Repairing mutations in human mitochondria

LOS ANGELES Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears today in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad stem cell research center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

The study in Cell outlined a new role for a protein called polynucleotide phosphorylase (PNPASE) in regulating the import of RNA into mitochondria. Reducing the expression or output of PNPASE decreased RNA import, which impaired the processing of mitochondrial genome-encoded RNAs. Reduced RNA processing inhibited the translation of proteins required to maintain the mitochondrial electron transport chain that consumes oxygen during cell respiration to produce energy. With reduced PNPASE, unprocessed mitochondrial-encoded RNAs accumulated, protein translation was inhibited and energy production was compromised, leading to stalled cell growth.

The findings from the current study provide a form of gene therapy for mitochondria by compensating for mutations that cause a wide range of diseases, said study co-senior author Koehler.

See the original post here:
Repairing mutations in human mitochondria

Correcting human mitochondrial mutations

Public release date: 12-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears March 12, 2012 in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad Stem Cell Research Center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

Read more:
Correcting human mitochondrial mutations

Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

CLEARWATER, FL--(Marketwire -03/12/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transplantation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Follow this link:
Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of ...

New transplant method may allow kidney recipients to live life free of anti-rejection medication

ScienceDaily (Mar. 11, 2012) New ongoing research published March 7 in the journal Science Translational Medicine suggests organ transplant recipients may not require anti-rejection medication in the future thanks to the power of stem cells, which may prove to be able to be manipulated in mismatched kidney donor and recipient pairs to allow for successful transplantation without immunosuppressive drugs. Northwestern Medicine and University of Louisville researchers are partnering on a clinical trial to study the use of donor stem cell infusions that have been specially engineered to "trick" the recipients' immune system into thinking the donated organ is part of the patient's natural self, thus gradually eliminating or reducing the need for anti-rejection medication.

"The preliminary results from this ongoing study are exciting and may have a major impact on organ transplantation in the future," said Joseph Leventhal, MD, PhD, transplant surgeon at Northwestern Memorial Hospital and associate professor of surgery and director of kidney and pancreas transplantation at Northwestern University Feinberg School of Medicine. "With refinement, this approach may prove to be applicable to the majority of patients receiving the full spectrum of solid organ transplants."

Leventhal authored the study along with Suzanne Ildstad, MD, director of the Institute of Cellular Therapeutics at the University of Louisville. It is the first study of its kind where the donor and recipient do not have to be related and do not have to be immunologically matched. Previous studies involving stem cell transplants for organ recipients have included donors and recipients who are siblings and are immunologically identical, something that only occurs in about 25 percent of sibling pairs.

"Being a transplant recipient is not easy. In order to prevent rejection, current transplant recipients must take multiple pills a day for the rest of their lives. These immunosuppressive medications come with serious side effects with prolonged use including high blood pressure, diabetes, infection, heart disease and cancer, as well as direct damaging effects to the organ transplant," said Ildstad. "This new approach would potentially offer a better quality of life and fewer health risks for transplant recipients."

In a standard kidney transplant, the donor agrees to donate their kidney. In the approach being studied, the individual is asked to donate part of their immune system as well. The process begins about one month before the kidney transplant, when bone marrow stem cells are collected from the blood of the kidney donor using a process called apheresis. The donor cells are then sent to the University of Louisville to be processed, where researchers enrich for "facilitating cells" believed to help transplants succeed. During the same time period, the recipient undergoes pre-transplant "conditioning," which includes radiation and chemotherapy to suppress the bone marrow so the donor's stem cells have more space to grow in the recipient's body.

Once the facilitating cell-enriched stem cell product has been prepared, it is transported back to Northwestern, where the recipient undergoes a kidney transplant. The donor stem cells are then transplanted one day later and prompt stem cells to form in the marrow from which other specialized blood cells, like immune cells, develop. The goal is to create an environment where two bone marrow systems exist and function in one person. Following transplantation, the recipient takes anti-rejection drugs which are decreased over time with the goal to stop a year after the transplant.

"This is something I have worked for my entire life," said Ildstad, who pioneered the approach and is known for her discovery of the "facilitating" cell.

