Ottawa researchers receive grant to test stem-cell therapy for septic shock

OTTAWA A team of Ottawa researchers has been awarded $442,000 to test the worlds first experimental stem-cell therapy aimed at patients who suffer from septic shock, a runaway infection of the bloodstream thats notoriously difficult to treat.

The federal grant will allow researchers from the Ottawa Hospital Research Institute to use mesenchymal stem cells, found in the bone marrow of healthy adults, to treat as many as 15 patients with septic shock.

The deadly infection occurs when toxic bacteria spreads rapidly throughout the body and over-activates the immune system, leading to multiple organ failure and death in up to 40 per cent of cases.

One in five patients admitted to intensive-care units suffers from septic shock, making it the most common illness among a hospitals sickest of the sick.

Existing treatments focus on early diagnosis and intervention before organs start to fail. Patients with septic shock require aggressive resuscitation measures, large doses of intravenous antibiotics and, often, ventilators to help them breathe.

Yet because the infection can creep up on patients rapidly and cause unpredictable complications, death from septic shock remains relatively common.

The experimental therapy aims to use donor stem cells, grown and purified at the Ottawa laboratory, to dial down the bodys hyperactive immune response and reduce the cascade of inflammation that leads to organ failure.

Early results from animal studies even raise the possibility that mesenchymal cells could eliminate the bacteria that causes septic shock, although the impact on humans is not yet known.

Its a unique feature of the stem cells, said Dr. Lauralyn McIntyre, the intensive-care physician who is leading the trial. Certainly no other therapy in the past, other than antibiotics, has impacted the bacterial load in the system.

Like other stem cells, mesenchymal cells can turn into a variety of more specialized cells and tissues that help repair and regenerate damaged organs. And because mesenchymal cells are derived from adults, they sidestep the ethical issues arising from the destruction of human embryos needed to make embryonic stem cells.

See the original post here:
Ottawa researchers receive grant to test stem-cell therapy for septic shock

Bioheart and Ageless Partner to Advance Stem Cell Field With Laboratory Training Programs

SUNRISE, Fla., March 15, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that it has successfully conducted a laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine. The attendees participated in hands on, in depth training in laboratory practices in stem cell science.

"We had students from all over the world attend this first course including physicians, laboratory technicians and students," said Mike Tomas, Bioheart's President and CEO. "Bioheart is pleased to be able to share our 13 years of experience in stem cell research and help expand this growing life science field."

The course included cell culture techniques and quality control testing such as flow cytometry and gram stain. In addition, participants learned how to work in a cleanroom operating according to FDA cGMP standards, regulations used in the manufacture of pharmaceuticals, food and medical devices. Aseptic techniques were also taught as well as cleanroom gowning, environmental monitoring and maintenance.

Future courses are open to physicians, laboratory technicians and students. After graduating the course, attendees are prepared to pursue research and careers in the field of stem cells and regenerative medicine. For more information about the course, contact info@agelessregen.com.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

See the article here:
Bioheart and Ageless Partner to Advance Stem Cell Field With Laboratory Training Programs

Red Blood Cell Growth Linked to Leukemia?

(Ivanhoe Newswire)-- Yale researchers have discovered how megakaryocytes or giant blood cells that produce wound healing platelets grow 10 or more times bigger than other blood cells and how they may cause a form of leukemia.

"A failure of these cells to grow might be an initial trigger for megakaryoblastic leukemias," Diane Krause, senior researcher for the Yale Cancer Center, professor of laboratory medicine, cell biology, and pathology and associate director of the Yale Stem Cell Center, was quoted as saying.

Megakaryocytes grow so large because the DNA within the cell duplicates over and over again but without the cell undergoing cell division. A megakaryoblastic can house more than 120 sets of nuclear DNA before it becomes the biological equivalent of a supernova, undergoing significant changes to break apart into thousands of platelets needed for normal blood clotting.

A Yale team led by postdoctoral associate Yuan Gao discovered that two proteins called guanine exchange factors (GEF-H1) halt endomitosis. They found that without GEF-H1, nuclear DNA couldn't go from two internal nuclei to four. Additional divisions of nuclear DNA within the cell could not occur unless there was reduced expression of ECT2.

