Stem Cells Could Help Heal Broken Hearts [Medicine]

Even after recovery, heart attacks can leave a lasting mark on your ticker—scar tissue weakens the muscle and prevents it from functioning as well as it did before seizing up. A pioneering stem-cell procedure, however, could cut the damage in half.

According to the results of a small safety trial by the Cedars-Sinai Heart Institute and published in the Lancet medical journal, introducing stem cells derived from the patient's own heart have shown an "unprecedented" ability to reduce scarring as well as regenerate healthy cardiac tissue.

During a heart attack, the organ is deprived of oxygen and its tissue begins to die off. As the heart heals from the attack, any damaged muscle is replaced by scar tissue, which prevents the heart from beating properly and pumping the requisite blood flow the body needs.

The CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to Reverse ventricUlar dySfunction) study involved 25 patients—eight serving as the control group, the other 17 actually receiving the treatment. Researchers first performed extensive imaging scans to identify location and severity of scarring, then biopsied a half-raisin-sized piece the patient's heart tissue. Doctors then isolated and cultured stem cells from it and injected the lab-grown stem cells—roughly 12-25 million of them—back into the heart.

After a year, scarring in patients that received the treatment decreased by an astounding fifty percent while the control group showed no decrease in scarring. "These results signal an approaching paradigm shift in the care of heart attack patients," said Shlomo Melmed, dean of the Cedars-Sinai medical faculty. The scars were once believed to be permanent but this technique shows promise as a means to regenerate the damaged muscle. It should be noted however, that the heart's ability to pump did not increase as the scar tissue disappeared.

"While the primary goal of our study was to verify safety, we also looked for evidence that the treatment might dissolve scar and regrow lost heart muscle," Eduardo Marbán, director of the Cedars-Sinai Heart Institute, told PhysOrg. "This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it. The effects are substantial, and surprisingly larger in humans than they were in animal tests."

Researchers hope to soon begin an expanded clinical trial and, if the results are as promising as these, eventually use the procedure to assist the US's annual 770,000 coronary disease sufferers. [The Lancet via Physorg - BBC News]

Image: Shortkut / Shutterstock

See the article here:
Stem Cells Could Help Heal Broken Hearts [Medicine]

Stem cells used to heal heart attack damage

The damage caused by a heart attack was healed by using stem cells gathered from the patient’s own heart in a small trial written up in The Lancet journal, according to the BBC.

The preliminary study was carried out at the Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University in Baltimore, and involved 25 patients who had suffered heart attacks recently, reported The Los Angeles Times.

Seventeen of the subjects in the study were given infusions of stem cells “cultured from a raisin-sized chunk of their own heart tissue,” while the other eight were given standard care, reported The LA Times.

The size of the scars on heart tissue damaged by a heart attack decreased in size from 24 percent of the heart to 12 percent of the heart, said Dr. Eduardo Márban, the lead researcher in the study. He wrote to The LA Times in an email that the most surprising aspect of the findings was the fact that the heart could regrow healthy tissue.

More on GlobalPost: Global malaria deaths twice as high as estimated, Lancet study says

The study used a procedure invented by Márban to isolate heart stem cells from healthy tissue from each patient’s heart, and then grow millions of new cells in a petri dish, according to CNN. The patients who received the stem cell treatment either had 12 million or 25 million such cells injected back into their hearts.

Deepak Shrivastava, the director of the Gladstone Institute of Cariovascular Disease based in San Francisco, told Bloomberg, “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”

Márban told CNN, “If we can regenerate the whole heart, then the patient would be completely normal. We haven’t fulfilled that yet, but we’ve gotten rid of half the injury, and that’s a good start."

More on GlobalPost: Study links high calorie intake with memory loss

http://www.globalpost.com/dispatch/news/health/120213/stem-cells-used-heal-heart-attack-damage

See the article here:
Stem cells used to heal heart attack damage

Scarred hearts can be restored to health with stem cell treatment, say researchers

The treatment halved the extent of what would usually have been permanent scarring on the heart and led to the growth of new heart muscle.

