What is a Bone Marrow Transplant (Stem Cell Transplant)? – Cancer.Net

A bone marrow transplant is a medical treatment that replaces your bone marrow with healthy cells. The replacement cells can either come from your own body or from a donor.

A bone marrow transplant is also called a stem cell transplant or, more specifically, a hematopoietic stem cell transplant. Transplantation can be used to treat certain types of cancer, such as leukemia, myeloma, and lymphoma, and other blood and immune system diseases that affect the bone marrow.

Stem cells are special cells that can make copies of themselves and change into the many different kinds of cells that your body needs. There are several kinds of stem cells and they are found in different parts of the body at different times.

Cancer and cancer treatment can damage your hematopoietic stem cells. Hematopoietic stem cells are stem cells that turn into blood cells.

Bone marrow is soft, spongy tissue in the body that contains hematopoietic stem cells. It is found in the center of most bones. Hematopoietic stem cells are also found in the blood that is moving throughout your body.

When hematopoietic stem cells are damaged, they may not become red blood cells, white blood cells, and platelets. These blood cells are very important and each one has a different job:

Red blood cells carry oxygen throughout your body. They also take carbon dioxide to your lungs so that it can be exhaled.

White blood cells are a part of your immune system. They fight pathogens, which are the viruses and bacteria that can make you sick.

Platelets form clots to stop bleeding.

A bone marrow/stem cell transplant is a medical procedure by which healthy stem cells are transplanted into your bone marrow or your blood. This restores your body's ability to create the red blood cells, white blood cells, and platelets it needs.

There are different types of bone marrow/stem cell transplants. The 2 main types are:

Autologous transplant. Stem cells for an autologous transplant come from your own body. Sometimes, cancer is treated with a high-dose, intensive chemotherapy or radiation therapy treatment. This type of treatment can damage your stem cells and your immune system. That's why doctors remove, or rescue, your stem cells from your blood or bone marrow before the cancer treatment begins.

After chemotherapy, the stem cells are returned to your body, restoring your immune system and your body's ability to produce blood cells and fight infection. This process is also called an AUTO transplant or stem cell rescue.

Allogenic transplant. Stem cells for an allogenic transplant come from another person, called a donor. The donor's stem cells are given to the patient after the patient has chemotherapy and/or radiation therapy. This is also called an ALLO transplant.

Many people have a graft-versus-cancer cell effect during an ALLO transplant. This is when the new stem cells recognize and destroy cancer cells that are still in the body. This is the main way ALLO transplants work to treat the cancer.

Finding a donor match is a necessary step for an ALLO transplant. A match is a healthy donor whose blood proteins, called human leukocyte antigens (HLA), closely match yours. This process is called HLA typing. Siblings from the same parents are often the best match, but another family member or an unrelated volunteer can be a match too. If your donors proteins closely match yours, you are less likely to get a serious side effect called graft-versus-host disease (GVHD). In this condition, the healthy transplant cells attack your cells.

If your health care team cannot find a donor match, there are other options.

Umbilical cord blood transplant. In this type of transplant, stem cells from umbilical cord blood are used. The umbilical cord connects a fetus to its mother before birth. After birth, the baby does not need it. Cancer centers around the world use cord blood. Learn more about cord blood transplants.

Parent-child transplant and haplotype mismatched transplant. Cells from a parent, child, brother, or sister are not always a perfect match for a patient's HLA type, but they are a 50% match. Doctors are using these types of transplants more often, to expand the use of transplantation as an effective cancer treatment.

The information below tells you the main steps of AUTO and ALLO transplants. In general, each process includes collecting the replacement stem cells, the patient receiving treatments to prepare their body for the transplant, the actual transplant day, and then the recovery period.

Often, a small tube may be placed in the patient's chest that remains through the transplant process. It is called a catheter. Your health care team can give you chemotherapy, other medications, and blood transfusions through a catheter. A catheter greatly reduces the amount of needles used in the skin, since patients will need regular blood tests and other treatments during a transplant.

Please note that transplants are complex medical procedures and sometimes certain steps may happen in a different order or on a different timetable, to personalize your specific care. Ask your health care whether you will need to be in the hospital for different steps, and if so, how long. Always talk with your health care team about what to expect before, during, and after your transplant.

Step 1: Collecting your stem cells. This step takes several days. First, you will get injections (shots) of a medication to increase your stem cells. Then your health care team collects the stem cells through a vein in your arm or your chest. The cells will be stored until they are needed.

Step 2: Pre-transplant treatment. This step takes 5 to 10 days. You will get a high dose of chemotherapy. Occasionally, patients also have radiation therapy.