The team was intrigued by the results because a gene implicated in malignant leukemias, MKL1, also seems to be necessary to promote normal megakaryocyte maturation. The Krause lab is now studying whether mutant forms of MKL1 may keep levels of GEF-H1 high, therefore, making it impossible for megakaryocytes to undergo endomitosis and building the foundation for development of cancer.

"These findings reveal another important step toward the formation of functional platelets, which are necessary for normal blood clotting," Krause said. "But they also provide a clue regarding what may go away to transform normal megakaryocytes into malignant leukemia cells."

SOURCE: Developmental Cell, March 2012.

Excerpt from:
Red Blood Cell Growth Linked to Leukemia?

Grekos' attorney: Another physician treated patient who died

Interview with Dr. Zannos Grekos Grekos contests that his office has done ...

LEE COUNTY A week after Dr. Zannos Grekos was accused of performing a stem cell treatment on a patient who died, his attorney said another physician was treating the patient at the Bonita Springs practice.

And there was no stem cell treatment performed, only liposuction, said Richard Ozelie, the Boca Raton attorney representing Grekos.

Ozelie does not identify the other doctor but said in a statement Wednesday that the Lee County Sheriffs Office and the Lee County Medical Examiners Office both have that information.

The patient, identified by state authorities through the initials R.P., did have liposuction at the Regenocyte medical facility in Bonita Springs, Ozelie said in the statement. The Sheriffs Office later identified the man who died as Richard Poling , 77, of Newburgh, Ind.

The attorney issued the one-page statement because of concerns with the accuracy of media coverage after the state Department of Health suspended Grekos license March 7. The case has received some national media attention.

The next day, the Sheriffs Office launched a criminal investigation into Grekos practice, Regenocyte, 9500 Bonita Beach Road, Suite 310.

Sheriffs Office spokesman Lt. Larry King had no comment Wednesday and said the agencys investigation is continuing.

In the suspension order, the state health department said Grekos infused or directed that the patient have concentrated stem cells infused into his blood stream. The state order said the patient suffered cardiac arrest and died.

The emergency suspension was issued because Grekos violated a license restriction from February, 2011, not to do anything with autologous stem cell treatment or bone marrow aspirate, according to the state order.

Read the original here:
Grekos' attorney: Another physician treated patient who died

FDA receives complaint about Houston company that stored Gov. Perry's stem cells

The U.S. Food and Drug Administration has received a complaint alleging the Houston company involved in Gov. Rick Perry's unregulated adult stem-cell operation is a potential danger to patients and not in compliance with federal law.

In an eight-page letter sent last month, University of Minnesota bioethicist Leigh Turner called on the FDA to investigate Celltex Therapeutics Corp., which banks people's stem cells for future reinjection in the event of disease or injury. Perry was the company's first customer last year.

"It appears their business plan involves injecting or infusing on a for-profit, commercial basis non-FDA-approved adult stem cells into paying customers," Turner wrote in the Feb. 21 letter. "This plan conflicts with FDA regulations governing human stem cells."

An FDA spokeswoman declined comment, but Turner said an agency official told him the matter has been assigned to an investigator and is being taken seriously.

Celltex co-founder David Eller said Tuesday night he is confident the company will "meet all FDA specifications." He emphasized that Celltex doesn't administer stem cells, but stores and processes them at the behest of doctors who later reinject them into patients.

Dr. Stanley Jones, a Houston orthopedic surgeon, injected Perry's stem cells during his back surgery in July.

The plan by Celltex and Perry to make Texas a leader in the therapy have been controversial since details about the governor's procedure became known last summer. The therapy, drawing on the ability of adult stem cells to replenish dying cells, is promising but thought by most medical researchers to need much more clinical study before it is commercialized.

Stem cells are a kind of medicine known as biologics, therapy involving living cells rather than chemicals. Most medical experts say that adult stem-cell therapy involves more than the "minimal manipulation" the agency allows without its oversight because the cells are isolated, cultured in a laboratory and stored for some period of time before being reinjected.

The FDA has recently stepped up enforcement of unregulated adult stem cell activity, though legal experts interviewed last fall by the Chronicle said it was unclear whether the agency would look into Perry's procedure because he seemed fully informed and unharmed by it.

The Texas Medical Board is currently considering a policy that would require providers of stem cells and other experimental drugs to use them only with the permission of independent review committees that assess trials for patient safety. The policy comes up for final approval in April.

