Stem cell therapy side effects & risks: infections, tumors & more

What are the possible stem cell therapy side effects of going to an unproven clinic? This is a common question I get asked. Most often it is asked by patients who reach out.

Check out the YouTube video below on our stem cell channel. If you like such videos please subscribe to our channel.

Many clinics have said over the years to potential customers that the worst that can happen is that the stem cells wont work.

We know this isnt true and its irresponsible.

Anything that has the potential to help a medical condition also poses some risks of harm. For this reason, its important to discuss potential stem cell therapy side effects. In this case I am focusing on the risks primarily associated with unproven stem cell clinics. Not for established methods like bone marrow transplantation.

Recent publications in journals including one by my colleague Gerhard Bauer and a special report by The Pew Charitable Trust have helped clarify risks. Gerhards paper presents the types of side effects that appear more common after people go to stem cell clinics. After closely following this area for a decade I was familiar with many of the examples of problems. However, some were new to me.

One of the highest profiles examples of bad outcomes was the case where three people lost their vision due to stem cells injected by a clinic.See image below of one set of damaged eyes. More on that case at the end of the post.

Why do stem cells pose risks?

Stem cells are uniquely powerful cells.

By definition they can both make more of themselves and turn into at least one other kind of specialized cells. This latter process is called differentiation. That former ability to make more of themselves is called self-renewal.

The most powerful stem cells are totipotent stem cells that can literally make any kind of differentiated cell. The fertilized human egg is the best example of a cell having totipotency. Next in the power line are pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Adult stem cells are multipotent. The best type of stem cell depends on the condition that is trying to be treated. The best type may not be the most powerful.

In any case, the power of stem cells is a main reason they also pose risks. These cells are not always easy to control and misdirected power can do harm.

Let me explain and start with the side effect that seems scariest to most.

If someone injects a patient with stem cells, its possible that the self-renewal power of stem cells just wont get shut off. In that scenario the stem cells could drive formation of a tumor or even cancer. Note that tumors are not always malignant whereas cancer is always malignant.

Why wouldnt a transplanted stem cell always eventually hit the brakes on self-renewal? It could be that the stem cell has one or more mutations. For any stem cells grown in a lab, within the population of millions of cells in a dish, there are going to be at least a few with mutations that crop up. Thats just the way it goes with growing cells in a lab.

Even stem cells not grown in the lab have the same spectrum of mutations as the person they were isolated from. It may seem weird to think about, but we all have some mutations.

When someone like a clinic person tells us that theres a risk to you thats a one in a million chance it doesnt sound that bad. However, with cells being injected into a person in theory all it takes is one cell out of a million cells in a syringe with a couple really bad mutations to potentially cause disaster. Research suggests it takes more than one cell with cancer-causing potential to make a tumor in experiments in the lab, but in actual people we just dont know. Many cancers may arise from one stem cell gone awry. If a clinic injects 50 or 100 million cells, a one-in-a-million rate of dangerous cells means that 50-100 such cells end up in the patient.

The odds are far lower for cells never grown in a lab to cause a tumor, but its still possible. Oddly, its possible that receiving someone elses stem cells (we call this allogeneic) might pose a lower cancer risk because your immune system is going to see those cells as foreign from the start.

But some stem cells, especially those with mutations, might be able to somewhat fly under the radar of the immune system to some extent even if they are from another person. This could allow them to grow into a tumor. The Pew report does a nice job of summarizing risks and there are several reports of tumors.

The possibility of infections after stem cell injections is another risk that is often discussed. Infections from injections of stem cells or other materials like PRP are probably the most common type of side effect. Bacteria can either sometimes already be in the product that is injected or can be introduced by poor injection or preparation methods by the one doing the procedure.

The distributor Liveyon had a product contaminated with bacteria that sickened at least a dozen people who were hospitalized. Some of them ended up in the ICU. A few may even have permanent issues.

Clinics using excellent procedures and products should have a low risk of infection more similar to getting any kind of invasive procedure even unrelated to stem cells.

Many preparations of stem cells sold at stem cell clinics these days are made from fat tissue or birth-related materials. I put stem cells in quotes because most fat and birth-related preparations only contain a small population of true stem cells.

In the case of adipose biologics, they mostly consist of a mixture of a dozen or so other kinds of cells found in fat.

The injections of fat cells are most often made IV right into the bloodstream. Fat cells just live in fat so they arent supposed to be floating around in your blood. As a result, after IV injection, many fat cells are thought to get killed right away.

Others end up landing in the lungs, where many are also probably meeting their doom. However, during this process of wiping out the fat cells it is possible that clots can start forming. Maybe the fat cells form small clots in the blood before they even get into the lungs. Either way, if the clots grow and are big enough, patients can get pulmonary emboli.

The same kind of risk may apply to IV injections or nebulizer inhalations of other kinds of stem cells.

There are other possible risks to stem cell injections too.

I wrote a post about possible graft versus host disease in stem cell recipients. This would only happen in people receiving someone elses stem cells. Its not clear if GvHD is something that happens to patients after going to clinics.

Beyond outright tumor formation it is also possible that stem cells will turn into an undesired or even dangerous tissue type. The example that comes to mind is the practice mentioned earlier of some clinics injecting fat cells into peoples eyeballs. What seems to have happened in some cases is that the mesenchymal cells (MSCs) that were injected turned into scar tissue, which caused retinal detachment. Unfortunately, what are called MSCs by some clinics can mostly consist of close relatives of fibroblasts or in some cases may even largely consist of fibroblasts. Fibroblasts are good at making scar tissue under some circumstances and that can create pull on surrounding tissues including the retina if inside the body.

Specific kinds of stem cells or routes of administration may pose unique risks as well. For instance, intranasal administration of stem cells is getting popular with unproven clinics and could lead to stem cells ending up in the brain.

Other products in the regenerative sphere that are not stem cells may be risky as well for various reasons. For instance, an exosome product harmed quite a few people in Nebraska.Some problems may relate to product contamination.

There have also been cases of unusual immune reactions to stem cell injections.

Finally, stem cells also pose unknown risks because of their power. We just dont have long-term follow up data to have a clear sense of risks.

Read the original here:
Stem cell therapy side effects & risks: infections, tumors & more

Global Nerve Repair and Regeneration Devices Market to Reach $12.9 Billion by 2027 – Yahoo Finance

ReportLinker

Abstract: Whats New for 2022?? Global competitiveness and key competitor percentage market shares. Market presence across multiple geographies - Strong/Active/Niche/Trivial.