Step 3: Getting your stem cells back. This step is your transplant day. It takes about 30 minutes for each dose of stem cells. This is called an infusion. Your health care team puts the stem cells back into your bloodstream through the catheter. You might have more than one infusion.

Step 4: Recovery. Your doctor will closely monitor your cells' recovery and growth and you will take antibiotics to reduce infection. Your health care team will also treat any side effects. Read more details below about recovering from a bone marrow transplant.

Step 1: Donor identification. A matched donor must be found before the ALLO transplant process can begin. Your HLA type will be found through blood testing. Then, your health care team will work with you to do HLA testing on potential donors in your family, and if needed, to search a volunteer registry of unrelated donors.

Step 2: Collecting stem cells from your donor. Your health care team will collect cells from either your donors blood or bone marrow. If the cells are coming from the bloodstream, your donor will get daily injections (shots) of a medication to increase white cells in their blood for a few days before the collection. Then, the stem cells are collected from their bloodstream. If the cells are coming from bone marrow, your donor has a procedure called a bone marrow harvest in a hospital's operating room.

Step 3: Pre-transplant treatment. This step takes 5 to 7 days. You will get chemotherapy, with or without radiation therapy, to prepare your body to receive the donor's cells.

Step 4: Getting the donor cells. This step is your transplant day. Your health care team puts, or infuses, the donors stem cells into your bloodstream through the catheter. Getting the donor cells usually takes less than an hour.

Step 5: Recovery. During your initial recovery, you will get antibiotics to reduce your risk of infection and other drugs, including medications to prevent and/or manage GVHD. Your health care team will also treat any side effects from the transplant. Read more details below about bone marrow transplant recovery.

Recovery from a bone marrow/stem cell transplant takes a long time. Recovery often has stages, starting with intensive medical monitoring after your transplant day. As your long-term recovery moves forward, you will eventually transition to a schedule of regular medical checkups over the coming months and years.

During the initial recovery period, it's important to watch for signs of infection. The intensive chemotherapy treatments that you get before your transplant also damage your immune system. This is so your body can accept the transplant without attacking the stem cells. It takes time for your immune system to work again after the transplant. This means that you are more likely to get an infection right after your transplant.

To reduce your risk of infection, you will get antibiotics and other medications. If you had an ALLO transplant, your medications will include drugs to prevent and/or manage GVHD. Follow your health care team's recommendations for how to prevent infection immediately after your transplant.

It is common to develop an infection after a bone marrow transplant, even if you are very careful. Your doctor will monitor you closely for signs of an infection. You will have regular blood tests and other tests to see how your body and immune system are responding to the donor cells. You may also get blood transfusions through your catheter.

Your health care team will also develop a long-term recovery plan to monitor for late side effects, which can happen many months after your transplant. Learn more about the possible side effects from a bone marrow transplant.

Your doctor will recommend the best transplant option for you. Your options depend on the specific disease diagnosed, how healthy your bone marrow is, your age, and your general health. For example, if you have cancer or another disease in your bone marrow, you will probably have an ALLO transplant because the replacement stem cells need to come from a healthy donor.

Before your transplant, you might need to travel to a center that does many stem cell transplants. Your doctor may need to go, too. At the center, you will talk with a transplant specialist and have a medical examination and different tests.

A transplant will require a lot of time receiving medical care away from your daily life. It is best to have a family caregiver with you. And, a transplant is an expensive medical process. Talk about these questions with your health care team and your loved ones:

Can you describe the role of my family caregiver in taking care of me?

How long will I and my caregiver be away from work and family responsibilities?

Will I need to stay in the hospital? If so, when and how long?

Will my insurance pay for this transplant? What is my coverage for my follow-up care?

How long will I need medical tests during my recovery?

A successful transplant may mean different things to you, your family, and your health care team. Here are 2 ways to know if your transplant worked well.

Your blood counts are back to safe levels. A blood count measures the levels of red blood cells, white blood cells, and platelets in your blood. At first, the transplant makes these numbers very low for 1 to 2 weeks. This affects your immune system and puts you at a risk for infections, bleeding, and tiredness. Your health care team will lower these risks by giving your blood and platelet transfusions. You will also take antibiotics to help prevent infections.

When the new stem cells multiply, they make more blood cells. Then your blood counts will go back up. This is one way to know if a transplant was a success.

Your cancer is controlled. Curing your cancer is often the goal of a bone marrow/stem cell transplant. A cure may be possible for certain cancers, such as some types of leukemia and lymphoma. For other diseases, remission of the cancer is the best possible result. Remission is having no signs or symptoms of cancer.

