Dr. Aaron Schimmer Receives the Till and McCulloch Award – Award Lecture to be Presented Today on Drug Screening with …

MONTRAL, April 30, 2012 /CNW/ - Canada's most coveted stem cell prize will be awarded to a Stem Cell Network researcher who has used drug screening to find a potential new treatment for a deadly form of cancer.

Dr. Aaron Schimmer, associate professor in the University of Toronto's Department of Medical Biophysics and a clinician-scientist in the Princess Margaret Cancer Program/Ontario Cancer Institute at University Health Network, has received the 2012 Till & McCulloch Award, presented each year by the Stem Cell Network in recognition of the year's most influential peer-reviewed article by a researcher in Canada. Dr. Schimmer will accept the award and present a lecture entitled "Novel therapeutic strategies to target leukemia stem cells" as part of the Till and McCulloch Meetings in Montral at 2 p.m. this afternoon.

In an advance interview, Dr. Schimmer described his findings and their potential as a new drug therapy in the treatment of leukemia.

"When you treat patients with leukemia, you can kill off 99 per cent of their leukemic cells with just about anything, and yet, 80 per cent or more of patients relapse," Schimmer explained. "When we examined this in a really objective way, the question was not how to kill off those bulk cells - we already knew how to do that - but are we really missing a critical component of what we should be targeting?"

Dr. Schimmer and his team eventually found that cutting off the energy production capacity of bulk leukemia cells and leukemia stem cells was a way of treating the disease, and that the compound tigecyclinean FDA-approved antibiotic sometimes used to treat skin and abdominal infectionswas up to the task.

"Tigecycline appeared to work by essentially shutting down the energy supply of the leukemia cells and stem cells," said Dr. Schimmer. "Essentially it is like producing a selective power outage in leukemia cells but not normal cells."

By focusing on FDA-approved drugs, Dr. Schimmer was able to produce results that were quickly translated into clinical trials. Less than two years passed between his initial findings and the commencement of a phase-one clinical triala process that can otherwise take three or four times that long.

"It is incredibly impressive how much progress Dr. Schimmer has made in such a short period of time by using these stem cell screening techniques," said Stem Cell Network Scientific Director Michael Rudnicki. "By identifying drugs which are already approved for human therapies and testing their efficacy in treating diseases such as leukemia, Dr. Schimmer has shaved years off of the clinical trial process. It is likely that his discovery will improve the outcomes for many patients in the near future."

In 2005, the Stem Cell Network established the Till & McCulloch Award in honour of Canadians Drs. James Till and Ernest McCulloch, whose pioneering work established the field of stem cell research. The Award had been granted at the Stem Cell Network's Annual Scientific Meeting, but became part of the Till & McCulloch Meetings this year.

The previous winner was Timothy Caulfield, who was recognized for his global leadership in the field of stem cell ethics.

Read this article:
Dr. Aaron Schimmer Receives the Till and McCulloch Award - Award Lecture to be Presented Today on Drug Screening with ...

Bellevue doctor tests stem-cell cream as anti-aging therapy

by JEAN ENERSEN / KING 5 News

KING5.com

Posted on April 27, 2012 at 11:01 PM

A Bellevue doctor is one of only two researchers in the country testing stem cells as an anti-aging treatment.

Working with volunteer patients, Dr. Fredric Stern extracts stem cells with a liposuction-like procedure. The cells are then mixed with a special medium.

"Half is saved cyrogenically for future use and the other half is shipped to the laboratory in Arizona where on that end the stem cells are grown further," Stern said.

The end product goes into a cream called tropoelastin. The hope is that high concentrations of a patient's own stem cells in the cream will boost the skink's ability to repair itself.

If the eye cream proves successful in the eight-week study, the company will also offer a facial cream. Both could be available within a few months.

Stern said he expects the price to be comparable to high-end cosmetic products that typically cost hundreds of dollars.

Stern said the skin treatment is just the beginning. He said wound care is another possible use.