New York, Oct. 11, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Nerve Repair and Regeneration Devices Industry" - https://www.reportlinker.com/p05957490/?utm_source=GNW

Online interactive peer-to-peer collaborative bespoke updates

Access to our digital archives and MarketGlass Research Platform

Complimentary updates for one yearGlobal Nerve Repair and Regeneration Devices Market to Reach $12.9 Billion by 2027 - In the changed post COVID-19 business landscape, the global market for Nerve Repair and Regeneration Devices estimated at US$6.6 Billion in the year 2020, is projected to reach a revised size of US$12.9 Billion by 2027, growing at aCAGR of 10% over the period 2020-2027. Neurostimulation & Neuromodulation Devices, one of the segments analyzed in the report, is projected to record 9.7% CAGR and reach US$10.9 Billion by the end of the analysis period. Taking into account the ongoing post pandemic recovery, growth in the Biomaterials segment is readjusted to a revised 11.7% CAGR for the next 7-year period. - The U.S. Market is Estimated at $2 Billion, While China is Forecast to Grow at 13% CAGR - The Nerve Repair and Regeneration Devices market in the U.S. is estimated at US$2 Billion in the year 2020. China, the world`s second largest economy, is forecast to reach a projected market size of US$2 Billion by the year 2027 trailing a CAGR of 13% over the analysis period 2020 to 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 7.7% and 8.8% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately 9.2% CAGR.

Select Competitors (Total 61 Featured) Abbott Laboratories, Inc. AxoGen, Inc. Boston Scientific Corporation Integra LifeSciences Corporation LivaNova, PLC Medtronic plc NeuroPace, Inc. Nevro Corporation. Orthomed S.A.S. Polyganics B.V. Stryker Corporation Synapse Biomedical Inc. Synovis Micro Companies Alliance, Inc.

Read the full report: https://www.reportlinker.com/p05957490/?utm_source=GNW

I. METHODOLOGY

II. EXECUTIVE SUMMARY 1. GLOBAL MARKET OVERVIEW Impact of Covid-19 and a Looming Global Recession 2020 Marked as a Year of Disruption & Transformation World Economic Growth Projections (Real GDP, Annual % Change) for 2019 to 2022 Global Nerve Repair & Regeneration Market Buckles under COVID- 19 Strain Covid-19 Patients in Prone Position Suffering Nerve Damage Bodes Well for Market Growth Nerve Repair and Regeneration Market Set for a Robust Growth Neurostimulation & Neuromodulation Devices Hold Commanding Slot in Nerve Repair & Regeneration Market Biomaterials to Exhibit Rapid Growth Nerve Repair and Regeneration Market by Application US and Europe Dominate the Market Asia-Pacific and other Emerging Regions Display Impressive Growth Potential Recent Market Activity

2. FOCUS ON SELECT PLAYERS

3. MARKET TRENDS & DRIVERS High Incidence of Neurological Disorders: A Key Market Driver Annual Incidence of Adult-Onset Neurologic Disorders in the US Effects of COVID-19 on the Nervous System Sheds Focus on Neuromodulation Applications Increasing Cases of Peripheral Nerve Injuries Drive the Nerve Repair and Regeneration Market Growing Number of Vehicular Accidents Drive the Peripheral Nerve injuries Repair Market Rising Geriatric Population and Subsequent Growth in Prevalence Of Neurological Disorders Global Population Statistics for the 65+ Age Group in Million by Geographic Region for the Years 2019, 2025, 2035 and 2050 Growing Incidence of Neurodegenerative Diseases Propels the Market for Deep Brain Stimulation Devices Global Alzheimers Prevalence by Age Group Diagnosed Prevalence Cases of Parkinson?s Disease Across Select Countries Global DBS Market by Leading Player (2020E): Market Share Breakdown of Revenues for Medtronic, Boston Scientific, and Abbott Select Available Deep Brain Stimulation Devices Available in the Market Intensified Research Activity Across Various Neural Disciplines Induces Additional Optimism Stem Cell Therapy: A Promising Avenue for Nerve Repair and Regeneration Increasing Cases of Epilepsy Drives the Demand for Vagus Nerve Stimulation Devices Epilepsy Incidence by Type (2019): Percentage Share Breakdown for Idiopathic and Symptomatic Epilepsy Symptomatic Epilepsy Incidence by Type (2019): Percentage Share Breakdown of Congenital, Degenerative, Infective, Neoplastic, Trauma, and Vascular Epilepsy Spinal Cord Injuries Propel the Demand for Spinal Cord Stimulation Devices Recent Developments in Spinal Cord Injury Treatment Biomaterials (Nerve Conduits and Nerve Wraps) to Witness Rapid Growth New Biomaterials Pave the Way for Innovative Neurodegeneration Therapies Role of Nerve Conduits in the Treatment of Peripheral Nerve Injury Innovative Nerve Conduits from Stryker TENS (Transcutaneous electrical nerve stimulation devices) Market Witnesses Rapid Growth Non-Invasiveness of TMS (Transcranial Magnetic Stimulation) Propelling the adoption of TMS devices Nerve Grafts for Bridging Larger Nerve Gaps Role of Nerve Grafting in Treatment of Peripheral Nerve Injuries FDA-approved Nerve Tubes for Peripheral Nerve Repair

4. GLOBAL MARKET PERSPECTIVE Table 1: World Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 2: World Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 3: World 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets for Years 2012, 2021 & 2027

Table 4: World Recent Past, Current & Future Analysis for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 5: World Historic Review for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 6: World 15-Year Perspective for Neurostimulation & Neuromodulation Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 7: World Recent Past, Current & Future Analysis for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 8: World Historic Review for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 9: World 15-Year Perspective for Biomaterials by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 10: World Recent Past, Current & Future Analysis for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 11: World Historic Review for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 12: World 15-Year Perspective for Neurostimulation & Neuromodulation Surgeries by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 13: World Recent Past, Current & Future Analysis for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 14: World Historic Review for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 15: World 15-Year Perspective for Neurorrhaphy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 16: World Recent Past, Current & Future Analysis for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 17: World Historic Review for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 18: World 15-Year Perspective for Nerve Grafting by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 19: World Recent Past, Current & Future Analysis for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 20: World Historic Review for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 21: World 15-Year Perspective for Stem Cell Therapy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 22: World Recent Past, Current & Future Analysis for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 23: World Historic Review for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 24: World 15-Year Perspective for Hospitals & Clinics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027

Table 25: World Recent Past, Current & Future Analysis for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 26: World Historic Review for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 27: World 15-Year Perspective for Ambulatory Surgery Centers by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2021 & 2027 Impact of Covid-19 and a Looming Global Recession

III. MARKET ANALYSIS

UNITED STATES Nerve Repair and Regeneration Devices Market Presence - Strong/ Active/Niche/Trivial - Key Competitors in the United States for 2022 (E) Table 28: USA Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 29: USA Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 30: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

Table 31: USA Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 32: USA Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 33: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2021 & 2027

Table 34: USA Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 35: USA Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 36: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2021 & 2027

CANADA Table 37: Canada Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 38: Canada Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 39: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

Table 40: Canada Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 41: Canada Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 42: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2021 & 2027