Read more:
FDA receives complaint about Houston company that stored Gov. Perry's stem cells

Epigenetic signatures direct the repair potential of reprogrammed cells

When skin cells are reprogrammed, many of their cellular properties are recalibrated as they aquire stem cell properties and then are induced to become skin cells again. In order for these "induced" stem cells to be viable in treatment for humans (tissue regeneration, personalized wound healing therapies, etc.), researchers need to understand how they retain or even improve their characteristics after they are reprogrammed.

Since the initial discovery of reprogramming, scientists have struggled with the unpredictability of the cells due to the many changes that occur during the reprogramming process. Classifying specific epigenetic signatures, as this study did, allows researchers to anticipate ways to produce cell types with optimal properties for tissue repair while minimizing unintended cellular abnormalities.

The researchers used reprogrammed cells to generate three-dimensional connective tissue that mimics an in vivo wound repair environment. To verify the role of the protein (PDGFRbeta) in tissue regeneration and maintenance, the team blocked its cellular expression, which impaired the cells' ability to build tissue.

"We determined that successful tissue generation is associated with the expression of PDGFRbeta. Theoretically, by identifying the epigenetic signatures that indicate its expression, we can determine the reprogrammed cells' potential for maintaining normal cellular characteristics throughout development," said first author Kyle Hewitt, PhD, a graduate of the cell, molecular & developmental biology program at the Sackler School of Graduate Biomedical Sciences, and postdoctoral associate in the Garlick laboratory at Tufts University School of Dental Medicine (TUSDM).

"The ability to generate patient-specific cells from the reprogrammed skin cells may allow for improved, individualized, cell-based therapies for wound healing. Potentially, these reprogrammed cells could be used as a tool for drug development, modeling of disease, and transplantation medicine without the ethical issues associated with embryonic stem cells," said senior author Jonathan Garlick, DDS, PhD, a professor in the department of oral and maxillofacial pathology and director of the division of tissue engineering and cancer biology at TUSDM.

Jonathan Garlick is also a member of the cell, molecular & developmental biology program faculty at the Sackler School and the director of the Center for Integrated Tissue Engineering (CITE) at TUSDM.

More information: Hewitt KJ, Shamis Y, Knight E, Smith A, Maione A, Alt-Holland A, Garlick JA. Journal of Cell Science. "PDGFRbeta Expression and Function in Fibroblasts Derived from Pluripotent Cells is Linked to DNA Demethylation" Published online February 17, 2012, doi: 10.1242/jcs.099192

Provided by Tufts University

Read the original:
Epigenetic signatures direct the repair potential of reprogrammed cells

Washington Center for Pain Management Begins Enrollment in United States Stem Cell Therapy Study in Subjects With …

EDMONDS, Wash., March 14, 2012 /PRNewswire/ --Washington Center for Pain Management is participating in a nationwide FDA-cleared adult stem cell study testing novel treatment for chronic low back pain and has enrolled its first patient. The study will test the use of Mesenchymal Precursor Cells (MPCs) adult stem cells derived from bone marrow that will be directly injected into the lumbar disc. The minimally invasive procedure may offer an alternative to back surgery for eligible patients with chronic pain from degenerative discs.

An estimated 30 million people in the United States suffer from back pain. Degenerative disc disease is the most common cause of low-back pain, which develops with the gradual loss of a material called proteoglycan, which cushions the bones of the spine and enables normal motion.

Most patients with low-back pain respond to physical therapy and medications, but in advanced cases, artificial disc replacement or spinal fusion -- removal of the degenerated discs and the fusion of the bones of the spine -- is necessary. However, these surgeries often are not entirely effective.

"Millions of Americans are debilitated by chronic low back pain," says Dr Hyun Joong Hong MD, the lead investigator at The Washington Center for Pain Management. "This promising therapy is at the cutting edge of medical science and has the potential to create a paradigm shift in our approach to minimally invasive solutions to this disease."

Researchers will enroll approximately 100 study participants. About fifteen participants will be enrolled at The Washington Center for Pain Management and the rest at 11 other medical centers throughout the United States. The trial is scheduled to last for three years.

Washington Center for Pain Management is enrolling study participants suffering from moderate low-back pain for a minimum of six months and whose condition has not responded to other, conventional treatments.