Read this article:
Bellevue doctor tests stem-cell cream as anti-aging therapy

Division of Labor in Neural Stem Cell Maintenance

Newswise NEWARK, N.J. -- Sibling growth factors cooperate to maintain a pool of neuron-generating stem cells in the brain, according to a study published in the journal Stem Cells by researchers at the University of Medicine and Dentistry of New Jersey (UMDNJ).

Numerous soluble proteins and receptors help to maintain neural stem cells (NSCs) supportive environment in central nervous system (CNS). NSCs access some of these nurturing factors by sending cellular extensions into the cerebral spinal fluid (CSF), which is rich in stem cell-promoting proteins.

Insulin-like growth factors (IGF-I and IGF-II) are essential for the growth and development of the CNS. But although they are abundant in the brain and CSF, it was not clear whether they are required by NSCs. Steven Levison, PhD, and Teresa Wood, PhD, of UMDNJ-New Jersey Medical School and colleagues now show that IGF-I and II cooperate to maintain NSC numbers and the NSCs ability to self-renew. IGF-I maintains NSC numbers by promoting cell division (via the IGF-I receptor), whereas IGF-II drives the expression of proteins essential for NSC self-renewal and stemness (via the insulin receptor).

The role of IGF-I and -II in maintaining NSC numbers and function might help to explain the cognitive impairments associated with aging, as the abundance of both proteins declines with age.

Disclosure: This study was funded by a Deans grant from UMDNJ-New Jersey Medical School, NIH grants (R21HL094905, F31NS065607 and T32-HL069752) and a grant from the LeDucq Foundation.

The University of Medicine and Dentistry of New Jersey (UMDNJ) is New Jerseys only health sciences university with more than 6,000 students on five campuses attending the state's three medical schools, its only dental school, a graduate school of biomedical sciences, a school of health related professions, a school of nursing and New Jerseys only school of public health. UMDNJ operates University Hospital, a Level I Trauma Center in Newark, and University Behavioral HealthCare, which provides a continuum of healthcare services with multiple locations throughout the state.

Go here to see the original:
Division of Labor in Neural Stem Cell Maintenance

Hadassah centenary honored May 6 by Chicago chapter

By Natasha Wasinski Contributor April 23, 2012 11:10AM

Miriam Schencker Goldberger (right) sits with two of her four grandchildren, Ari Schencker, 7, and his sister Sadie, 9, as 4-year-old Noah Schencker approaches to have his photo taken. Miriam, a member to Hadassah for past 50 years, purchased life members

storyidforme: 29352286 tmspicid: 10613889 fileheaderid: 4867083

Updated: April 23, 2012 8:47PM

With this year marking its centennial anniversary, the largest Jewish membership and womens organization in the U.S. has much to celebrate.

The Chicago chapter of Hadassah, the Womens Zionist Organization of America, hosts a benefit dinner May 6 at the Bryn Mawr Country Club in Lincolnwood to support trailblazing stem cell research efforts of a Jerusalem medical center.

Special guest Ehud Kokia, director general of Hadassah University Medical Center, is visiting from Israel to give a keynote address.

He oversees the Hadassah organizations flagship cause, which includes two hospitals with 1,000 beds, 31 operating theaters, nine intensive care units and five medical-profession schools, owned and operated in collaboration with the Hebrew University.

Supporting health work is a core component of Hadassahs service-oriented mission.

The national volunteer-led organization provides funding for programs and projects in Israel related to the Hadassah Medical Organization, education and youth institutions, and reforestation and parks.

Here is the original post:
Hadassah centenary honored May 6 by Chicago chapter

Hadassah centennial to be honored by Chicago chapter

By Natasha Wasinski Contributor April 23, 2012 11:10AM

Miriam Schencker Goldberger (right) sits with two of her four grandchildren, Ari Schencker, 7, and his sister Sadie, 9, as 4-year-old Noah Schencker approaches to have his photo taken. Miriam, a member to Hadassah for past 50 years, purchased life members

storyidforme: 29352286 tmspicid: 10613889 fileheaderid: 4867083

Updated: April 23, 2012 8:47PM

With this year marking its centennial anniversary, the largest Jewish membership and womens organization in the U.S. has much to celebrate.