As discussed above, you need to see your doctor and have tests regularly after a transplant. This is to watch for any signs of cancer or complications from the transplant, as well as to provide care for any side effects you experience. This follow-up care is an important part of your recovery.

It is important to talk often with your health care team before, during, and after a transplant. You are encouraged to gather information, ask questions, and work closely with your health care team on decisions about your treatment and care. In addition to the list above, here are some possible questions to ask. Be sure to ask any question that is on your mind.

What type of transplant would you recommend? Why?

If I have an ALLO transplant, how will we find a donor? What is the chance of finding a good match?

What type of treatment will I have before the transplant?

How long will my pre-transplant treatment take? Where will this treatment be given?

Can you describe what my transplant day will be like?

How will a transplant affect my life? Can I work, exercise, and do regular activities?

What side effects could happen during treatment, or just after?

What side effects could happen years later?

What tests will I need after the transplant? How often?

Who can I talk to if I am worried about the cost?

How will we know if the transplant worked?

What if the transplant does not work? What if the cancer comes back?

Side Effects of a Bone Marrow Transplant (Stem Cell Transplant)

Bone Marrow Aspiration and Biopsy

Donating Bone Marrow is Easy and Important: Here's Why

Bone Marrow Transplants and Older Adults: 3 Important Questions

Why the Bone Marrow Registry Needs More Diverse Donors and How to Sign Up

Be the Match: About Transplant

Be the Match: National Marrow Donor Program

Blood & Marrow Transplant Information Network (BMT InfoNet)

National Bone Marrow Transplant Link (nbmtLINK)

U.S. Department of Health and Human Services: Learn About Transplant as a Treatment Option

Read more from the original source:
What is a Bone Marrow Transplant (Stem Cell Transplant)? - Cancer.Net

Global Stem Cell Umbilical Cord Blood (UCB) Market Report 2022-2026: Increased Federal Investment in Stem Cell Therapy, and the Advent of Cord Blood…

Global Stem Cell Umbilical Cord Blood (UCB) Market Report 2022-2026: Increased Federal Investment in Stem Cell Therapy, and the Advent of Cord Blood Banking to Drive Sector - ResearchAndMarkets.com  Business Wire

Follow this link:
Global Stem Cell Umbilical Cord Blood (UCB) Market Report 2022-2026: Increased Federal Investment in Stem Cell Therapy, and the Advent of Cord Blood...

Automated Cell Culture Systems Market Size to Hit USD 12.43 Billion by 2033; Growing Stem Cell Research & Development and Increasing Prevalence of…

Automated Cell Culture Systems Market Size to Hit USD 12.43 Billion by 2033; Growing Stem Cell Research & Development and Increasing Prevalence of Non-Communicable Diseases to Elevate Market Growth Research Nester  GlobeNewswire

Excerpt from:
Automated Cell Culture Systems Market Size to Hit USD 12.43 Billion by 2033; Growing Stem Cell Research & Development and Increasing Prevalence of...

Global Cell Culture Protein Surface Coating Market to Grow at a CAGR of 13.82% During 2022-2031; Market to Expand on the Back of the Technological…

Global Cell Culture Protein Surface Coating Market to Grow at a CAGR of 13.82% During 2022-2031; Market to Expand on the Back of the Technological Breakthrough in Stem Cell Transplantation and Gene Therapy Kenneth Research  GlobeNewswire

Excerpt from:
Global Cell Culture Protein Surface Coating Market to Grow at a CAGR of 13.82% During 2022-2031; Market to Expand on the Back of the Technological...

Vita Therapeutics Closes $31 Million Series B Financing to Develop Cell Therapies for Neuromuscular Diseases and Cancers – Business Wire

BALTIMORE--(BUSINESS WIRE)--Vita Therapeutics, a cell engineering company harnessing the power of genetics to develop novel cellular therapies to treat muscular dystrophies and cancers, today announced the completion of a $31 million Series B financing. The fundraise was led by Cambrian BioPharma and new investor Solve FSHD. New investors included Riptide Ventures and Cedars Sinai, which participated alongside TEDCO and other existing investors. Proceeds from the financing will be used to advance Vitas lead pre-clinical program VTA-100 for limb-girdle muscular dystrophy (LGMD2A) to the clinic. It will also fund the development of Vitas newest program, VTA-120 for the treatment of patients with facioscapulohumeral muscular dystrophy (FSHD), and to further expand Vitas discovery pipeline. Since inception, Vita has raised a total of $66 million.