Table 43: Canada Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 44: Canada Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 45: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2021 & 2027

JAPAN Nerve Repair and Regeneration Devices Market Presence - Strong /Active/Niche/Trivial - Key Competitors in Japan for 2022 (E) Table 46: Japan Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 47: Japan Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 48: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

Table 49: Japan Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 50: Japan Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 51: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2021 & 2027

Table 52: Japan Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 53: Japan Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 54: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2021 & 2027

CHINA Nerve Repair and Regeneration Devices Market Presence - Strong /Active/Niche/Trivial - Key Competitors in China for 2022 (E) Table 55: China Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 56: China Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 57: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

Table 58: China Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 59: China Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 60: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2021 & 2027

Table 61: China Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 62: China Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 63: China 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2021 & 2027

EUROPE Nerve Repair and Regeneration Devices Market Presence - Strong/ Active/Niche/Trivial - Key Competitors in Europe for 2022 (E) Table 64: Europe Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 65: Europe Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 66: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets for Years 2012, 2021 & 2027

Table 67: Europe Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 68: Europe Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 69: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

Table 70: Europe Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 71: Europe Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 72: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2021 & 2027

Table 73: Europe Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 74: Europe Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 75: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2021 & 2027

FRANCE Nerve Repair and Regeneration Devices Market Presence - Strong/ Active/Niche/Trivial - Key Competitors in France for 2022 (E) Table 76: France Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 77: France Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 78: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

Table 79: France Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 80: France Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 81: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2021 & 2027

Table 82: France Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 83: France Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 84: France 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2021 & 2027

GERMANY Nerve Repair and Regeneration Devices Market Presence - Strong/ Active/Niche/Trivial - Key Competitors in Germany for 2022: (E) Table 85: Germany Recent Past, Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 86: Germany Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 87: Germany 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2021 & 2027

The rest is here:
Global Nerve Repair and Regeneration Devices Market to Reach $12.9 Billion by 2027 - Yahoo Finance

Gene Synthesis Market to Witness Impressive Expansion of USD 9,121.31 Million with a Growing Compound Annual Growth Rate of 22.9% by 2029 – Yahoo…

Data Bridge Market Research

Bacterial and viral diseases are rapidly expanding due to the rising prevalence of infectious diseases worldwide. As a result, the demand for novel and effective therapies has increased to fight against such deadly diseases

HOUSTON, Oct. 11, 2022 (GLOBE NEWSWIRE) -- Data Bridge Market Research has recently published a Report, titled, "Global Gene Synthesis Market" The report offers an extensive analysis of key growth strategies, drivers, opportunities, key segments, Porter's Five Forces analysis, and competitive landscape. All the data and statistics provided in this market report are backed up by the latest and proven tools and techniques such as SWOT analysis and Porter's Five Forces Analysis. With the latest and updated market insights mentioned in the report, businesses can concentrate to enhance their marketing, promotional, and sales strategies.

Gene synthesis is the process of creating artificial genes in a lab setting using synthetic biology. The generation of recombinant proteins is one of the numerous applications of recombinant DNA technology, where gene synthesis is emerging as a key instrument. The traditional methods of cloning and mutagenesis are quickly being replaced by de novo gene synthesis, which also enables the production of nucleic acids for which there is no template.

The global gene synthesis market is expected to gain market growth in the forecast period of 2022 to 2029. Data Bridge Market Research analyses that the market is growing with a CAGR of 22.9% in the forecast period of 2022 to 2029 and is expected to reach USD 9,121.31 million by 2029 from USD 1,726.26 million in 2021.

Download the Exclusive Sample of the Gene Synthesis Market Report @ https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-gene-synthesis-market

Market Synopsis: -

Gene synthesis refers to the chemical synthesis of DNA strand base-by base. Unlike DNA replication that occurs in cells or by Polymerase Chain Reaction (PCR), gene synthesis does not require a template strand. Rather, gene synthesis involves the step-wise addition of nucleotides to a single-stranded molecule, which then serves as a template for creating a complementary strand. Gene synthesis is the fundamental technology upon which the field of synthetic biology has been built.

Story continues

Some of the major players operating in the Gene Synthesis market are

Recent Development

In December 2020, Twist Bioscience launched clonal-ready gene fragments so as to complete the offering of genes. The fragments launched can be used with adapters or without adapters in order to build up the perfect clones. The clonal-ready gene fragments are compatible with the protein expression pathways, enzyme engineering, and gene expression, among others.

In 2020, according to an article published in an ACS journal, a total estimated 19.3 million new cancer cases and almost 10.0 million cancer deaths were reported worldwide. This suggests that cancer coverage is suboptimal, and there is a great need to implement high cancer coverage all over the world.

Grab Full PDF Research Report @ https://www.databridgemarketresearch.com/checkout/buy/enterprise/global-gene-synthesis-market

Key Coverage in the Gene synthesis Market Report:

Detailed analysis of Gene synthesis Market by a thorough assessment of the technology, product type, application, and other key segments of the report

Qualitative and quantitative analysis of the market along with CAGR calculation for the forecast period

Investigative study of the market dynamics including drivers, opportunities, restraints, and limitations that can influence the market growth

Comprehensive analysis of the regions of the Gene synthesis industry and their futuristic growth outlook

Competitive landscape benchmarking with key coverage of company profiles, product portfolio, and business expansion strategies

Key Segmentation: Gene Synthesis Market

By Component

Synthesizers

Consumables

Software & services

By Gene Type

Standard gene

Express gene

Complex gene

Others

By Gene Synthesis Type

Gene library synthesis

Custom gene synthesis

By Application

Synthetic biology,

Genetic engineering,

Vaccine design,

Therapeutics antibodies

Others

By Method

By End User

Academic & research institutes,

Diagnostics laboratories,

Biotech & pharmaceutical companies

Others

By Distribution Channel

Direct tender

Online distribution

Third party distributors

Get a Detailed Summary of the Research Report @ https://www.databridgemarketresearch.com/reports/global-gene-synthesis-market

Opportunities

Healthcare expenditure has increased worldwide as people's disposable income in various countries is increasing. Moreover, to accomplish the population requirements, government bodies and healthcare organizations are taking the initiative by virtue of accelerating healthcare expenditure.

Also, the strategic initiatives taken by key market players will provide structural integrity and future opportunities for the medical device testing market in the forecast period of 2022-2029.

Regional Analysis/Insights

The gene synthesis market report is analyzed, and market size insights and trends are provided by the country, component, gene type, gene synthesis type, application, method, end user, and distribution channel, as referenced above.