The Chicago chapter of Hadassah, the Womens Zionist Organization of America, hosts a benefit dinner May 6 at the Bryn Mawr Country Club in Lincolnwood to support trailblazing stem cell research efforts of a Jerusalem medical center.

Special guest Ehud Kokia, director general of Hadassah University Medical Center, is visiting from Israel to give a keynote address.

He oversees the Hadassah organizations flagship cause, which includes two hospitals with 1,000 beds, 31 operating theaters, nine intensive care units and five medical-profession schools, owned and operated in collaboration with the Hebrew University.

Supporting health work is a core component of Hadassahs service-oriented mission.

The national volunteer-led organization provides funding for programs and projects in Israel related to the Hadassah Medical Organization, education and youth institutions, and reforestation and parks.

Read more from the original source:
Hadassah centennial to be honored by Chicago chapter

Hadassah centennial to be honored

By Natasha Wasinski Contributor April 23, 2012 8:14PM

Miriam Schencker Goldberger (right) sits with two of her four grandchildren, Ari Schencker, 7, and his sister Sadie, 9, as 4-year-old Noah Schencker approaches to have his photo taken. Miriam, a member to Hadassah for past 50 years, purchased life members

storyidforme: 29385357 tmspicid: 10613889 fileheaderid: 4867083

Updated: April 24, 2012 11:03AM

With this year marking its centennial anniversary, the largest Jewish membership and womens organization in the United States has much to celebrate.

The Chicago chapter of Hadassah, the Womens Zionist Organization of America, will conduct a benefit dinner May 6 at the Bryn Mawr Country Club in Lincolnwood to support stem-cell research efforts of a Jerusalem medical center.

Special guest Ehud Kokia, director general of Hadassah University Medical Center, is visiting from Israel to give a keynote address.

He oversees the Hadassah organizations flagship cause, which includes two hospitals with 1,000 beds, 31 operating theaters, nine intensive care units and five medical profession schools, owned and operated in collaboration with the Hebrew University.

Supporting health work is a core component of Hadassahs service-oriented mission.

The national volunteer-led organization provides funding for programs and projects in Israel related to the Hadassah Medical Organization, education and youth institutions, and reforestation and parks.

Originally posted here:
Hadassah centennial to be honored

Medical Center Researchers Discover "Housekeeping" Mechanism for Brain Stem Cells

Published: April 22, 2012

Findings offer new insights into neurologic development and regenerative therapies for neurologic disease

(New York, NY, April 22, 2012) Researchers at Columbia University Medical Center (CUMC) have identified a molecular pathway that controls the retention and release of the brains stem cells. The discovery offers new insights into normal and abnormal neurologic development and could eventually lead to regenerative therapies for neurologic disease and injury. The findings, from a collaborative effort of the laboratories of Drs. Anna Lasorella and Antonio Iavarone, were published today in the online edition of Nature Cell Biology.

The research builds on recent studies, which showed that stem cells reside in specialized niches, or microenvironments, that support and maintain them.

From this research, we knew that when stem cells detach from their niche, they lose their identity as stem cells and begin to differentiate into specific cell types, said co-senior author Antonio Iavarone, MD, professor of Pathology and Neurology at CUMC.

However, the pathways that regulate the interaction of stem cells with their niche were obscure, said co-senior author Anna Lasorella, MD, associate professor of Pathology and Pediatrics at CUMC and a member of the Columbia Stem Cell Initiative.

In the brain, the stem cell niche is located in an area adjacent to the ventricles, the fluid-filled spaces within the brain. Neural stem cells (NSCs) within the niche are carefully regulated, so that enough cells are released to populate specific brain areas, while a sufficient supply is kept in reserve.