The support from this strategic group of quality investors further validates Vitas cell therapy platform and our mission to bring transformative therapies that target the root cause of disease to patients with muscle disorders and cancers, said Douglas Falk, MS, Chief Executive Officer at Vita Therapeutics. This syndicates confidence in our ability to further progress our programs is energizing and we are thrilled to have them as partners. We are making notable progress with our investigational IND-enabling studies for VTA-100 and are on track to reach the clinic with this important therapeutic candidate within 18 months. Additionally, we are excited to further expand our pipeline to include VTA-120 for the treatment of patients with FSHD. Im incredibly proud of our entire team and the steady momentum we continue to have.

Chip Wilson, Founder of lululemon athletica and of Solve FSHD noted, Living with FSHD for over 30 years, my upper body muscles are quite wasted. We are hopeful that Vitas cell therapy approach will stimulate muscle regeneration and help people like me to build up muscle faster than it breaks down.

Currently there are no treatments available for FSHD, and there is an urgent need to develop disease-modifying treatments that not only regenerate muscle but correct the genetic defect that otherwise leads to the muscles inability to repair itself, added Eva Chin, Executive Director for Solve FSHD. We are pleased to support Vita as they continue to expand their induced pluripotent stem cell (iPSC) technology towards FSHD and LGMD.

Vita Therapeutics aligns with Cambrians mission of building medicines that will redefine healthcare in the 21st century, said Cambrian BioPharma Chief Executive Officer, James Peyer, PhD. The team, as well as the scientific platform, continues to impress us as they aim to solve for treatments that go beyond symptom management to truly impact these diseases in a positive way.

Pipeline Overview

Vita Therapeutics current pipeline includes lead program, VTA-100 for the treatment of LGMD2A, VTA-120 for the treatment of FSHD, and VTA-300 targeting multiple cancers.

About Limb-Girdle Muscular Dystrophy

Limb-girdle muscular dystrophy (LGMD) is a group of disorders that cause weakness and wasting of muscles closest to the body (proximal muscles), specifically the muscles of the shoulders, upper arms, pelvic area, and thighs. The severity, age of onset, and disease progression of LGMD vary among the more than 30 known sub-types of this condition and may be inconsistent even within the same sub-type. As the atrophy and muscle weakness progresses, individuals with LGMD begin to have trouble lifting objects, walking, and climbing stairs, often requiring the use of assistive mobility devices. There is currently no cure for LGMD, with treatments limited to supportive therapies such as corticosteroids.

About Facioscapulohumeral Muscular Dystrophy

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant muscular dystrophy, although thirty percent of new FSHD patients have no prior family history of the disease and result from a congenital spontaneous genetic mutation. FSHD typically first presents with weakness of the muscles of the facial muscles and scapular region, with proximal weakness of the pectoral and abductor muscles limiting upper extremity function at the shoulder girdle. Onset is typically in the teenage and early adult years, but it can present in infancy, which tends to be a more aggressive course. The disease is slowly progressive and approximately 20% of patients are wheelchair bound by age 50. Currently there are no treatments specifically indicated for use in FSHD, with no disease-modifying treatments available.

About Vita Therapeutics

Vita Therapeutics is a biotechnology company developing state-of-the-art cellular therapeutics for the treatment of debilitating neuromuscular diseases and cancers. Vita Therapeutics uses induced pluripotent stem cell (iPSC) technology to engineer specific cell types designed to replace those that are defective in patients. The Company is progressing its lead program VTA-100 for the treatment of limb-girdle muscular dystrophy (LGMD2A) with the goal of filing Investigational New Drug Applications with the US Food and Drug Administration in the next 18 months. Long term, the Company is developing its pipeline of cellular therapies following a dual development strategy beginning with autologous-derived cells before moving to a universal hypoimmunogenic cell line. Vita Therapeutics is currently working with numerous partners, including PanCella, Wyss Institute, and Johns Hopkins University, to advance their clinical programs. Learn more about the company at http://www.Vitatx.com.

About Cambrian BioPharma

Cambrian BioPharma is building the medicines that will redefine healthcare in the 21st century therapeutics to lengthen healthspan, the period of life spent in good health. As a Distributed Development Company, Cambrian is advancing multiple scientific breakthroughs each targeting a biological driver of aging. Its approach is to develop interventions that treat specific diseases first, then deploy them as preventative medicines to improve overall quality of life during aging. For more information, please visit http://www.cambrianbio.com or follow us on Twitter @CambrianBio and LinkedIn.

About SOLVE FSHD

SOLVE FSHD is a venture philanthropic organization established to catalyze innovation and accelerate key research in finding a cure for FSHD. Established by renowned Canadian entrepreneur and philanthropist Chip Wilson, the founder of technical apparel company lululemon athletica inc. Chip has committed $100 million to kick-start funding into projects that support the organizations mission to find a cure for FSHD by 2027. The goal of SOLVE FSHD is to find a solution that can stop muscle degeneration, increase muscle regeneration and strength, and improve the quality of life for those living with FSHD. For more information, please visit: http://www.solvefshd.com.