North America dominates the gene synthesis market in terms of market share and market revenue and will continue to flourish its dominance during the forecast period. This is due to the rising need for the verification and validation of gene synthesis processes in the region, and rapid research development is boosting the market

Countries Studied:

North America (Argentina, Brazil, Canada, Chile, Colombia, Mexico, Peru, United States, Rest of Americas)

Europe (Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Poland, Russia, Spain, Sweden, Switzerland, United Kingdom, Rest of Europe)

Middle-East and Africa (Egypt, Israel, Qatar, Saudi Arabia, South Africa, United Arab Emirates, Rest of MEA)

Asia-Pacific (Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Sri Lanka, Thailand, Taiwan, Rest of Asia-Pacific)

Table of Contents:

1 Introduction

2 Market Segmentation

3 Executive Summary

4 Premium Insights

5 Global Gene Synthesis Market: Regulations

6 Market Overview

7 Global Gene Synthesis Market, By Component

8 Global Gene Synthesis Market, By Gene Type

9 Global Gene Synthesis Market, By Gene Synthesis Type

10 Global Gene Synthesis Market, By Application

11 Global Gene Synthesis Market, By Method

12 Global Gene Synthesis Market, By End User

13 Global Gene Synthesis Market, By Distribution Channel

14 Global Gene Synthesis Market, By Region

15 Global Gene Synthesis Market: Company Landscape

16 SWOT Analyses

17 Company Profile

18 Questionnaire

19 Related Reports

For More Insights, Grab TOC @ https://www.databridgemarketresearch.com/toc/?dbmr=global-gene-synthesis-market

Browse Related Reports:

North America Gene Synthesis Market, By Component (Synthesizer, Consumables, and Software & Services), Gene Type (Standard Gene, Express Gene, Complex Gene and Others), Gene Synthesis Type (Gene Library Synthesis, and Custom Gene Synthesis), Application (Synthetic Biology, Genetic Engineering, Vaccine Design, Therapeutics Antibodies, and Others), Method (Solid Phase Synthesis, Chip-Based DNA Synthesis, and PCR-Based Enzyme Synthesis), End User (Academic & Research Institutes, Diagnostics Laboratories, Biotech & Pharmaceutical Companies, and Others), Distribution Channel (Direct Tender, Online Distribution, and Third Party Distributors), Industry Trends and Forecast to 2029 https://www.databridgemarketresearch.com/reports/north-america-gene-synthesis-market

Europe Gene Synthesis Market, By Component (Synthesizer, Consumables, and Software & Services), Gene Type (Standard Gene, Express Gene, Complex Gene and Others), Gene Synthesis Type (Gene Library Synthesis, and Custom Gene Synthesis), Application (Synthetic Biology, Genetic Engineering, Vaccine Design, Therapeutics Antibodies, and Others), Method (Solid Phase Synthesis, Chip-Based DNA Synthesis, and PCR-Based Enzyme Synthesis), End User (Academic & Research Institutes, Diagnostics Laboratories, Biotech & Pharmaceutical Companies, and Others), Distribution Channel (Direct Tender, Online Distribution, and Third Party Distributors), Industry Trends and Forecast to 2029 https://www.databridgemarketresearch.com/reports/europe-gene-synthesis-market

Asia-Pacific Gene Synthesis Market, By Component (Synthesizer, Consumables, and Software & Services), Gene Type (Standard Gene, Express Gene, Complex Gene and Others), Gene Synthesis Type (Gene Library Synthesis, and Custom Gene Synthesis), Application (Synthetic Biology, Genetic Engineering, Vaccine Design, Therapeutics Antibodies, and Others), Method (Solid Phase Synthesis, Chip-Based DNA Synthesis, and PCR-Based Enzyme Synthesis), End User (Academic & Research Institutes, Diagnostics Laboratories, Biotech & Pharmaceutical Companies, and Others), Distribution Channel (Direct Tender, Online Distribution, and Third Party Distributors), Industry Trends and Forecast to 2029 https://www.databridgemarketresearch.com/reports/asia-pacific-gene-synthesis-market

Middle East And Africa Gene Synthesis Market, By Component (Synthesizer, Consumables, and Software & Services), Gene Type (Standard Gene, Express Gene, Complex Gene and Others), Gene Synthesis Type (Gene Library Synthesis, and Custom Gene Synthesis), Application (Synthetic Biology, Genetic Engineering, Vaccine Design, Therapeutics Antibodies, and Others), Method (Solid Phase Synthesis, Chip-Based DNA Synthesis, and PCR-Based Enzyme Synthesis), End User (Academic & Research Institutes, Diagnostics Laboratories, Biotech & Pharmaceutical Companies, and Others), Distribution Channel (Direct Tender, Online Distribution, and Third Party Distributors), Industry Trends and Forecast to 2029 https://www.databridgemarketresearch.com/reports/middle-east-and-africa-gene-synthesis-market

Gene Synthesis Software Market, By Application (Research and Development Activities, Diagnostics, Therapeutics, Others) End User (Academic and Research Institutes, Biotech and Pharmaceutical Companies, Diagnostic Laboratories, Others), Synthesis Type (Gene Library Synthesis, Custom Gene Synthesis), Method (Solid Phase Synthesis, Chip-Based DNA Synthesis, PCR-Based Enzyme Synthesis), Country https://www.databridgemarketresearch.com/reports/global-gene-synthesis-software-market

Next Generation Sequencing (NGS) Market, By Product (Instruments, Consumables and Services), Applications (Diagnostics, Biomarker Discovery, Precision Medicine, Drug Discovery, Agriculture and Animal Research and Others), End User (Pharmaceutical & Biotechnology Companies, Research Centers & Academic and Government Institutes and Hospital & Clinics), Country https://www.databridgemarketresearch.com/reports/global-next-generation-sequencing-ngs-market

Nerve Regeneration and Repair Market, By Product (Neurostimulation and Neuromodulation Devices and Biomaterials), Indication (Failed Back Surgery Syndrome, Parkinson's disease, Urinary Incontinence, Epilepsy, Gastroparesis, Nerve Repair and Grafting), Application (Neurostimulation and Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting, and Stem Cell Therapy), End User (Hospitals and Clinics and Ambulatory Surgical Centers) https://www.databridgemarketresearch.com/reports/global-nerve-regeneration-and-repair-market

Branded Generics Market, By Product Type (Value-Added Branded Generics, Trade Named Generics), Therapeutic Application (Oncology, Cardiovascular Diseases, Diabetes, Neurology, Gastrointestinal Diseases, Dermatology Diseases, Analgesics and Anti-Inflammatory, Others), Drug Class (Alkylating Agents, Antimetabolites, Hormones, Anti-Hypertensive, Lipid Lowering Drugs, Anti-Depressants, Anti-Psychotics, Anti-Epileptic, Others), Consumption Type (Oral, Parenteral, Topical, Others), Distribution Channel (Hospital Pharmacies, Retail Pharmacies, Online Pharmacies, Others) https://www.databridgemarketresearch.com/reports/global-branded-generics-market

