Main St., Jersey Shore.

Angie's coworker at the Jersey Shore Hospital, April Hennigan, is coordinating the event.

Though she's only known Angie six months, she decided to put on the donor event after she saw Donnie's cancer posted on Facebook.

"My heart just broke," April said. She put her emotion into action. "I believe what you give you'll get back twofold."

There will also be a Chinese auction and the money will go to Donnie.

Read more:
JS man needs stem cell transplant

Single cell triggers fibroid uterine tumor

CHICAGO, May 5 (UPI) -- U.S. researchers say they've identified the molecular trigger of fibroid uterine tumors -- a single stem cell develops a mutation and grows uncontrollably.

Dr. Serdar Bulun, the chairman of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, said the single cell activates other cells to join its frenzied expansion.

"It loses its way and goes wild," Bulun said in a statement. "No one knew how these came about before. The stem cells make up only 1.5 percent of the cells in the tumor, yet they are the essential drivers of its growth."

Dr. Masanori Ono, a post-doctoral student in Bulun's laboratory who was the study's lead author, said the stem cell that initiated the tumor carries a mutation called MED12.

Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone, Bulun said.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," Bulun said in a statement.

The paper is published in the journal PLoS ONE.

See the article here:
Single cell triggers fibroid uterine tumor

A single stem cell mutation triggers fibroid tumors: Mutated stem cell 'goes wild' in frenzied tumor expansion

ScienceDaily (May 4, 2012) Fibroid uterine tumors affect an estimated 15 million women in the United States, causing irregular bleeding, anemia, pain and infertility. Despite the high prevalence of the tumors, which occur in 60 percent of women by age 45, the molecular cause has been unknown.

New Northwestern Medicine preclinical research has for the first time identified the molecular trigger of the tumor -- a single stem cell that develops a mutation, starts to grow uncontrollably and activates other cells to join its frenzied expansion.

"It loses its way and goes wild," said Serdar Bulun, M.D., the chair of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital. "No one knew how these came about before. The stem cells make up only 1 percent of the cells in the tumor, yet they are the essential drivers of its growth."

The paper is published in the journal PLoS ONE. Masanori Ono, M.D., a post-doctoral student in Bulun's lab, is the lead author.

The stem cell initiating the tumor carries a mutation called MED12. Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone.

For the study, researchers examined the behavior of human fibroid stem cells when grafted into a mouse, a novel model initiated by Northwestern scientist Takeshi Kurita, a research associate professor of obstetrics and gynecology. The most important characteristic of fibroid stem cells is their ability to generate tumors. Tumors originating from the fibroid stem cell population grew 10 times larger compared to tumors initiated with the main cell population, suggesting a key role of these tumor stem cells is to initiate and sustain tumor growth.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," said Bulun, also the George H. Gardner Professor of Clinical Gynecology.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Story Source:

See more here:
A single stem cell mutation triggers fibroid tumors: Mutated stem cell 'goes wild' in frenzied tumor expansion

Stem cell therapy to battle HIV?

(SACRAMENTO, Calif.) -- UC Davis Health System researchers are a step closer to launching human clinical trials involving the use of an innovative stem cell therapy to fight the virus that causes AIDS.

In a paper published in the May issue of the Journal of Virology, the UC Davis HIV team demonstrated both the safety and efficacy of transplanting anti-HIV stem cells into mice that represent models of infected patients. The technique, which involves replacing the immune system with stem cells engineered with a triple combination of HIV-resistant genes, proved capable of replicating a normally functioning human immune system by protecting and expanding HIV-resistant immune cells. The cells thrived and self-renewed even when challenged with an HIV viral load.

"We envision this as a potential functional cure for patients infected with HIV, giving them the ability to maintain a normal immune system through genetic resistance," said lead author Joseph Anderson, an assistant adjunct professor of internal medicine and a stem cell researcher at the UC Davis Institute for Regenerative Cures. "Ideally, it would be a one-time treatment through which stem cells express HIV-resistant genes, which in turn generate an entire HIV-resistant immune system."

To establish immunity in mice whose immune systems paralleled those of patients with HIV, Anderson and his team genetically modified human blood stem cells, which are responsible for producing the various types of immune cells in the body.

Building on work that members of the team have pursued over the last decade, they developed several anti-HIV genes that were inserted into blood stem cells using standard gene-therapy techniques and viral vectors (viruses that efficiently insert the genes they carry into host cells). The resulting combination vector contained:

These engineered blood stem cells, which could be differentiated into normal and functional human immune cells, were introduced into the mice. The goal was to validate whether this experimental treatment would result in an immune system that remained functional, even in the face of an HIV infection, and would halt or slow the progression toward AIDS.