Neural stem cells detaching from the vascular niche. Image credit: Anna Lasorella, CUMC /Nature Cell Biology

In previous studies, Drs. Iavarone and Lasorella focused on molecules called Id (inhibitor of differentiation) proteins, which regulate various stem cell properties. They undertook the present study to determine how Id proteins maintain stem cell identity.

Go here to see the original:
Medical Center Researchers Discover "Housekeeping" Mechanism for Brain Stem Cells

Silicon Biosystems to Present Single-Circulating Tumor Cell Molecular Characterization at the Fourth World CTC Summit

BOLOGNA, Italy--(BUSINESS WIRE)--

Silicon Biosystems, S.p.A., a provider of specialized molecular and cellular biology technologies, will present at the Fourth World Circulating Tumour Cells Summit, April 25, 2012 at 3:30 p.m. at the Maritim Hotel in Berlin. Dr. Nicol Manaresi, founder and chief technology officer of Silicon Biosystems, will provide an overview of the DEPArray system, which uses image-based single-cell sorting to deliver pure populations of rare tumor cells.

As part of the presentation, Dr. Manaresi will also offer recent data demonstrating single-CTC molecular characterization based on Whole Genome Amplification using the companys proprietary Ampli1 WGA kit followed by sequencing with Ion Torrent.

Silicon Biosystems is a device manufacturer leading the field in the detection and isolation of single cells for cancer research and prenatal genetic testing. The companys DEPArray technology exploits microelectronics and the principles of dielectrophoresis to find, sort, isolate, and collect 100 percent pure populations of rare cells, such as CTCs, for single-cell based genomic and transcriptional profiling.

The collection of pure individual CTCs from biological samples is a game changer in the quest to obtain clinical utility of these cells as it enables individual cell-based molecular profiling for personalized therapy, going beyond existing cell counting approaches for prognostic purposes, said Manaresi. We show that 100 percent pure single-CTC sorting by DEPArray and DNA amplification with our Ampli1 WGA seamlessly integrates with Ion Torrent AmpliSeq Cancer Panel sequencing to deliver a comprehensive overview of the mutational status, cell-by-cell, in a streamlined and automated manner. To the best of our knowledge, it is the first time this has been achieved.

There are multiple large and expanding market opportunities for technology that find and isolate rare cells for molecular analysis. Silicon Biosystems DEPArray is used for translational medicine applications in metastatic cancer, cardiovascular disease, prenatal genetics, and stem cells research.

The World CTC Summit attracts important members across the CTC study community including diagnosticians, drug developers, technology providers and clinicians, said Manaresi. Silicon Biosystems is eager to join our peers and share the excitement of this achievement, and the impact of our unique method for CTC collection and analysis for the advancement of patient diagnosis and decision making.

About Silicon Biosystems

Silicon Biosystems, Inc. was formed in October 2010 as a wholly owned subsidiary of Silicon Biosystems, S.p.A. based in Bologna, Italy. The company manufactures and sells the DEPArray platform which is based on the principle of dielectrophoresis to isolate and manipulate cells in suspension with a microelectronic array. The approach, patented by Silicon Biosystems, offers the unique ability to control individual cells and micro-particles inside a disposable cartridge. The DEPArray platform makes it possible to find, sort, select and separate individual cells for further analysis or culturing. For more information on Silicon Biosystems visit http://www.siliconbiosystems.com.

Link:
Silicon Biosystems to Present Single-Circulating Tumor Cell Molecular Characterization at the Fourth World CTC Summit

Cryo-Save Hires Stem Cell Expert in the Flagship Lab in Niel, Belgium

ZUTPHEN, the Netherlands, April 24, 2012 /PRNewswire/ --

In line with its continuous efforts to improve internal stem cell procedures, Cryo-Save proudly announces the appointment of the highly knowledgeable stem cell expert Dr. Marcin Jurga. Dr. Jurga will supervise new process validation at the Cryo-Save labs and study new processing techniques for umbilical cord blood, cord tissue and fat tissue, to ensure quality and use of the highest technology available on the market.