Prenatal Genetic Testing Market, By Technology {Diagnostics Methods, Screening Methods}, Screening Techniques (Carrier Screening, Sequential Screening, and Maternal Serum Quad Screening), Diseases (Alzheimers Disease, Cancer, Cystic Fibrosis, Sickle Cell Anemia, Duchenne Muscular Dystrophy, Thalassemia, Huntingtons Disease, Rare Diseases, Other Diseases), End User (Hospitals, Clinics, Diagnostic Centers), Product (Products, Consumables, Assay Kits And Reagents, Disposables, Instruments, Next Generation Sequencing Systems, Polymerase Chain Reaction Instruments, Microarrays, Ultrasound Devices, Other Instruments, Services) https://www.databridgemarketresearch.com/reports/global-prenatal-genetic-testing-market

Tissue Regeneration Market, By Technology (Cell Therapy, Stem Cell Therapy, Stem Cell Sources, Tissue Vascularization, Cell Culturing and Others), Raw Material (Synthetic, Genetically modified and Biological), Application (Cardiovascular, Oncology, Dermatology, Orthopedic, Neurology, Ophthalmology and Others), End-User (Hospital & Diagnostic Centres, Pharmaceutical & Biotechnology Companies, Contract Research Organizations and Others) https://www.databridgemarketresearch.com/reports/global-tissue-regeneration-market

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today!

Data Bridge Market Research set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavours to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process. Data Bridge is an aftermath of sheer wisdom and experience which was formulated and framed in the year 2015 in Pune.

Data Bridge Market Research has over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude. We are content with our glorious 99.9 % client satisfying rate.

Contact Us: -

Data Bridge Market Research

US: +1 888 387 2818

Link:
Gene Synthesis Market to Witness Impressive Expansion of USD 9,121.31 Million with a Growing Compound Annual Growth Rate of 22.9% by 2029 - Yahoo...

The National Stem Cell Foundation Home

We foster connections between research, education and advocacy to turn great ideas into real solutions.

See how we partner with others to fund adult stem cell research and technologies with the potential to change lives.

See how we impact STEM (science, technology, engineering and math) education through our National STEM Scholar Program, for middle school science teachers.

Speeding research to cures for children with rare diseases and supporting efforts to increase the donor pool for life-saving bone marrow transplants.

Stem cells are the building blocks of everything in your body. See how they are propelling the future of medicine.

We build collaborations to solve problems. Learn more here.

Looking toward space to stretch the boundaries of research and education.

Collaborating to find treatments and cures for the challenging diseases of today using new approaches to science already changing the face and future of healthcare discovery.

We are grateful for the generous donors who make our programs possible. We couldn't do it without you!

See the article here:
The National Stem Cell Foundation Home

Stem cell factor – Wikipedia

Mammalian protein found in Homo sapiens

Stem cell factor (also known as SCF, KIT-ligand, KL, or steel factor) is a cytokine that binds to the c-KIT receptor (CD117). SCF can exist both as a transmembrane protein and a soluble protein. This cytokine plays an important role in hematopoiesis (formation of blood cells), spermatogenesis, and melanogenesis.

The gene encoding stem cell factor (SCF) is found on the Sl locus in mice and on chromosome 12q22-12q24 in humans.[5] The soluble and transmembrane forms of the protein are formed by alternative splicing of the same RNA transcript,[6][7]

The soluble form of SCF contains a proteolytic cleavage site in exon 6. Cleavage at this site allows the extracellular portion of the protein to be released. The transmembrane form of SCF is formed by alternative splicing that excludes exon 6 (Figure 1). Both forms of SCF bind to c-KIT and are biologically active.

Soluble and transmembrane SCF is produced by fibroblasts and endothelial cells. Soluble SCF has a molecular weight of 18,5 KDa and forms a dimer. It is detected in normal human blood serum at 3.3ng/mL.[8]

SCF plays an important role in the hematopoiesis during embryonic development. Sites where hematopoiesis takes place, such as the fetal liver and bone marrow, all express SCF. Mice that do not express SCF die in utero from severe anemia. Mice that do not express the receptor for SCF (c-KIT) also die from anemia.[9] SCF may serve as guidance cues that direct hematopoietic stem cells (HSCs) to their stem cell niche (the microenvironment in which a stem cell resides), and it plays an important role in HSC maintenance. Non-lethal point mutants on the c-KIT receptor can cause anemia, decreased fertility, and decreased pigmentation.[10]

During development, the presence of the SCF also plays an important role in the localization of melanocytes, cells that produce melanin and control pigmentation. In melanogenesis, melanoblasts migrate from the neural crest to their appropriate locations in the epidermis. Melanoblasts express the KIT receptor, and it is believed that SCF guides these cells to their terminal locations. SCF also regulates survival and proliferation of fully differentiated melanocytes in adults.[11]

In spermatogenesis, c-KIT is expressed in primordial germ cells, spermatogonia, and in primordial oocytes.[12] It is also expressed in the primordial germ cells of females. SCF is expressed along the pathways that the germ cells use to reach their terminal destination in the body. It is also expressed in the final destinations for these cells. Like for melanoblasts, this helps guide the cells to their appropriate locations in the body.[9]

SCF plays a role in the regulation of HSCs in the stem cell niche in the bone marrow. SCF has been shown to increase the survival of HSCs in vitro and contributes to the self-renewal and maintenance of HSCs in-vivo. HSCs at all stages of development express the same levels of the receptor for SCF (c-KIT).[13] The stromal cells that surround HSCs are a component of the stem cell niche, and they release a number of ligands, including SCF.

In the bone marrow, HSCs and hematopoietic progenitor cells are adjacent to stromal cells, such as fibroblasts and osteoblasts (Figure 2). These HSCs remain in the niche by adhering to ECM proteins and to the stromal cells themselves. SCF has been shown to increase adhesion and thus may play a large role in ensuring that HSCs remain in the niche.[9]

A small percentage of HSCs regularly leave the bone marrow to enter circulation and then return to their niche in the bone marrow.[14] It is believed that concentration gradients of SCF, along with the chemokine SDF-1, allow HSCs to find their way back to the niche.[15]

In adult mice, the injection of the ACK2 anti-KIT antibody, which binds to the c-Kit receptor and inactivates it, leads to severe problems in hematopoiesis. It causes a significant decrease in the number HSC and other hematopoietic progenitor cells in the bone marrow.[16] This suggests that SCF and c-Kit plays an important role in hematopoietic function in adulthood. SCF also increases the survival of various hematopoietic progenitor cells, such as megakaryocyte progenitors, in vitro.[17] In addition, it works with other cytokines to support the colony growth of BFU-E, CFU-GM, and CFU-GEMM4. Hematopoietic progenitor cells have also been shown to migrate towards a higher concentration gradient of SCF in vitro, which suggests that SCF is involved in chemotaxis for these cells.