However, it produced no significant change in ejection fraction – a measure of the heart's pumping capacity.

The Caduceus trial studied 25 patients, with an average age of 53, who had suffered a heart attack in the previous month. Seventeen received coronary artery infusions of 12 to 25million stem cells taken from healthy tissue in their own hearts. The remaining eight underwent standard care. A year later, the proportion of the heart scarred in patients who had the stem cell treatment had been reduced from 24 per cent to 12 per cent. No change was seen in patients who had the usual treatment.

Professor Eduardo Marbán, director of the Cedars–Sinai Heart Institute in Los Angeles, who led the US team, said: "This discovery challenges the conventional wisdom that, once established, scar is permanent and that, once lost, healthy heart muscle cannot be restored."

The study was published in an online edition of The Lancet medical journal.

Further studies will need to test for long–term improvement in patients.

Professor Jeremy Pearson, associate medical director at the British Heart Foundation, said: "It could be great news for heart attack patients who face the debilitating symptoms of heart failure."

Visit link:
Scarred hearts can be restored to health with stem cell treatment, say researchers

Scarred Hearts Can Be Mended With Stem Cell Therapy, Study Shows

February 14, 2012, 1:49 AM EST

By Ryan Flinn

Feb. 14 (Bloomberg) -- Stem cells grown from patients’ own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.

In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results, from the first of three sets of clinical trials generally needed for regulatory approval, were published today in the medical journal Lancet.

“The findings in this paper are encouraging,” Deepak Srivastava, director of the San Francisco-based Gladstone Institute of Cardiovascular Disease, said in an interview. “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”

The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn’t get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study’s lead author.

“What our trial was designed to do is to reverse the injury once it’s happened,” said Marban, director of Cedars- Sinai Heart Institute. “The quantitative outcome that we had in this paper is to shift patients from a high-risk group to a low- risk group.”

Minimally Invasive

The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted them using a second minimally invasive procedure. Patients got 12.5 million cells to 25 million cells.

A year after the procedure, six patients in the stem cell group had serious side effects, including a heart attack, chest pain, a coronary bypass, implantation of a defibrillator, and two other events unrelated to the heart. One of patient’s side effects were possibly linked to the treatment, the study found.

While the main goal of the trial was to examine the safety of the procedure, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said in the paper.

Heart Regeneration

“If we can regenerate the whole heart, then the patient would be completely normal,” Marban said. “We haven’t fulfilled that yet, but we’ve gotten rid of half of the injury, and that’s a good start.”

While the study resulted in patients having an increase in muscle mass and a shrinkage of scar size, the amount of blood flowing out of the heart, or the ejection fraction, wasn’t different between the control group and stem-cell therapy group. The measurement is important because poor blood flow deprives the body of oxygen and nutrients it needs to function properly, Srivastava said.

“The patients don’t have a functional benefit in this study,” said Srivastava, who wasn’t not involved in the trial.

The technology is being developed by closely held Capricor Inc., which will further test it in 200 patients for the second of three trials typically required for regulatory approval. Marban is a founder of the Los Angeles-based company and chairman of its scientific advisory board. His wife, Lisa Marban, is also a founder and chief executive officer.

--Editors: Angela Zimm, Andrew Pollack

-0- Feb/13/2012 22:32 GMT

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Visit link:
Scarred Hearts Can Be Mended With Stem Cell Therapy, Study Shows

Dr. Ramaswamy on Dormant Tumor Cells and Resistance – Video

13-02-2012 12:31 Sridhar Ramaswamy, MD, Tucker Gosnell Investigator and Associate Professor of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Broad Institute of Harvard and MIT, and Harvard Stem Cell Institute, discusses ongoing research into drug tolerance and resistance, specifically the roll of dormant cancer cells. If a tumor goes into remission as a result of a cancer drug and then recurs it is likely that the tumor will still respond to the initial treatment. In the dormant state the cells are resistance, in the original they are sensitive. The exact mechanism behind this has yet to be discovered. In some cases giving a course, stopping, and then continuing later on can create an additive effect, an idea that Ramaswamy calls a drug holiday. A comparison is underway between drug and non-drug induced dormant cells in order to find the mechanism that causes resistance. The ultimate goal of the research is to be able to predict and stop drug resistance.