Here is the original post:
Vita Therapeutics Closes $31 Million Series B Financing to Develop Cell Therapies for Neuromuscular Diseases and Cancers - Business Wire

A42 treatment of the brain side reduced the level of flotillin from endothelial cells on the blood side via FGF-2 signaling in a blood-brain barrier…

Abstract: Our previous study showed that the flotillin level is decreased in the blood of patients with Alzheimers disease (AD) when compared to that of patients with non-AD and vascular dementia; however, the molecular mechanism remains to be determined. In this study, to elucidate whether A accumulation in the brain has an effect on the blood flotillin level, we used our previously established blood-brain barrier (BBB) culture model using microvascular endothelial cells obtained from human induced pluripotent stem cells (iBMECs) and astrocytes prepared from rat cortex. In this BBB model with iBMECs plated on the upper compartment (blood side) and astrocytes plated on the lower compartment (brain side), the trans-endothelial electrical resistance values are high (over 1,500 m2) and stable during experiments. We found that the addition of A42 (0.5 and 2 M) to the brain side significantly reduced the level of flotillin secreted by iBMECs on the blood side. The level of basic fibroblast growth factor (FGF-2) in the brain side was significantly reduced by A42 treatment, and was accompanied by a reduction in the level of phosphorylation of the fibroblast growth factor receptor in iBMECs. The brain-side A42 treatment-induced reduction of flotillin secretion into the blood side was restored in a dose-dependent manner by the addition of FGF-2 into the brain side. These results indicated that A accumulation in the brain side reduced FGF-2 release from astrocytes, which attenuated FGF-2-mediated iBMECs signaling via the FGF-2 receptor, and thereby reduced flotillin secretion from iBMECs on the blood side. Our findings revealed a novel signaling pathway crossing the BBB from the brain side to the blood side, which is different from the classical intramural periarterial drainage or lymphatic-system-to-blood pathway.

Continue reading here:
A42 treatment of the brain side reduced the level of flotillin from endothelial cells on the blood side via FGF-2 signaling in a blood-brain barrier...

Pluristyx, panCELLa, and Implant Therapeutics Announce Definitive Merger Agreement – Business Wire

SEATTLE--(BUSINESS WIRE)--Today, Pluristyx, panCELLa, and Implant Therapeutics management are excited to announce their corporate merger, pending shareholder approval. The merged company will combine complementary portfolios to offer end-to-end customer support and provide increased access to a wide range of induced pluripotent stem cell (iPSC)-related products and services. The integrated technological and service offerings will greatly accelerate the development and delivery of revolutionary cell therapies to patients.

This merger announcement follows their successful partnership in January 2022 which enables streamlined access to the next generation of safe, universal, cost-effective, off-the-shelf" iPSCs. Pluristyx/panCELLas iPSCs are generated through a proprietary mRNA-based technology and are conveniently available in a try-before-you-buy research evaluation model requiring low up-front licensing fees. Packaged in Pluristyxs Ready-to-Differentiate format, iPSCs containing panCELLas FailSafe and hypoimmunogenic technologies offer customers, at any stage of product development, the ability to rapidly assess and select lines for further development and manufacturing. Since Plurisytx/panCELLa iPSCs are sourced from clinical-grade material, commercial partners can readily transition from development to therapeutic manufacturing.

Regarding this merger, Mahendra Rao, Co-Chairman of the Board at panCELLa and CEO of Implant Therapeutics, commented, We are extremely excited to be joining forces with Pluristyx. From the start of our collaboration, it was clear that the expertise and strong track record in cell therapy development within the Pluristyx team was the perfect fit to maximize the customer benefit from our technologies. By coming together, we can offer clients an industry-leading suite of technologies and services for the next generation of cell therapies.

Benjamin Fryer, Chief Executive Officer, Pluristyx said: In discussions with customers, it became evident that panCELLas hypoimmune and FailSafe technologies are seen as industry gold-standards. This merger takes us one step farther in our journey to become the leading provider of iPSC and cell therapy solutions for research, diagnostic, and clinical applications. Together with the expertise and technology portfolio of panCELLa, we can now provide a full suite of tools and provide the fastest path to gene-edited iPSC-based therapies.