Once enrolled, patients are randomly assigned to one of four treatment groups:

Patients will receive a single injection of their assigned test agent directly into the center of the target discs within their spine and will be monitored for safety. Patients will also be monitored using imaging to identify any changes in their disease condition or disease progression. Use of pain medications, self-reports of pain, subsequent surgical interventions and assessments of disability, quality of life, productivity and activity will be evaluated. Repair of the disc and reduction of chronic back pain will be assessed in each patient.

Promising results have been observed in prior research using animal models when stem cells were investigated for the repair of damaged spine discs. The cells were well tolerated in these study animals.

This study is sponsored by Mesoblast Limited, a world leader in the development of biologic products for the broad field of regenerative medicine. Mesoblast has the worldwide exclusive rights to a series of patents and technologies developed over more than 10 years relating to the identification, extraction, culture and uses of adult Mesenchymal Precursor Cells (MPCs). The MPCs are derived from young adult donors' bone marrow and are immune tolerant.

View original post here:
Washington Center for Pain Management Begins Enrollment in United States Stem Cell Therapy Study in Subjects With ...

Gut Cells Could Be Used To Produce Insulin For Diabetes Patients

March 13, 2012

Columbia researchers have conducted a study that suggests cells inside intestines could be employed to make insulin for patients with type I diabetes. Previously, researchers considered stem cell transplants to be the only way to replace lost cells inpatients with type I diabetes. Such a discovery could also mean that these patients would be free from daily insulin injections as well.

Researchers have been conducting their work on mice and published their results in the journal Nature Genetics.

Type I diabetes is an autoimmune disease that destroys pancreas cells used for producing insulin. Once these cells go missing in the pancreas, patients with the disease have to inject themselves with insulin to keep their blood glucose levels in balance.

Scientists have long sought to combat the effects of type I diabetes by creating a cell that will do the work of the pancreas cells by releasing insulin into the blood stream when necessary. Researchers have been able to recreate these types of cells in the lab using stem cells. However, these cells are not yet appropriate for use in diabetes patients because they do not release insulin at the appropriate time. If glucose levels go unchecked and unbalanced, a patient could fall victim to hypoglycemia.

Doctors Chutima Talchai, PhD and Domenico Accili, MD and professor of medicine at Columbia University Medical Center conducted the study on progenitor cells in mice. Their research shows that these cells were able to create insulin-producing cells.

Progenitor cells are like stem cells in that they can be used to recreate other cells. However, they cannot divide and replicate cells indefinitely. Doctors Talchai and Accili used progenitor cells from the gastrointestinal tract, as they have been found to produce cells that can recreate serotonin, gastric inhibitory peptide, and other cells and hormones found in the bloodstream and GI tract.

The doctors found their results by controlling a specific gene that has been found to decide what a cell will be, Foxo1. When this gene was flipped off, the progenitor cells began to produce insulin on their own.

These cells could be dangerous if they did not release the right amount of insulin at the right time, but researchers found that these cells did just that.

The insulin-producing progenitor cells used in the mice effectively regulated glucose levels and produced insulin in sufficient quantity.

See original here:
Gut Cells Could Be Used To Produce Insulin For Diabetes Patients

Gut Cells Turned To Insulin Factories – New Type l Diabetes Treatment

Editor's Choice Academic Journal Main Category: Diabetes Article Date: 13 Mar 2012 - 12:00 PDT

email to a friend printer friendly opinions

Current Article Ratings:

The study was carried out by Chutima Talchai, Ph.D, a New York Stem Cell Foundation-Druckenmiller Fellow, and Domenico Accili, M.D., professor of medicine at Columbia University Medical Center.

Type 1 diabetes is an autoimmune disease that kills cells in the pancreas which produce insulin, resulting in high levels of glucose in the blood. As the pancreas is unable to replace these cells, individuals suffering with the disease must inject insulin into themselves in order to manage their blood sugar. Patients must also monitor their sugar levels numerous times a day, as blood glucose that is too low or too high can be fatal.

For scientists researching type 1 diabetes, one of the leading goals is to replace lost insulin-producing cells with new cells that release insulin into the bloodstream as needed. Even though researchers are able to generate these cells in the laboratory from embryonic stem cells, they are not suitable for transplant in patients as they do not release insulin appropriately in response to sugar levels, potentially resulting in a deadly condition called hypoglycemia.

In the intestine of mice, the researchers found that certain gastrointestinal progenitor cells are able to generate insulin-producing cells.