Here is the original post:
Dr. Ramaswamy on Dormant Tumor Cells and Resistance - Video

Dogs who got stem cell therapy are well

WALKER, Mich. (WOOD) - Dogs who received the first in-clinic stem cell therapy in West Michigan returned to the vets who treated them Monday morning.

Boris and Natasha returned to Kelley's Animal Clinic for their 60-day checkup after receiving stem cell treatment in December 2011.

Dr. James Kelley and his staff of vets removed fat tissue from the dogs and activated it with an enzyme before injecting it into their back legs.

This adult animal stem cell technology is different from the controversial embryonic stem cell therapy.

Kelley said both dogs are doing amazingly well and that the procedure has done more than just help their arthritis.

"We're finding that not only the joints are affected, the rest of the animal is affected as well," said Kelley. "The skin is better. The attitude in these dogs is much improved."

Kelley and his staff have done 16 stem cell treatments since the first on Boris and Natasha, and he said all the dogs are showing signs of improvement after a short period of time.

Continue reading here:
Dogs who got stem cell therapy are well

Scarred Hearts Healed After Heart Attack

Heart-Attack Damage Heals After Stem Cell Treatment

Feb. 13, 2012 -- A new stem cell treatment resurrects dead, scarred heart muscle damaged by a recent heart attack.

The finding, just in time for Valentine's Day, is the clearest evidence yet that literally broken hearts can heal. All that's needed is a little help from one's own heart stem cells.

"We have been trying as doctors for centuries to find a treatment that actually reverses heart injury," Eduardo Marban, MD, PhD, tells WebMD. "That is what we seem to have been able to achieve in this small number of patients. If so, this could change the nature of medicine. We could go to the root of disease and cure it instead of just work around it."

Marban, director of the Cedars-Sinai Heart Institute in Los Angeles, led the study. He invented the "cardiosphere" culture technique used to create the stem cells and founded the company developing the treatment.

It's the first completed, controlled clinical trial showing that scarred heart tissue can be repaired. Earlier work in patients with heart failure, using different stem cells or bone-marrow stem cells, also showed that the heart can regenerate itself.

"These findings suggest that this therapeutic approach is feasible and has the potential to provide a treatment strategy for cardiac regeneration after [heart attack]," write University of Hong Kong researchers Chung-Wah Siu and Hung-Fat Tse. Their editorial accompanies the Marban report in the Feb. 14 advance online issue of The Lancet.

Heart Regenerates With Stem Cell Help

The stem cells don't do what people think they do, Marban says.

It's been thought that the stem cells multiply over and over again. In time, they were supposed to be turning themselves and their daughter cells into new, working heart muscle.

But the stem cells seem to be doing something much more amazing.

"For reasons we didn't initially know, they stimulate the heart to fix itself," Marban says. "The repair is from the heart itself and not from the cells we give them."

Exactly how the stem cells do this is a matter of "feverish research" in Marban's lab.

The phase I clinical trial enrolled 25 patients who had just had a heart attack. On average, each patient had lost a quarter of his heart muscle. MRI scans showed massive scars.

Eight patients got standard care. The other 17 received increasing infusions of what Marban calls stem cells. The cells were grown in the lab from tiny amounts of heart cells taken from the patients' own hearts via biopsy. Six to 12 weeks later, the cells were infused directly back into patients' hearts.

A year later, the mass of scar tissue in the treated patients' hearts got 42% smaller. And healthy heart muscle increased by 60%. No such regeneration was seen in the patients who got standard care.

Because all of the patients were doing relatively well, there was no dramatic difference in clinical outcome. However, treated patients had a bit better exercise endurance.

"This discovery challenges the conventional wisdom that, once established, cardiac scarring is permanent and that, once lost, healthy heart muscle cannot be restored," Marban and colleagues conclude.