The merged companies will retain the Pluristyx name with panCELLa becoming a wholly owned subsidiary of Pluristyx. Benjamin Fryer will continue as the Chief Executive Officer and Mahendra Rao will take on the role of Chief Science Officer. Current Pluristyx and panCELLa executives will be Jason Carstens as the Chief Operating Officer, Brian Hawkins as the Chief Technology Officer, Kaye Reiter as General Counsel, Jake Krembil as VP of Business Development/Toronto Site Lead, and James Laing as VP of Finance.

About Pluristyx

Pluristyx is a privately held biotechnology company based in Seattle, WA that offers consulting, wet-lab and GMP banking services, and pluripotent stem cell products to support novel therapeutic developers. Pluristyx helps industry and academic researchers solve manufacturing and analytical challenges in cryopreservation, drug development, regenerative medicine, and cell and gene therapy. The Pluristyx team has decades of experience supporting every stage of cell therapy product development, from cell banking to drug product manufacturing including analytical testing and release of clinical grade cell therapy products. To learn more, visit http://www.pluristyx.com or email info@pluristyx.com.

About panCELLa

Co-founded in 2015 by Dr. Andras Nagy, PhD, stem cell biologist and Dr. Armand Keating, MD, PhD, clinical scientist, and hematologist, panCELLa is a privately held early-stage biotechnology firm based on the innovative technology developed in Dr. Andras Nagys lab at the Sinai Health System (SHS) in Toronto, Canada. panCELLa has created platforms that allow for the development of safe, universal, cost-effective, off-the-shelf therapeutic cell products for medicine. panCELLa has secured partnerships with several biotechnology partners to enhance its patent position and provide expanded access to its exclusive FailSafe and Cloaked Cells/iACT cells. panCELLa continues its internal R&D efforts to develop additional novel uses of its platform technologies in areas such as bio-production, cancer vaccination and tolerization. To learn more, visit https://pancella.com.

About Implant Therapeutics

A subsidiary of panCELLa, Implant is a biotechnology company based in Maryland, United States. As a developer of genetically engineered stem cells, Implant combines the advantages of iPSC-MSC with panCELLas exclusive safety platforms to deliver the ultimate therapeutic MSC products. To learn more, visit: http://www.implant-rx.com

See the original post here:
Pluristyx, panCELLa, and Implant Therapeutics Announce Definitive Merger Agreement - Business Wire

Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom – UNC Health and UNC School of Medicine

A protein that helps make neurons also works to reprogram scar tissue cells into heart muscle cells, especially in partnership with a second protein, according to a study led by Li Qian, PhD, at the UNC School of Medicine.

CHAPEL HILL, N.C. Scientists at the UNC School of Medicine have made a significant advance in the promising field of cellular reprogramming and organ regeneration, and the discovery could play a major role in future medicines to heal damaged hearts.

In a study published in the journal Cell Stem Cell, scientists at the University of North Carolina at Chapel Hill discovered a more streamlined and efficient method for reprogramming scar tissue cells (fibroblasts) to become healthy heart muscle cells (cardiomyocytes). Fibroblasts produce the fibrous, stiff tissue that contributes to heart failure after a heart attack or because of heart disease. Turning fibroblasts into cardiomyocytes is being investigated as a potential future strategy for treating or even someday curing this common and deadly condition.

Surprisingly, the key to the new cardiomyocyte-making technique turned out to be a gene activity-controlling protein called Ascl1, which is known to be a crucial protein involved in turning fibroblasts into neurons. Researchers had thought Ascl1 was neuron-specific.

Its an outside-the-box finding, and we expect it to be useful in developing future cardiac therapies and potentially other kinds of therapeutic cellular reprogramming, said study senior author Li Qian, PhD, associate professor in the UNC Department of Pathology and Lab Medicine and associate director of the McAllister Heart Institute at UNC School of Medicine.

Scientists over the last 15 years have developed various techniques to reprogram adult cells to become stem cells, then to induce those stem cells to become adult cells of some other type. More recently, scientists have been finding ways to do this reprogramming more directly straight from one mature cell type to another. The hope has been that when these methods are made maximally safe, effective, and efficient, doctors will be able to use a simple injection into patients to reprogram harm-causing cells into beneficial ones.

Reprogramming fibroblasts has long been one of the important goals in the field, Qian said. Fibroblast over-activity underlies many major diseases and conditions including heart failure, chronic obstructive pulmonary disease, liver disease, kidney disease, and the scar-like brain damage that occurs after strokes.

In the new study, Qians team, including co-first-authors Haofei Wang, PhD, a postdoctoral researcher, and MD/PhD student Benjamin Keepers, used three existing techniques to reprogram mouse fibroblasts into cardiomyocytes, liver cells, and neurons. Their aim was to catalogue and compare the changes in cells gene activity patterns and gene-activity regulation factors during these three distinct reprogrammings.