Usually, progenitor cells are responsible for generating a vast range of cells, such as gastric inhibitory peptide, cells that produce serotonin, as well as other hormones secreted into the GI tract and bloodstream.

The researchers discovered that when they switched off Foxo1 (a gene known to contribute in cell fate decisions), the progenitor cells also generated cells that produced insulin. In addition, the team found that although more cells were produced when Foxo1 was switched off early in development, they were also produced when the Foxo1 was switched off in adult mice.

Dr. Accili, explained:

Originally posted here:
Gut Cells Turned To Insulin Factories - New Type l Diabetes Treatment

TEDMED 2012 Conference Offers $2 Million in Scholarships to Health and Medicine Leaders and Innovators; Free National …

WASHINGTON, March 13, 2012 /PRNewswire/ -- TEDMED, http://www.TEDMED.com, the annual gathering where science, medical and technology leaders focus on "imagination, innovation and inspiration" to advance the art of health and medicine, today announced two new programs that will vastly increase the size and scope of its audience.

TEDMED is the world's only TED-licensed event focused solely on innovation and breakthrough thinking across all of health and medicine. It will be held at the John F. Kennedy Center for the Performing Arts in Washington, D.C., April 10 - 13.

Speakers, attendee-Delegates and participants will range from biologists (Dr. E.O. Wilson) and writers (Ben Goldacre), to physicists (Albert-Laszlo Barabasi) and public health leaders like the director of the National Institutes of Health (Dr. Francis Collins). Topics to be explored by TEDMED speakers will include neuroscience, microbiology, surgery, oncology, stem cell therapy, bad science, Alzheimer's, robotics, game science, wearable tech, disease evolution, patient choice, virtual anatomy models, the nature of imagination, and dozens more.

For the first time this year, TEDMED will offer a free simulcast, TEDMEDLive, to teaching hospitals, medical schools, research institutions, university life science departments, state and federal government agencies, health-oriented corporations and non-profits across the nation. Participants, forecasted at more than 50,000, will be able to view a high-definition live stream of each presentation and performance. Using the TEDMED Connect mobile app, remote participants can also ask questions of the speakers in real time, which may be answered directly from the TEDMED stage.

Over 2,000 TEDMEDLive simulcast locations will participate, including institutions such as: Case Western Reserve University, Harvard University, University of California (Davis and Irvine), University of Pennsylvania, University of Washington, University of Virginia, Tulane University, Vanderbilt University and Yale University.

Another new TEDMED initiative is the Front-Line Scholarship Program, which offers up to $2 million in half- and full-fee scholarships to those leaders and innovators who are on the front lines of health and medicine. It assists those who would both contribute to the TEDMED conference as attendees, and would greatly benefit from joining the conference in Washington, D.C. in person as a Delegate. The Front-Line Scholarship Program is underwritten by the TEDMED Patron Fund, whose major contributors include Humana and The California Endowment.

"TEDMED is for everyone who is passionate about the future of health and medicine," said Jay Walker, curator of TEDMED."Accordingly, TEDMED is committed to bringing even more expertise and perspective to the table for a national discussion of health and medicine, regardless of ability to pay through our Front-Line Scholarship program. Front-Line Scholarships will permit the broadest possible group of healthcare providers, first responders and other contributors to attend so they can share even more ideas that will save lives."

More than 1,200 TEDMED onsite attendees including researchers, physicians, technologists and policy experts will foster cross-disciplinary collaboration and learning at the Kennedy Center this April. Institutions of excellence represented by speakers and attendees will include The American Cancer Society, The American Red Cross, Biodigital Systems, The Boulis Laboratory, Brandeis University, Brigham and Women's Hospital, The California Institute of Technology, Center for Complex Network Research, The Centers for Disease Control and Prevention, Duke University, Emory University, Harvard University, mc10, Methodist Institute for Technology, Innovation, and Education, The National Institutes of Health, New York University, Penn State University, Quest Diagnostics, The Center for Alzheimer Research and Treatment, Reuters Health, Children's Hospital Boston, The U.S. Department of Health and Human Services, and the Young Professionals Chronic Disease Network.

TEDMED Speaker List (as of 3/12/2012)

Additional speakers will be announced prior to the conference start date.

The rest is here:
TEDMED 2012 Conference Offers $2 Million in Scholarships to Health and Medicine Leaders and Innovators; Free National ...