Follow this link:
Scarred Hearts Healed After Heart Attack

Scarred Hearts Can Be Mended With Novel Stem Cell Therapy, Study Finds

Stem cells grown from patients’ own cardiac tissue can heal damage once thought to be permanent after a heart attack, according to a study that suggests the experimental approach may one day help stave off heart failure.

In a trial of 25 heart-attack patients, 17 who got the stem cell treatment showed a 50 percent reduction in cardiac scar tissue compared with no improvement for the eight who received standard care. The results, from the first of three sets of clinical trials generally needed for regulatory approval, were published today in the medical journal Lancet.

“The findings in this paper are encouraging,” Deepak Srivastava, director of the San Francisco-based Gladstone Institute of Cardiovascular Disease, said in an interview. “There’s a dire need for new therapies for people with heart failure, it’s still the No. 1 cause of death in men and women.”

The study, by researchers from Cedars-Sinai Heart Institute in Los Angeles and Johns Hopkins University (43935MF) in Baltimore, tested the approach in patients who recently suffered a heart attack, with the goal that repairing the damage might help stave off failure. While patients getting the stem cells showed no more improvement in heart function than those who didn’t get the experimental therapy, the theory is that new tissue regenerated by the stem cells can strengthen the heart, said Eduardo Marban, the study’s lead author.

“What our trial was designed to do is to reverse the injury once it’s happened,” said Marban, director of Cedars- Sinai Heart Institute. “The quantitative outcome that we had in this paper is to shift patients from a high-risk group to a low- risk group.”

Minimally Invasive

The stem cells were implanted within five weeks after patients suffering heart attacks. Doctors removed heart tissue, about the size of half a raisin, using a minimally invasive procedure that involved a thin needle threaded through the veins. After cultivating the stem cells from the tissue, doctors reinserted them using a second minimally invasive procedure. Patients got 12.5 million cells to 25 million cells.

A year after the procedure, six patients in the stem cell group had serious side effects, including a heart attack, chest pain, a coronary bypass, implantation of a defibrillator, and two other events unrelated to the heart. One of patient’s side effects were possibly linked to the treatment, the study found.

While the main goal of the trial was to examine the safety of the procedure, the decrease in scar tissue in those treated merits a larger study that focuses on broader clinical outcomes, researchers said in the paper.

Heart Regeneration

“If we can regenerate the whole heart, then the patient would be completely normal,” Marban said. “We haven’t fulfilled that yet, but we’ve gotten rid of half of the injury, and that’s a good start.”

While the study resulted in patients having an increase in muscle mass and a shrinkage of scar size, the amount of blood flowing out of the heart, or the ejection fraction, wasn’t different between the control group and stem-cell therapy group. The measurement is important because poor blood flow deprives the body of oxygen and nutrients it needs to function properly, Srivastava said.

“The patients don’t have a functional benefit in this study,” said Srivastava, who wasn’t not involved in the trial.

The technology is being developed by closely held Capricor Inc., which will further test it in 200 patients for the second of three trials typically required for regulatory approval. Marban is a founder of the Los Angeles-based company and chairman of its scientific advisory board. His wife, Lisa Marban, is also a founder and chief executive officer.

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Please enable JavaScript to view the comments powered by Disqus.

Originally posted here:
Scarred Hearts Can Be Mended With Novel Stem Cell Therapy, Study Finds

First-of-its-kind stem cell study re-grows healthy heart muscle in heart attack patients

Public release date: 13-Feb-2012
[ | E-mail | Share ]

Contact: Sally Stewart
sally.stewart@cshs.org
310-248-6566
Cedars-Sinai Medical Center

Results from a Cedars-Sinai Heart Institute clinical trial show that treating heart attack patients with an infusion of their own heart-derived cells helps damaged hearts re-grow healthy muscle.

Patients who underwent the stem cell procedure demonstrated a significant reduction in the size of the scar left on the heart muscle by a heart attack. Patients also experienced a sizable increase in healthy heart muscle following the experimental stem cell treatments.