Unexpectedly, the researchers found that the reprogramming of fibroblasts into neurons activated a set of cardiomyocyte genes. Soon they determined that this activation was due to Ascl1, one of the master-programmer transcription factor proteins that had been used to make the neurons.

Since Ascl1 activated cardiomyocyte genes, the researchers added it to the three-transcription-factor cocktail they had been using for making cardiomyocytes, to see what would happen. They were astonished to find that it dramatically increased the efficiency of reprogramming the proportion of successfully reprogrammed cells by more than ten times. In fact, they found that they could now dispense with two of the three factors from their original cocktail, retaining only Ascl1 and another transcription factor called Mef2c.

In further experiments they found evidence that Ascl1 on its own activates both neuron and cardiomyocyte genes, but it shifts away from the pro-neuron role when accompanied by Mef2c. In synergy with Mef2c, Ascl1 switches on a broad set of cardiomyocyte genes.

Ascl1 and Mef2c work together to exert pro-cardiomyocyte effects that neither factor alone exerts, making for a potent reprogramming cocktail, Qian said.

The results show that the major transcription factors used in direct cellular reprogramming arent necessarily exclusive to one targeted cell type.

Perhaps more importantly, they represent another step on the path towards future cell-reprogramming therapies for major disorders. Qian says that she and her team hope to make a two-in-one synthetic protein that contains the effective bits of both Ascl1 and Mef2c, and could be injected into failing hearts to mend them.

Cross-lineage Potential of Ascl1 Uncovered by Comparing Diverse Reprogramming Regulatomes was co-authored by Haofei Wang, Benjamin Keepers, Yunzhe Qian, Yifang Xie, Marazzano Colon, Jiandong Liu, and Li Qian. Funding was provided by the American Heart Association and the National Institutes of Health (T32HL069768, F30HL154659, R35HL155656, R01HL139976, R01HL139880).

Media contact: Mark Derewicz, 919-923-0959

Follow this link:
Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine

Organoids: science fiction or the future of pre-clinical studies? – Lexology

New technologies based on human cells are increasingly seen as key to reducing the time and cost in bringing drugs to market. This is an evolving area of study, though the field itself, which developed out of study into 3D cell architecture, is not new. These approaches replicate human physiology to study diseases, treatments, and for drug-development purposes. In parallel to major advances made from a medical and scientific standpoint, novel legal and ethical questions arise.

The definition of organoid is problematic and covers a range of cell culture techniques. Scientists have developed ways of culturing organ-specific tissue from human stem cells or progenitor cells to re-create important aspects of the 3D anatomy e.g. the pancreas, kidney, liver, thyroid, retina, and brain, to recapitulate key organ features. A list of definitions can be found at the end of this article.

A potential game-changer

Breakthroughs in stem cell technology and tissue engineering are driving the change. In addition to this, trends in other areas, like cell and gene therapy and personalised medicine have acted as catalysts. By simulating organ function, specific disease states can be modelled and studied. This is especially useful when looking at rare diseases, how tissue and microbiota interact, or how drugs interact with each other.

The use of organoids holds great promise in several medical-scientific areas like disease modelling, precision medicine, and transplantation. One of the most notable possibilities is to supplement or to a certain extent replace animal models during pre-clinical studies in drug development.

The field is at an early stage, but the trend is an upward one. Companies involved are seeing increasing demand for their services from pharma, biotech, research and academic institutes as well as the cosmetics industry. According to a recent market report the annual growth rate is set to increase by 37.4% during 2022-2028. Cambridge-based CN Bio recently doubled the size of its laboratory facilities due to demand. In the US, Hesperos Inc., a contract research organisation (CRO) provides a multi-organ chip platform (Human-on-a-Chip) based in Florida filed for a USD 20 million IPO. Another fascinating company is Labskin, who make full thickness human skin models, providing reproduceable results for microbiome research. Labskin just announced the first ever commercially available pigmented skin-equivalent in a joint project with Bradford University. These new models incorporate melanocytes, the cells that give skin its colour and present a huge opportunity to study melanomas.

The need for new and/or updated regulatory frameworks

For the use of these new models to be considered by regulatory authorities across the globe in the evaluation of safety and efficacy of drugs (subject to valid scientific demonstrations), regulatory frameworks will have to be adapted on a jurisdiction-by-jurisdiction basis.

In the US, the FDA Modernization Act of 2021 has been introduced to amend the Federal Food, Drug, and Cosmetic Act. The amendment strikes animal and inserts nonclinical tests or studies to be used in the evaluation of safety and efficacy of drugs, such as MPS, cell-based assays and computer models. In addition, the FDA recently approved the first clinical trial using efficacy data collected from a microphysiological system. More data may be needed to convince regulators, but the impetus - and interest - is there.