The results were successful on all counts.

"After we challenged transplanted mice with live HIV, we demonstrated that the cells with HIV-resistant genes were protected from infection and survived in the face of a viral challenge, maintaining normal human CD4 levels," said Anderson. CD4+ T-cells are a type of specialized immune cell that HIV attacks and uses to make more copies of HIV.

"We actually saw an expansion of resistant cells after the viral challenge, because other cells which were not resistant were being killed off, and only the resistant cells remained, which took over the immune system and maintained normal CD4 levels," added Anderson.

The data provided from the study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validated its potential application in future human clinical trials. The team has submitted a grant application for human clinical trials and is currently seeking regulatory approval, which is necessary to move on to clinical trials.

Go here to see the original:
Stem cell therapy to battle HIV?

South Korea Steps Up Stem-Cell Work

Nature | Health

Regenerative medicine gets a cash boost from the nation's health ministry, but stricter regulations are needed to ensure safety

May 1, 2012

By Soo Bin Park of Nature magazine

Seoul, South Korea

The South Korean health ministry announced last month that research into stem cells and regenerative medicine will receive a funding boost of 33 billion won (US$29 million) in 2012, four times that given in 2011. Overall, six different ministries will invest 100 billion won in stem-cell research this year.

Until last year, public investment in stem cells in South Korea was relatively low and targeted mainly at basic research. But the country's Ministry of Health and Welfare is now expanding its support for clinical research on stem cells, with the money being used to link basic research to intermediate or clinical studies. The aim is to commercialize the research at an early stage.

"From the current research atmosphere and infrastructure, the government has judged that stem-cell studies are now maturing," says Hyung Min Chung, president of Seoul-based biotechnology firm Cha Bio and Diostech and an adviser on the budget plan. He adds that his company is particularly pleased that government investment decisions on developing stem-cell therapies will be made more quickly.

Target market

The government money will be allocated to two areas: rare or incurable diseases for which there is little incentive for private investment, such as spinal cord damage; and common chronic conditions, such as arthritis, for which the aim is to help South Korean companies to capture part of the large potential market for treatments.

Read the original here:
South Korea Steps Up Stem-Cell Work

Nuvilex, Inc. Retains Dawson James Financial Services and Moves to Finalize SG Austria Asset Acquisition

SILVER SPRING, Md.--(BUSINESS WIRE)--

Nuvilex, Inc. (OTCQB:NVLX), an emerging biotechnology provider of cell and gene therapy solutions, today announced that it has executed a consulting agreement with Dawson James Financial Services, Inc. The agreement is seen as a key step as the company moves forward with closing the SG Austria asset acquisition.

Chief Executive Officer Dr. Robert Ryan commented, Weve been working closely with SG Austria over the past several months to develop the cell encapsulation technology and to focus on preparing that technology for market for stem cell therapy, for treating diabetes and pancreatic cancer. With the recent consolidation of the patent rights under the SG Austria roof, we are now finally in a position to move forward with the previously executed asset purchase agreement.

Dr. Ryan added, We are dedicated to completing development of the encapsulation technology for stem cell therapy and diabetes, all at the same time while gearing up for Phase 2 and 3 clinical trials for the pancreatic cancer treatment which is paramount to our immediate business goals. Thus, completing the SG Austria asset acquisition, bringing clinical trial preparations to fruition, and initiating the clinical trials are our top priorities.

About Nuvilex

Nuvilex, Inc. (OTCQB:NVLX) is an emerging international biotechnology provider of live therapeutically valuable, encapsulated cells and services for research and medicine. Substantial effort for our corporate activities in concert with SG Austria is near completion and will drive our strong future together. Our Companys clinical offerings will include cancer, diabetes and other treatments using the Companys industry-leading cell and gene therapy expertise and cutting edge, live-cell encapsulation technology.

Safe Harbor Statement

This press release contains forward-looking statements described within the Private Securities Litigation Reform Act of 1995 involving risks and uncertainties including product demand, market competition, and meeting current or future plans which may cause actual results, events, and performances, expressed or implied, to vary and/or differ from those contemplated or predicted. Investors should study and understand all risks before making an investment decision. Readers are recommended not to place undue reliance on forward-looking statements or information. Nuvilex is not obliged to publicly release revisions to any forward-looking statement, reflect events or circumstances afterward, or disclose unanticipated occurrences, except as required under applicable laws.

Original post:
Nuvilex, Inc. Retains Dawson James Financial Services and Moves to Finalize SG Austria Asset Acquisition