One year after receiving the stem cell treatment, scar size was reduced from 24 percent to 12 percent of the heart in patients treated with cells (an average drop of about 50 percent). Patients in the control group, who did not receive stem cells, did not experience a reduction in their heart attack scars.

The study appears online at http://www.thelancet.com and will be in a future issue of the journal's print edition.

"While the primary goal of our study was to verify safety, we also looked for evidence that the treatment might dissolve scar and regrow lost heart muscle," said Eduardo Marb?n, MD, PhD, the director of the Cedars-Sinai Heart Institute who invented the procedures and technology involved in the study. "This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it. The effects are substantial, and surprisingly larger in humans than they were in animal tests."

"These results signal an approaching paradigm shift in the care of heart attack patients," said Shlomo Melmed, MD, dean of the Cedars-Sinai medical faculty and the Helene A. and Philip E. Hixon Chair in Investigative Medicine. "In the past, all we could do was to try to minimize heart damage by promptly opening up an occluded artery. Now, this study shows there is a regenerative therapy that may actually reverse the damage caused by a heart attack."

The clinical trial, named CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to Reverse ventricUlar dySfunction), was part of a Phase I investigative study approved by the U.S. Food and Drug Administration and supported by the National Heart, Lung, and Blood Institute.

As an initial part of the study, in 2009, Marb?n and his team completed the world's first procedure in which a patient's own heart tissue was used to grow specialized heart stem cells. The specialized cells were then injected back into the patient's heart in an effort to repair and re-grow healthy muscle in a heart that had been injured by a heart attack.

The 25 patients -- average age of 53 -- who participated in this completed study experienced heart attacks that left them with damaged heart muscle. Each patient underwent extensive imaging scans so doctors could pinpoint the exact location and severity of the scars wrought by the heart attack. Patients were treated at Cedars-Sinai Heart Institute and at Johns Hopkins Hospital in Baltimore.

Eight patients served as controls in the study, receiving conventional medical care for heart attack survivors, including prescription medicine, exercise recommendations and dietary advice.

The other 17 patients who were randomized to receive the stem cells underwent a minimally invasive biopsy, under local anesthesia. Using a catheter inserted through a vein in the patient's neck, doctors removed small pieces of heart tissue, about half the size of a raisin. The biopsied heart tissue was then taken to Marb?n's specialized lab at Cedars-Sinai, using methods he invented to culture and multiply the cells.

In the third and final step, the now-multiplied heart-derived cells ? approximately 12 million to 25 million ? were reintroduced into the patient's coronary arteries during a second, minimally invasive [catheter] procedure.

Patients who received stem cell treatment experienced an average of 50 percent reduction in their heart attack scars 12 months after infusion while patients who received standard medical management did not experience shrinkage in the damaged tissue.

"This discovery challenges the conventional wisdom that, once established, scar is permanent and that, once lost, healthy heart muscle cannot be restored," said Marb?n, The Mark S. Siegel Family Professor.

The process to grow cardiac-derived stem cells involved in the study was developed earlier by Marb?n when he was on the faculty of Johns Hopkins University. The university has filed for a patent on that intellectual property and has licensed it to a company in which Dr. Marb?n has a financial interest. No funds from that company were used to support the clinical study. All funding was derived from the National Institutes of Health and Cedars-Sinai Medical Center.

###

About the Cedars-Sinai Heart Institute

The Cedars-Sinai Heart Institute is internationally recognized for outstanding heart care built on decades of innovation and leading-edge research. From cardiac imaging and advanced diagnostics to surgical repair of complex heart problems to the training of the heart specialists of tomorrow and research that is deepening medical knowledge and practice, the Cedars-Sinai Heart Institute is known around the world for excellence and innovations.

[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Read more:
First-of-its-kind stem cell study re-grows healthy heart muscle in heart attack patients

Stem Cell Treatment Might Reverse Heart Attack Damage

MONDAY, Feb. 13 (HealthDay News) -- Stem cell therapy's promise for healing damaged tissues may have gotten a bit closer to reality. In a small, early study, heart damage was reversed in heart-attack patients treated with their own cardiac stem cells, researchers report.