Fetal HSCs are more sensitive to SCF than HSCs from adults. In fact, fetal HSCs in cell culture are 6 times more sensitive to SCF than adult HSCs based on the concentration that allows maximum survival.[18]

Mast cells are the only terminally differentiated hematopoietic cells that express the c-Kit receptor. Mice with SCF or c-Kit mutations have severe defects in the production of mast cells, having less than 1% of the normal levels of mast cells. Conversely, the injection of SCF increases mast cell numbers near the site of injection by over 100 times. In addition, SCF promotes mast cell adhesion, migration, proliferation, and survival.[19] It also promotes the release of histamine and tryptase, which are involved in the allergic response.

The presence of both soluble and transmembrane SCF is required for normal hematopoietic function.[6][20] Mice that produce the soluble SCF but not transmembrane SCF suffer from anemia, are sterile, and lack pigmentation. This suggests that transmembrane SCF plays a special role in vivo that is separate from that of soluble SCF.

SCF binds to the c-KIT receptor (CD 117), a receptor tyrosine kinase.[21] c-Kit is expressed in HSCs, mast cells, melanocytes, and germ cells. It is also expressed in hematopoietic progenitor cells including erythroblasts, myeloblasts, and megakaryocytes. However, with the exception of mast cells, expression decreases as these hematopoietic cells mature and c-KIT is not present when these cells are fully differentiated (Figure 3). SCF binding to c-KIT causes the receptor to homodimerize and auto-phosphorylate at tyrosine residues. The activation of c-Kit leads to the activation of multiple signaling cascades, including the RAS/ERK, PI3-Kinase, Src kinase, and JAK/STAT pathways.[21]

SCF may be used along with other cytokines to culture HSCs and hematopoietic progenitors. The expansion of these cells ex-vivo (outside the body) would allow advances in bone marrow transplantation, in which HSCs are transferred to a patient to re-establish blood formation.[13] One of the problems of injecting SCF for therapeutic purposes is that SCF activates mast cells. The injection of SCF has been shown to cause allergic-like symptoms and the proliferation of mast cells and melanocytes.[9]

Cardiomyocyte-specific overexpression of transmembrane SCF promotes stem cell migration and improves cardiac function and animal survival after myocardial infarction.[22]

Stem cell factor has been shown to interact with CD117.[23][24]

PDB gallery

1exz: STRUCTURE OF STEM CELL FACTOR

1scf: HUMAN RECOMBINANT STEM CELL FACTOR

Here is the original post:
Stem cell factor - Wikipedia

Breast cancer treatment: These targeted therapies are a ray of hope for patients – Health shots

Women have always been told to be aware of lumps in the breast. Routine self-examination of breasts is considered important for the early identification of lumps and subsequent investigations to rule out cancer. Once considered deadly, advances in treatments have ensured increased survival rates in women with breast cancer. Nonetheless, it remains the number one cancer among Indian women.

Before understanding more about breast cancer, let us first understand what is cancer. Dr. Pradeep Mahajan, Regenerative Medicine Researcher, StemRx Bioscience Solutions Pvt. Ltd., Navi Mumbai, explains cancer as the uncontrolled multiplication of cells, which is something the immune system cannot handle effectively. What makes matters worse is that cancer cells are capable of hiding from the immune system. He added that this is the reason why recent advances in cancer therapy have attempted to focus on training the immune cells in order to attack cancer cells.

Dr Mahajan explains that conventional cancer therapies are associated with hair loss, weight loss, general malaise etc. The reason behind this is that treatments such as chemotherapy/radiotherapy not only target cancer cells but also normal cells. Our body has natural healing mechanisms, which are suppressed by these treatments, resulting in undesirable side effects.

Immunotherapy and other advances in cancer therapy are target-specific; thus, prolong the survival of the patient while maintaining their quality of life. Further helping us understand more about immunotherapy and its role in breast cancer, Dr Mahajan says, In breast cancer (and other cancers), immunotherapy aims to educate the front-line immune cells (dendritic cells, natural killer cells, T-cells) of the body to target the cancer cells specifically. The treatment is minimally invasive. It is mostly a laboratory procedure to prepare the cells for transplantation in the patients bodythink of it like a vaccine. Obtaining blood and transplanting the cells is via intravenous injection, which is similar to that done while taking blood tests. Immunotherapy simply enhances the natural healing mechanisms of the body to fight cancer, which is overwhelmed by the load of the disease.

Another treatment is using stem cells to reconstruct defects left after surgery for cancer. In breast cancer specifically, fat-derived stem cells have shown promise in improving/maintaining the volume of the breast tissue, and have shown positive effects on improving blood circulation, reducing swelling/inflammation and scar tissue.

We need treatments that enable a patient to go about his/her routine independently for as long as possible and not just prolong survival. Immunotherapy and stem cell treatments improve the quality of life of patients with breast cancer along with reducing the side effects of conventional treatments, concludes Dr. Mahajan.

Visit link:
Breast cancer treatment: These targeted therapies are a ray of hope for patients - Health shots

American Academy of Stem Cell Physicians to Offer Licensed Physicians Board Examination in Regenerative Medicine – GlobeNewswire

MIAMI, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The American Academy of Stem Cell Physicians will be hosting its fall Scientific Congress in Chicago, IL, on Oct. 28-30, 2022. The conference will feature three days of educational and networking events with leading physicians from across the fields of stem cells, live cells, and regenerative medicine. A Board Examination process will be available, creating a pathway for participants to earn a Diplomat and Fellowship Certification in Regenerative Medicine.

The Board of American Academy of Stem Cell Physicians is the official board certifying body of the American Academy of Stem Cell Physicians(AASCP). As a nationally recognized academy with a mission to bring like-minded physicians together to increase awareness and education for the evolving field of regenerative medicine, the AASCP is proud to announce its Fellowship and Diplomat Certification.

In order to be eligible for certification or recertification through the AASCP, licensed physicians in good standing must meet the stringent eligibility requirements that have been defined by the board. AASCP places an emphasis on not only psychometrically evaluated testing and advanced training, but also moral character and experience. Furthermore, AASCP has a clear path toward recertification for qualified physicians. Their standards for recertification include a commitment to continuing medical education, successful completion of a recertification examination, participation in a non-remedial medical ethics program, and additional requirements.

AASCP is known for working with physicians to provide unique opportunities for board certification in their specialty of regenerative medicine. Specifically, the AASCP offers ongoing workshop modules led by esteemed physicians in this field who certify and educate on different treatment approaches and techniques. Another defining characteristic of the AASCP is theircommitment to ongoing education and awareness. To support this goal, the AASCP has developed innovative committees, including its Institutional Review Board and created opportunities for physicians and researchers to submit their work for peer review and exposure.

The AASCP was founded to recognize licensed physicians who have shown a specialty and interest in regenerative medicine. Increasingly, hospitals and medical staff placement agencies are prioritizing hiring Board-Certified Physicians. For this reason, the AASCPfeels it is important to offer qualified professionals a choice when they're researching board certifying bodies.