Less than two years after her successful kidney transplant, 47-year-old mother and actress Lindsay Porter of Chicago, is living a life that most transplant recipients dream of -- she is currently free of anti-rejection medications and says at times, she has to remind herself that she had a kidney transplant. "I hear about the challenges recipients have to face with their medications and it is significant. It's almost surreal when I think about it because I feel so healthy and normal." Doctors are hopeful that Porter will not need immunosuppressive drugs long-term, given her progress thus far.

In order to qualify for this type of experimental kidney transplant, the donor and recipient pairs must be blood-type compatible and have a negative cross-match, which means that testing has been done to confirm the recipient does not have antibodies in the blood that would cause rejection of the kidney.

The clinical trial is ongoing. Researchers are also planning a second clinical trial, which would offer similar treatment for subjects who have already undergone a living donor kidney transplant.

Read the original post:
New transplant method may allow kidney recipients to live life free of anti-rejection medication

New approach to treating type 1 diabetes? Transforming gut cells into insulin factories

ScienceDaily (Mar. 11, 2012) A study by Columbia researchers suggests that cells in the patient's intestine could be coaxed into making insulin, circumventing the need for a stem cell transplant. Until now, stem cell transplants have been seen by many researchers as the ideal way to replace cells lost in type I diabetes and to free patients from insulin injections.

The research -- conducted in mice -- was published 11 March 2012 in the journal Nature Genetics.

Type I diabetes is an autoimmune disease that destroys insulin-producing cells in the pancreas. The pancreas cannot replace these cells, so once they are lost, people with type I diabetes must inject themselves with insulin to control their blood glucose. Blood glucose that is too high or too low can be life threatening, and patients must monitor their glucose several times a day.

A longstanding goal of type I diabetes research is to replace lost cells with new cells that release insulin into the bloodstream as needed. Though researchers can make insulin-producing cells in the laboratory from embryonic stem cells, such cells are not yet appropriate for transplant because they do not release insulin appropriately in response to glucose levels. If these cells were introduced into a patient, insulin would be secreted when not needed, potentially causing fatal hypoglycemia.

The study, conducted by Chutima Talchai, PhD, and Domenico Accili, MD, professor of medicine at Columbia University Medical Center, shows that certain progenitor cells in the intestine of mice have the surprising ability to make insulin-producing cells. Dr. Talchai is a postdoctoral fellow in Dr. Accili's lab.

The gastrointestinal progenitor cells are normally responsible for producing a wide range of cells, including cells that produce serotonin, gastric inhibitory peptide, and other hormones secreted into the GI tract and bloodstream.

Drs. Talchai and Accili found that when they turned off a gene known to play a role in cell fate decisions -- Foxo1 -- the progenitor cells also generated insulin-producing cells. More cells were generated when Foxo1 was turned off early in development, but insulin-producing cells were also generated when the gene was turned off after the mice had reached adulthood. "Our results show that it could be possible to regrow insulin-producing cells in the GI tracts of our pediatric and adult patients," Dr. Accili says.

"Nobody would have predicted this result," Dr. Accili adds. "Many things could have happened after we knocked out Foxo1. In the pancreas, when we knock out Foxo1, nothing happens. So why does something happen in the gut? Why don't we get a cell that produces some other hormone? We don't yet know."

Insulin-producing cells in the gut would be hazardous if they did not release insulin in response to blood glucose levels. But the researchers say that the new intestinal cells have glucose-sensing receptors and do exactly that.

The insulin made by the gut cells also was released into the bloodstream, worked as well as normal insulin, and was made in sufficient quantity to nearly normalize blood glucose levels in otherwise diabetic mice.

Go here to see the original:
New approach to treating type 1 diabetes? Transforming gut cells into insulin factories

A new approach to treating type I diabetes? Gut cells transformed into insulin factories

Public release date: 11-Mar-2012 [ | E-mail | Share ]

Contact: Karin Eskenazi ket2116@columbia.edu 212-342-0508 Columbia University Medical Center

NEW YORK, NY -- A study by Columbia researchers suggests that cells in the patient's intestine could be coaxed into making insulin, circumventing the need for a stem cell transplant. Until now, stem cell transplants have been seen by many researchers as the ideal way to replace cells lost in type I diabetes and to free patients from insulin injections.

The researchconducted in micewas published 11 March 2012 in the journal Nature Genetics.