The cells, called cardiosphere-derived stem cells, regrew damaged heart muscle and reversed scarring one year later, the authors say.

Up until now, heart specialists' best tool to help minimize damage following a heart attack has been to surgically clear blocked arteries.

"In our treatment, we dissolved scar and replaced it with living heart muscle. Such 'therapeutic regeneration' has long been the holy grail of cell therapy, but had never been accomplished before; we now seem to have done it," said study author Dr. Eduardo Marban, director of the Cedars-Sinai Heart Institute in Los Angeles.

However, outside experts cautioned that the findings are preliminary and the treatment is far from ready for widespread use among heart-attack survivors.

The study, published online Feb. 14 in The Lancet, involved 25 middle-aged patients (average age 53) who had suffered a heart attack. Seventeen underwent stem cell infusions while eight received standard post-heart attack care, including medication and exercise therapy.

The stem cells were obtained using a minimally invasive procedure, according to the researchers from Cedars-Sinai and the Johns Hopkins Hospital in Baltimore.

Patients received a local anesthetic and then a catheter was threaded through a neck vein down to the heart, where a tiny portion of muscle was taken. The sample provided all the researchers needed to generate a supply of new stem cells -- 12 million to 25 million -- that were then transplanted back into the heart-attack patient during a second minimally invasive procedure.

One year after the procedure, the infusion patients' cardiac scar sizes had shrunk by about half. Scar size was reduced from 24 percent to 12 percent of the heart, the team said. In contrast, the patients receiving standard care experienced no scar shrinkage.

Initial muscle damage and healed tissue were measured using MRI scans.

After six months, four patients in the stem-cell group experienced serious adverse events compared with only one patient in the control group. At one year, two more stem-cell patients had a serious complication. However, only one such event -- a heart attack -- might have been related to the treatment, according to the study.

In a news release, Marban said that "the effects are substantial and surprisingly larger in humans than they were in animal tests."

Other experts were cautiously optimistic. Cardiac expert Dr. Bernard Gersh, a professor of medicine at Mayo Clinic, is not affiliated with the research but is familiar with the findings.

"This study demonstrates that it is safe and feasible to administer these cardiac-derived stem cells and the results are interesting and encouraging," he said.

Another specialist said that while provocative and promising, the findings remain early, phase-one research. "It's a proof-of-concept study," said interventional cardiologist Dr. Thomas Povsic, an assistant professor of medicine at the Duke Clinical Research Institute, in Durham, N.C.

And Dr. Chip Lavie, medical director of Cardiac Rehabilitation and Prevention at the John Ochsner Heart and Vascular Institute, in New Orleans, also discussed the results. He said that while the study showed that the cardiac stem cells reduced scar tissue and increased the area of live heart tissue in heart attack patients with moderately damaged overall heart tissue, it did not demonstrate a reduction in heart size or any improvement in the heart's pumping ability.

"It did not improve the ejection fraction, which is a very important measurement used to define the overall heart's pumping ability," Lavie noted. "Certainly, much larger studies of various types of heart attack patients will be needed before this even comes close to being a viable potential therapy for the large number of heart attack initial survivors."

Povsic concurred that much larger studies are needed. "The next step is showing it really helps patients in some kind of meaningful way, by either preventing death, healing them or making them feel better."

It's unclear what the cost will be, Povsic added. "What society is going to be willing to pay for this is going to be based on how much good it ends up doing. If they truly regenerate a heart and prevent a heart transplant, that would save a lot money."

Marban, who invented the stem cell treatment, said the while it would not replace bypass surgery or angioplasty, "it might be useful in treating 'irreversible' injury that may persist after those procedures."

As a rough estimate, he said that if larger, phase 2 trials were successful, the treatment might be available to the general public by about 2016.

More information

The U.S. National Heart, Lung, and Blood Institute describes current heart attack treatment.

Read more:
Stem Cell Treatment Might Reverse Heart Attack Damage