The American Academy of Stem Cell Physicians (AASCP) is an organization created to advance research and the development of therapeutics in regenerative medicine, including diagnosis, treatmentand prevention of disease related to or occurring within the human body. Secondarily, the AASCP aims to serve as an educational resource for physicians, scientistsand the public in diseases that can be caused by physiological dysfunction that areameliorableto medical treatment.

For further information, please contact WilsonDemenessez at 305-891-4686, and you can also visit us at http://www.aascp.net.

Contact Information: Wislon Demenessezz AASCP account Sales manager wilson@genorthix.com 305-891-4686

Related Images

Image 1: AASCP Chicago lecture

Meeting lecture

This content was issued through the press release distribution service at Newswire.com.

More:
American Academy of Stem Cell Physicians to Offer Licensed Physicians Board Examination in Regenerative Medicine - GlobeNewswire

Human neuron clusters transplanted into rats offer new tool to study the brain : Shots – Health News – NPR

This cross-section of a rat brain shows tissue from a human brain organoid fluorescing in light green. Scientists say these implanted clusters of human neurons could aid the study of brain disorders. Pasca lab / Stanford Medicine hide caption

This cross-section of a rat brain shows tissue from a human brain organoid fluorescing in light green. Scientists say these implanted clusters of human neurons could aid the study of brain disorders.

Scientists have demonstrated a new way to study conditions like autism spectrum disorder, ADHD, and schizophrenia.

The approach involves transplanting a cluster of living human brain cells from a dish in the lab to the brain of a newborn rat, a team from Stanford University reports in the journal Nature.

The cluster, known as a brain organoid, then continues to develop in ways that mimic a human brain and may allow scientists to see what goes wrong in a range of neuropsychiatric disorders.

"It's definitely a step forward," says Paola Arlotta, a prominent brain organoid researcher at Harvard University who was not involved in the study. "The ultimate goal of this work is to begin to understand features of complex diseases like schizophrenia, autism spectrum disorder, bipolar disorder."

But the advance is likely to make some people uneasy, says bioethicist Insoo Hyun, director of life sciences at the Museum of Science in Boston and an affiliate of the Harvard Medical School Center for Bioethics.

"There is a tendency for people to assume that when you transfer the biomaterials from one species into another, you transfer the essence of that animal into the other," Hyun says, adding that even the most advanced brain organoids are still very rudimentary versions of a human brain.

The success in transplanting human brain organoids into a living animal appears to remove a major barrier to using them as models of human disease. It also represents the culmination of seven years of work overseen by Dr. Sergiu Pasca, a professor of psychiatry and behavioral sciences at Stanford.

Human brain organoids are made from pluripotent stem cells, which can be coaxed into becoming various types of brain cells. These cells are grown in a rotating container known as a bioreactor, which allows the cells to spontaneously form brain-like spheres about the size of a small pea.

But after a few months, the lab-grown organoids stop developing, says Pasca, whose lab at Stanford devised the transplant technique. Individual neurons in the cluster remain relatively small, he says, and make relatively few connections.

"No matter how long we keep them in a dish, they still do not become as complex as human neurons would be in an actual human brain," Pasca says. That may be one reason organoids have yet to reveal much about the origins of complex neuropsychiatric disorders, he says.

So Pasca's team set out to find an environment for the organoids that would allow them to continue growing and maturing. They found one in the brains of newborn rats.

"We discovered that the [organoid] grows, over the span of a few months, about nine times in volume," Pasca says. "In the end it covers roughly about a third of a rat's hemisphere."

The transplanted cells don't seem to cause problems for the rats, who behave normally as they grow, Pasca says.

"The rat tissue is just pushed aside," he says. "But now you also have a group of human cells that are integrating into the circuitry."

The human cells begin to make connections with rat cells. Meanwhile, the rat's blood vessels begin to supply the human cells with oxygen and nutrients.

Pasca's team placed each organoid in an area of the rat brain that processes sensory information. After a few months, the team did an experiment that suggested the human cells were reacting to whatever the rat was sensing.

"When you stimulate the whiskers of the rat, the majority of human neurons are engaged in an electrical activity that follows that stimulation," Pasca says.

Another experiment suggests the human cells could even influence a rat's behavior.

The team trained rats to associate stimulation of their human cells with a reward a drink of water. Eventually, the rats began to seek water whenever the human cells were stimulated.

In a final experiment, Pasca's team set out to show how transplanted organoids could help identify the brain changes associated with a specific human disorder. They chose Timothy Syndrome, a very rare genetic disorder that affects brain development in ways that can cause symptoms of autism spectrum disorder.

The team compared organoids made from the stem cells of healthy people with organoids made from the stem cells of patients with the syndrome. In the lab, the cell clusters looked the same.

"But once we transplanted and we looked 250 days later, we discovered that while control cells grew dramatically, patient cells failed to do so," Pasca says.

A better model, with ethical concerns

The experiments show that Pasca's team has developed a better model for studying human brain disorders, Arlotta says.

The key seems to be providing the transplanted organoids with sensory information that they don't get growing in a dish, she says, noting that an infant's brain needs this sort of stimulation to develop normally.

"It's the stuff that we get after we are born," she says, "especially when we begin to experience the world and hear sound, see light, and so on."

But as brain organoids become more like actual human brains, scientists will have to consider the ethical and societal implications of this research, Arlotta says.

"We need to be able to watch it, consider it, discuss it and stop it if we think we think one day we are at the point where we shouldn't progress," she says. "I think we are far, far away from that point right now."

Even the most advanced brain organoids have nothing even remotely like the capabilities of a human brain, says Hyun, who posted a video conversation he had with Pasca to coincide with the publication of the new study.

Yet many ethical discussions have focused on the possibility that an organoid could attain human-like consciousness.

"I think that's a mistake," Hyun says. "We don't exactly know what we mean by 'human-like consciousness,' and the nearer issue, the more important issue, is the well-being of the animals used in the research."

He says that wasn't a problem in the Pasca lab's experiments because the organoids didn't seem to harm the animals or change their behavior.

If human brain organoids are grown in larger, more complex animal brains, Hyun says, the cell clusters might develop in ways that cause the animals to suffer.

"What I'm concerned about," he says, "is what's next."

More:
Human neuron clusters transplanted into rats offer new tool to study the brain : Shots - Health News - NPR

BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – PR Newswire

BORDEAUX, France, Oct. 11, 2022 /PRNewswire/ --TreeFrog Therapeutics,a biotechnology company developing stem cell-derived therapies in regenerative medicine and immuno-oncology based on the biomimetic C-Stemtechnology platform, and Invetech, a global leader in the development and production ofautomated manufacturing solutionsfor cell and advanced therapies, today announced the delivery of a GMP-grade cell encapsulation device using the C-Stemtechnology. The machine will be transferred in 2023 to a contract development and manufacturing organization (CDMO) to produce TreeFrog's cell therapy candidate for Parkinson's disease, with the aim of a first-in-human trial in 2024.Over 2023, Invetech will deliver three additional GMP encapsulation devices to support TreeFrog's in-house and partnered cell therapy programs in regenerative medicine and immuno-oncology.