Type I diabetes is an autoimmune disease that destroys insulin-producing cells in the pancreas. The pancreas cannot replace these cells, so once they are lost, people with type I diabetes must inject themselves with insulin to control their blood glucose. Blood glucose that is too high or too low can be life threatening, and patients must monitor their glucose several times a day.

A longstanding goal of type I diabetes research is to replace lost cells with new cells that release insulin into the bloodstream as needed. Though researchers can make insulin-producing cells in the laboratory from embryonic stem cells, such cells are not yet appropriate for transplant because they do not release insulin appropriately in response to glucose levels. If these cells were introduced into a patient, insulin would be secreted when not needed, potentially causing fatal hypoglycemia.

The study, conducted by Chutima Talchai, PhD, and Domenico Accili, MD, professor of medicine at Columbia University Medical Center, shows that certain progenitor cells in the intestine of mice have the surprising ability to make insulin-producing cells. Dr. Talchai is a postdoctoral fellow in Dr. Accili's lab.

The gastrointestinal progenitor cells are normally responsible for producing a wide range of cells, including cells that produce serotonin, gastric inhibitory peptide, and other hormones secreted into the GI tract and bloodstream.

Drs. Talchai and Accili found that when they turned off a gene known to play a role in cell fate decisionsFoxo1the progenitor cells also generated insulin-producing cells. More cells were generated when Foxo1 was turned off early in development, but insulin-producing cells were also generated when the gene was turned off after the mice had reached adulthood.

"Our results show that it could be possible to regrow insulin-producing cells in the GI tracts of our pediatric and adult patients," Dr. Accili says.

Read more here:
A new approach to treating type I diabetes? Gut cells transformed into insulin factories

Science Fiction Books: Polar nuke hunt; stem-cell underground; a huge problem

Arctic Rising, by Tobias S. Buckell (The Denver Post | NA)

Arctic Rising

by Tobias S. Buckell (Tor)

Tobias Buckell hasn't written a warning about climate change. It's too late for that. Instead he tells a story about the wild frontier of the North Pole.

Anika Duncan left Nigeria to escape violence for a safer life as a pilot for the United Nations Polar Guard. She patrols the open Arctic seas for illegal dumping of dangerous waste. But her plane is shot down when she spots a ship with a highly radioactive cargo. After she is rescued, someone is still trying to kill her. The people she counted on aren't helping, so she sets out on her own to find the truth behind a nuclear weapon that has now vanished.

The clues lead

Living Proof, by Kira Peikoff (The Denver Post | NA)

Anika picks up interesting allies on her journey north. "Arctic Rising" is a very good classic spy thriller set in an exotic location. A location that exists only because of the drastic changes in our planet's climate.

Living Proof

by Kira Peikoff (Tor)

Read the original here:
Science Fiction Books: Polar nuke hunt; stem-cell underground; a huge problem

Heart Disease Stem Cell Therapies – Development Must Come From Several Specialties

Editor's Choice Academic Journal Main Category: Heart Disease Also Included In: Cardiovascular / Cardiology;Stem Cell Research Article Date: 09 Mar 2012 - 4:00 PST

email to a friend printer friendly opinions

Current Article Ratings:

5 (1 votes)

The paper's lead author, Kenneth Chien from Harvard University in the USA explains:

Until now, clinical trials have been based on heart attacks, chronic heart failure as well as dilated cardiomyopathy, but regardless of the fact that regenerative therapies that are based on various non-cardiac cell types seem to be safe, their efficacy has not yet been tested in a clinical trial.

However, possible new targets and treatment strategies are now emerging due to recent progress in cardiac stem cell research and regenerative biology.

Scientists used to think that the heart only has a minimal capacity for self-renewal and saw no prospect in reversing the loss of healthy heart muscle and function. This perception has been altered because of recent findings, such as the discovery of several distinct embryonic progenitor cell types of which some are found in the heart.

A certain number of these cells can be activated in people with cardiac injuries and are now targeted by scientists to develop novel cardiac regenerative therapeutics either by delivery of the cells, or by new methods that activate expansion and conversion of functioning heart cells.