In the EU, is a 3-year Science With and For Society (SwafS) project, funded under HORIZON2020. The project is being coordinated by the University of Oslo, Norway and involves major research institutions across the EU. It is currently being carried out with the objective of developing a comprehensive regulatory framework for organoid research and organoid-related technologies. In the meantime, the European Parliament is working on legislation aimed at reducing the number of animal studies. The European Medicines Agency already recognized that organoids and organ-on-chip may become suitable alternatives to animal models during medicines development, in its wider effort to promote the 3R principles (replace, reduce and refine).

Further legal and ethical challenges to be addressed

The use of organoids and other MPS raises critical legal and ethical issues, which must be urgently addressed to allow their wide-spread utilization as part of pre-clinical studies within an acceptable framework.

In particular, since organoids are grown from human cells, initial donors rights must be respected and efficiently enforced. The original cells may come from foetal or adult tissues they may be pluripotent stem cells (PSCs), adult stem cells taken from specific tissues and reengineered somatic cells. Key challenges notably relate to the donors informed consent, (which issue has already been addressed by many scholars), research on human embryos and data protection issues. Complete anonymity of human tissue has been shown to be neither possible (due to the identifiable nature of DNA) nor desirable (as the data is necessary to validate prediction models). The donor must be able to control, to some extent, the subsequent use of his/her samples; in practice, consent may not be easily withdrawn (or with very limited effect) once organoids have been successfully developed and used in a pre-clinical study.

Strong quality standards should further be developed and complied with when it comes to producing organoids for pre-clinical purposes. Indeed, a set of specifications for the production of human 3D organoids used as medicines has been proposed. One could imagine specific guidelines applicable to the production of organoids for drug development purposes, to ensure consistent production methods as well as reliability as pre-clinical models. This calls for a wider systemic approach as to the regulation of human tissue and cells intended for human versus research application. On this point, it is interesting to note that a proposal for a regulation on standards of quality and safety for substances of human origin intended for human application is currently being examined in the EU, which expressly excludes their use in research that does not involve application to the human body.

Moreover, specific issues are triggered depending on the type of laboratory-cultivated model. For instance, the development of human cerebral organoids raises questions in terms of moral status and legal protection. Indeed, studies suggest that developed neuronal models show complex electrical activity the human cerebral organoids (sometimes referred to as mini-brains) can command a muscle connected thereto, be receptive to stimuli and may even exhibit a rudimentary form of consciousness. This raises questions as to the core definition of human being and, from a legal standpoint, personhood, the beginning and end of life, as well as the legal protection that should be awarded to such in vitro models (how they can be engineered, used, destroyed etc). In addition, the existence of sophisticated sentient models creates uncertainty regarding what moral status should be awarded to them. These issues are particularly complex as legal, ethical, philosophical, societal and political aspects are necessarily intertwined, and the way they are addressed may greatly vary from one jurisdiction to another.

Further legal and ethical challenges should be addressed in connection with the production and use of organoids beyond pre-clinical studies such as their potential patentability, their commercialization (while certain countries like France forbids the commercialization of human products and elements), their use for transplantation, the articulation with regulations on genome editing, chimeras and human cloning etc.

Conclusion

The rapid progress of scientific research around organoids and other MPS bears the potential to revolutionize many aspects of medical and pharmaceutical research. In particular, they hold great promise in the pursuit of a suitable (and potentially more reliable) alternative to the use of animal models in pre-clinical studies. Beyond this, legal and ethical challenges should be addressed in connection with the production and use of organoids in other applications such as their potential patentability, their commercialization (while certain countries like France forbids the commercialization of human products and elements), their use for transplantation, and the articulation with the regulations on genome editing, the creation of chimeras and human cloning.

Definitions:

Microphysiological systems (MPS): an umbrella term for organ-on-chip (OOC), organoids or tumoroids (stem cells grown in a dish).

Organ-on-a-chip (OOC): from the field of microfluidics, a multi-channel 3-D cell culture. An integrated circuit that simulates the activities, mechanics and physiological response of an entire organ or an organ system.

Organoid: means resembling an organ. Organoids are defined by three characteristics. The cells arrange themselves in vitro into three-dimensional organization that is characteristic for the organ in vivo, the resulting structure consists of multiple cells found in that particular organ and the cells execute at least some of the functions that they normally carry out in that organ.

View post:
Organoids: science fiction or the future of pre-clinical studies? - Lexology