Marcin Jurga is specialized in adult stem cells biology, neuroscience and tissue engineering. His field of interest focuses on developing new methods for adult stem cell applications in in-vitro toxicology and regenerative medicine. Part of his validation study and internal research at Cryo-Save includes studies on fresh and frozen cells isolated from fat tissue and cord tissue, to explain the quality of these and their ability for extensive growth in vitro and multilineage differentiation.

"Cryo-Save is truly committed to the advancement of stem cell therapy. Storing stem cells is utterly important and our core business, but we are also committed to increasing the potential use of these stem cells and building the tools needed to tackle un-met medical needs with stem cells", said Arnoud Van Tulder, CEO of Cryo-Save.

Dr. Jurga is an experienced stem cell researcher with broad international experience; he was team leader and senior researcher at the Cell Therapy Research Institute in Lyon, France and previously completed a post doc at the Centre for Life, Newcastle University in the UK. He got Ph.D. degree in Poland, at the Mossakowski Medical Research Centre of Polish Academy of Sciences in Warsaw. In May, Dr. Jurga is also planning to get a habilitation degree at Lyon 1 Claude-Bernard University in France. The habilitation thesis entitled: "Stem Cell Therapy and Neutral Tissue Engineering in Regeneration of Central Nervous System".

Cryo-Save, the leading international family stem cell bank, stores more than 200,000 samples from umbilical cord blood, cord tissue and adipose tissue. There are already many diseases treatable by the use of stem cells, and the number of treatments will only increase. Driven by its international business strategy, Cryo-Save is now represented in over 40 countries on four continents, with ultra-modern processing and storage facilities in the United States, Belgium, Germany, Dubai, India, South Africa and France (validation in progress).

Cryo-Save: http://www.cryo-save.com/group

Cryo-Save Group N.V.

1

See the rest here:
Cryo-Save Hires Stem Cell Expert in the Flagship Lab in Niel, Belgium

BioTime’s Subsidiary Cell Cure Neurosciences, Ltd. Provides Update on OpRegen® Product Development

ALAMEDA, Calif.--(BUSINESS WIRE)--

BioTime, Inc. (NYSE Amex: BTX) announced today that Charles S. Irving, Ph.D., the CEO of BioTimes subsidiary Cell Cure Neurosciences, Ltd. will provide an update on the development of OpRegen at an investor meeting in New York City. In his presentation, Dr. Irving will describe the unmet medical needs and markets for the treatment of the dry form of age-related macular degeneration (AMD), and the advantages of Cell Cures OpRegen which has been produced from human embryonic stem cells in culture conditions free of animal products, eliminating the need for designating the product as a xenotransplantation therapeutic. Dr. Irving will also discuss Cell Cures collaboration with Teva Pharmaceutical Industries Ltd., under which Teva has the option to develop and commercialize both OpRegen and OpRegen-Plus. Dr. Irving will describe the nature of the ongoing preclinical studies which are expected to lead to regulatory filings for the initiation of human clinical trials in 2013. Dr. Irvings presentation will be available on BioTimes web site http://www.biotimeinc.com as well as Cell Cure Neurosciences web site at http://www.cellcureneurosciences.com.

Background.

Age-related macular degeneration is the leading cause of blindness in an aging population. It is widely believed that the loss or dysfunction of a particular type of cell called retinal pigment epithelial (RPE) cells is the root cause of the disease. While therapies exist to treat what is called the wet form of macular degeneration exist, there are no therapies for the dry form. The transplantation of healthy RPE cells may provide a superior treatment for this devastating disorder. Cell Cures OpRegen is xeno-free, meaning that no animal products were used in the culture of the human embryonic stem cell-derived RPE cells. The use animal products to culture cells often results in the designation of the therapy as a xenotransplantation product, even though the cells themselves are of human origin. Xenotransplantation may raise purity issues, increasing the costs of product development along with other risks and uncertainties. The production of animal product-free OpRegen will therefore eliminate concerns of xenotransplantation and may provide cost savings in development and production should the product successfully complete clinical trials and be approved for human use.