For instance, clinical studies conducted a short while ago demonstrated that scar formation following a heart attack can be reduced by taking cells from the patient's own heart tissue. Even though it remains uncertain whether the delivered cells are indeed stem cells, these studies nevertheless demonstrate that this is a small, educational step towards the goal of utilizing the heart's potential for self-healing.

View post:
Heart Disease Stem Cell Therapies - Development Must Come From Several Specialties

Newburgh Man Dies While Receiving Stem Cell Treatment in Florida

A homicide investigation in Florida has some far reaching ties to the Tri-State. A Newburgh man was there for stem cell treatment and died during the procedure. Richard Poling, 77, went to Florida for treatment of a lung disease he's battled for more than ten years, but he didn't make it through the procedure. Now the doctor he chose, Dr. Zannos Grekos, is at the heart of a homicide investigation. But his isn't the first story about Dr. Grekos that ends poorly. Barb Neuman's husband was diagnosed with a different lung disease, but went to the same doctor, in 2009. They mortgaged their home to afford more than $50,000 for the treatment. Unfortunately Neuman's husband died nine months later. But other patients speak highly of Dr. Grekos. Grekos' license had been restricted in 2011 for performing undisclosed stem cell research on a woman with breast cancer who later died. Neuman says she hopes her story can teach others a valuable lesson. No one has been arrested in the three deaths. The Florida State Surgeon General has issued an emergency suspension on Grekos' license, and Lee County Sheriff's Deputies are investigating the deaths.

Read the original here:
Newburgh Man Dies While Receiving Stem Cell Treatment in Florida

Osiris Therapeutics Reports Fourth Quarter and Full Year 2011 Financial Results

COLUMBIA, Md.--(BUSINESS WIRE)--

Osiris Therapeutics, Inc. (NASDAQ: OSIR - News), the leading stem cell company focused on developing and commercializing products to treat medical conditions in inflammatory, cardiovascular, orthopedic, and wound healing markets, announced today its results for the fourth quarter and full year ended December 31, 2011.

Recent and Full Year Highlights

We are very pleased with the commercial performance of our two Biosurgery products, Grafix and Ovation, said C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris. As interest in stem cell products for surgical applications intensifies, Osiris remains uniquely positioned as the clear leader in this space. Additionally, with Prochymal being used around the world to treat patients with life-threatening GvHD through our Expanded Access program, our Therapeutic and Biosurgery units are carrying out our mission of bringing Smart Medicine, to patients, Right Now.

Fourth Quarter Financial Results

Net income for the fourth quarter of 2011 increased to $5.0 million, compared to $4.4 million for the fourth quarter of 2010. Revenues were $11.0 million in the fourth quarter of 2011, consisting primarily of the amortization of license fees from our collaboration agreements. Our fourth quarter Biosurgery product revenues were $0.8 million. Revenues during the fourth quarter of 2010 were $10.8 million. As of December 31, 2011, Osiris had $48.0 million of cash, receivables, and short-term investments.

Research and development expenses for the fourth quarter of 2011 were $4.2 million, compared to $5.0 million incurred in the fourth quarter of 2010. General and administrative expenses were $1.5 million for the fourth quarter of 2011 compared to $1.8 million for the same period of the prior year. Net cash used in operations for the quarter was $4.6 million.

Full Year 2011 Financial Highlights

Net income was $14.9 million for the fiscal year ended December 31, 2011 compared to $13.1 million in fiscal 2010. Revenues of $42.4 million were recognized in 2011, including $40.0 million from the Genzyme collaboration agreement, $1.0 million from the research, development and commercialization agreement with the JDRF and $1.3 million of revenues from our Biosurgery products. Revenues in 2010 were $43.2 million, which included $40.0 million from the Genzyme collaboration agreement, $0.5 million from the U.S. Department of Defense contract, $1.2 million from the JDRF agreement and a $1.0 million milestone earned on our license agreement with JCR Pharmaceuticals.

R&D expenses for the 2011 fiscal year were $19.2 million compared to $23.5 million in the prior year. G&A expenses in fiscal 2011 were $7.9 million, which include $2.4 million of non-cash share based payments. G&A expenses in fiscal 2010 were $6.5 million, including $0.7 million of share-based payments.

Follow this link:
Osiris Therapeutics Reports Fourth Quarter and Full Year 2011 Financial Results