Blending microfluidics and stem cell biology, TreeFrog's C-Stemtechnology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues. And because alginate is both porous and highly resistant, encapsulated iPSCs can be expanded and differentiated in large-scale bioreactors without suffering from impeller-induced shear stress.

"TreeFrog Therapeutics introduces a breakthrough technology for cell therapy, which impacts scale, quality, as well as the efficacy and safety potential of cellular products. Automating this disruptive technology and turning it into a robust GMP-grade instrument is a tremendous achievement for our team. This deliverable is the result of a very fruitful and demanding collaboration with TreeFrog's engineers in biophysics and bioproduction over the past four years. We're now eager to learn how the neural microtissues produced with C-Stemwill perform in the clinic." Anthony Annibale, Global VP Commercial at Invetech.

Started in 2019, the collaboration between TreeFrog and Invetech led to the delivery of a prototype in October 2020. With this research-grade machine, TreeFrog demonstrated the scalability of C-Stem, moving within six months from milliliter-scale to 10-liter bioreactors. In June 2021, the company announced the production of two single-batches of 15 billion iPSCs in 10L bioreactors with an unprecedented 275-fold amplification per week, striking reproducibility and best-in-class cell quality. The new GMP-grade device delivered by Invetech features the same technical specifications. The machine generates over 1,000 capsules per second, allowing to seed bioreactors from 200mL to 10L. However, the device was entirely redesigned to fit bioproduction standards.

"With the GMP device, our main challenge was to minimize the learning curve for operators, so as to facilitate tech transfer. Invetech and our team did an outstanding job in terms of automation and industrial design to make the device both robust and easy to use. As an inventor, I am so proud of the journey of the C-Stemtechnology. Many elements have been changed and improved on the way, and now comes the time to put the platform in the hands of real-world users to make real products." Kevin Alessandri, Ph.D., co-founder and chief technology officer, TreeFrog Therapeutics

"In October 2020, we announced that we were planning for the delivery of a GMP encapsulation device by the end of 2022. Exactly two years after, we're right on time. I guess this machine testifies to the outstanding execution capacity of TreeFrog and Invetech. But more importantly, this machine constitutes a key milestone. Our platform can now be used to manufacture clinical-grade cell therapy products. Our plan is to accelerate the translation of our in-house and partnered programs to the clinic, with a focus on immuno-oncology and regenerative medicine applications." Frederic Desdouits, Ph.D., chief executive officer, TreeFrog Therapeutics

About Invetech

Invetech helps cell and gene therapy developers to visualize, strategize and manage the future. With proven processes, expert insights and full-spectrum services, we swiftly accelerate life-changing therapies from the clinic to commercial-scale manufacturing. Through our ready-to-run, preconfigured systems, our custom and configurable technology platforms and automated production systems, we assure predictable, reproducible products of the highest quality and efficacy. Our integrated approach brings together biological scientists, engineers, designers and program managers to deliver successful, cost-effective market offerings to more people, more quickly. Working in close collaboration with early-stage and mature life sciences companies, we are committed to advancing the next generation of vital, emerging therapies to revolutionize healthcare and precision medicine. invetechgroup.com

About TreeFrog Therapeutics

TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine. In 2022, the company opened technological hubs in Boston, USA, and Kobe, Japan, with the aim of driving the adoption of the C-Stemplatform and establish strategic alliances with leading academic, biotech and industry players in the field of cell therapy. http://www.treefrog.fr

Media ContactsPierre-Emmanuel Gaultier TreeFrog Therapeutics + 33 6 45 77 42 58 [emailprotected]

Marisa Reinoso Invetech +1 858 437 1061 [emailprotected]

SOURCE Invetech; Treefrog Therapeutics

Originally posted here:
BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - PR Newswire

Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma – Benzinga

Dublin, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The "Stem Cell Manufacturing Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027" report has been added to ResearchAndMarkets.com's offering.

The global stem cell manufacturing market size reached US$ 11.2 Billion in 2021. Looking forward, the publisher expects the market to reach US$ 18.59 Billion by 2027, exhibiting a CAGR of 8.81% during 2021-2027.

Stem cells are undifferentiated or partially differentiated cells that make up the tissues and organs of animals and plants. They are commonly sourced from blood, bone marrow, umbilical cord, embryo, and placenta. Under the right body and laboratory conditions, stem cells can divide to form more cells, such as red blood cells (RBCs), platelets, and white blood cells, which generate specialized functions.

They are widely used for human disease modeling, drug discovery, development of cell therapies for untreatable diseases, gene therapy, and tissue engineering. Stem cells are cryopreserved to maintain their viability and minimize genetic change and are consequently used later to replace damaged organs and tissues and treat various diseases.

Stem Cell Manufacturing Market Trends:

The global market is primarily driven by the increasing venture capital (VC) investments in stem cell research due to the rising awareness about the therapeutic potency of stem cells. Apart from this, the widespread product utilization in effective disease management, personalized medicine, and genome testing applications are favoring the market growth. Additionally, the incorporation of three-dimensional (3D) printing and microfluidic technologies to reduce production time and lower cost by integrating multiple production steps into one device is providing an impetus to the market growth.

Furthermore, the increasing product utilization in the pharmaceutical industry for manufacturing hematopoietic stem cells (HSC)- and mesenchymal stem cells (MSC)-based drugs for treating tumors, leukemia, and lymphoma is acting as another growth-inducing factor.

Moreover, the increasing product application in research applications to produce new drugs that assist in improving functions and altering the progress of diseases is providing a considerable boost to the market. Other factors, including the increasing usage of the technique in tissue and organ replacement therapies, significant improvements in medical infrastructure, and the implementation of various government initiatives promoting public health, are anticipated to drive the market.

Key Players

Key Questions Answered in This Report:

Key Market Segmentation

Breakup by Product:

Breakup by Application:

Breakup by End User:

Breakup by Region:

Key Topics Covered:

1 Preface

2 Scope and Methodology

3 Executive Summary

4 Introduction

5 Global Stem Cell Manufacturing Market

6 Market Breakup by Product

7 Market Breakup by Application

8 Market Breakup by End User

9 Market Breakup by Region

10 SWOT Analysis

11 Value Chain Analysis

12 Porters Five Forces Analysis

13 Price Analysis

14 Competitive Landscape

For more information about this report visit https://www.researchandmarkets.com/r/5iujo7

Visit link:
Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma - Benzinga