About Cell Cure Neurosciences Ltd.

Cell Cure Neurosciences Ltd. was established in 2005 as a subsidiary of ES Cell International Pte Ltd (ESI), now a subsidiary of BioTime, Inc. (NYSE Amex:BTX). Cell Cure is located in Jerusalem, Israel on the campus of Hadassah University Hospital. Cell Cure's mission is to become a leading supplier of human cell-based therapies for the treatment of retinal and neural degenerative diseases. Its technology platform is based on the manufacture of diverse cell products sourced from clinical grade (GMP) human embryonic stem cells. Its current programs include developing cells for the treatment of macular degeneration, Parkinson's disease, and cells potentially useful in treating multiple sclerosis. Cell Cure's major shareholders include: BioTime Inc. (NYSE Amex:BTX), Hadasit BioHoldings Ltd. (Tel Aviv Stock Exchange:HDST) and Teva Pharmaceuticals Industries Ltd (NASDAQ:TEVA). Additional information about Cell Cure can be found on the web at http://www.cellcureneurosciences.com.

About BioTime, Inc.

BioTime, headquartered in Alameda, California, is a biotechnology company focused on regenerative medicine and blood plasma volume expanders. Its broad platform of stem cell technologies is developed through subsidiaries focused on specific fields of applications. BioTime develops and markets research products in the field of stem cells and regenerative medicine, including a wide array of proprietary ACTCellerate cell lines, culture media, and differentiation kits. BioTime's wholly owned subsidiary ES Cell International Pte. Ltd. has produced clinical-grade human embryonic stem cell lines that were derived following principles of Good Manufacturing Practice and currently offers them for use in research. BioTime's therapeutic product development strategy is pursued through subsidiaries that focus on specific organ systems and related diseases for which there is a high unmet medical need. BioTime's majority owned subsidiary Cell Cure Neurosciences, Ltd. is developing therapeutic products derived from stem cells for the treatment of retinal and neural degenerative diseases. Cell Cure's minority shareholder Teva Pharmaceutical Industries has an option to clinically develop and commercialize Cell Cure's OpRegen retinal cell product for use in the treatment of age-related macular degeneration. BioTime's subsidiary OrthoCyte Corporation is developing therapeutic applications of stem cells to treat orthopedic diseases and injuries. Another subsidiary, OncoCyte Corporation, focuses on the diagnostic and therapeutic applications of stem cell technology in cancer, including the diagnostic product PanC-DxTM currently being developed for the detection of cancer in blood samples, and therapeutic strategies using vascular progenitor cells engineered to destroy malignant tumors. ReCyte Therapeutics, Inc. is developing applications of BioTime's proprietary induced pluripotent stem cell technology to reverse the developmental aging of human cells to treat cardiovascular and blood cell diseases. BioTime's newest subsidiary, LifeMap Sciences, Inc., is developing an online database of the complex cell lineages arising from stem cells to guide basic research and to market BioTime's research products. In addition to its stem cell products, BioTime develops blood plasma volume expanders, blood replacement solutions for hypothermic (low-temperature) surgery, and technology for use in surgery, emergency trauma treatment and other applications. BioTime's lead product, Hextend, is a blood plasma volume expander manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ CheilJedang Corp. under exclusive licensing agreements. Additional information about BioTime, ReCyte Therapeutics, Cell Cure, OrthoCyte, OncoCyte, BioTime Asia, LifeMap Sciences, and ESI can be found on the web at http://www.biotimeinc.com.

Forward-Looking Statements

Statements pertaining to future financial and/or operating results, future growth in research, technology, clinical development, and potential opportunities for BioTime and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the business of BioTime and its subsidiaries, particularly those mentioned in the cautionary statements found in BioTime's Securities and Exchange Commission filings. BioTime disclaims any intent or obligation to update these forward-looking statements.

Read the rest here:
BioTime’s Subsidiary Cell Cure Neurosciences, Ltd. Provides Update on OpRegen® Product Development