BioRestorative Therapies Prices $23 Million Public Offering – GlobeNewswire

Common stock will begin trading on The Nasdaq Capital Market under the ticker symbol BRTX November 5, 2021

MELVILLE, N.Y., Nov. 04, 2021 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (the Company") (NASDAQ:BRTX), a life sciences company focused on adult stem cell-based therapies, today announced the pricing of the underwritten public offering of 2,300,000 units, each consisting of one share of its common stock and a warrant to purchase one share of its common stock at a per unit price of $10.00. The warrants have a per share exercise price of $10.00, are exercisable immediately, and expire five years from the date of issuance. The aggregate gross proceeds from the offering are expected to total $23 million, before deducting the underwriting discounts and commissions and estimated offering expenses payable by the Company and without giving effect to proceeds from any subsequent exercise of warrants.

As a result of the offering, the Companys common stock will become listed on the Nasdaq Capital Market and will trade under the ticker symbol BRTX beginning November 5, 2021. The offering is expected to close on or about November 9, 2021, subject to customary closing conditions. In addition, the Company has granted to the underwriters of the offering a 45-day option to purchase up to 345,000 additional shares and/or additional warrants to purchase up to 345,000 shares of common stock to cover over-allotments, if any.

Roth Capital Partners is acting as sole manager for the offering.

BioRestorative Therapies advancement to The Nasdaq Capital Market continues a year of growth and accomplishment for our company during which time we emerged from Chapter 11 reorganization, transformed our business, strengthened our financial position and enhanced our IP position said Lance Alstodt, President and Chief Executive Officer of BioRestorative.

The securities described above are being sold by BioRestorative Therapies pursuant to a registration statement on Form S-1 (Registration No. 333-258611) that was previously filed by BioRestorative Therapies with the Securities and Exchange Commission (the SEC) and declared effective on November 4, 2021 and an additional registration statement filed pursuant to Rule 462(b), which became effective upon filing. This press release shall not constitute an offer to sell or the solicitation of an offer to buy these securities, nor shall there be any sale of these securities in any state or jurisdiction in which such offer, solicitation, or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.

The offering is being made only by means of the written prospectus forming part of the effective registration statement. Electronic copies of the accompanying prospectus may be obtained, when available, by contacting Roth Capital Partners, 888 San Clemente, Newport Beach, CA 92660, Attn: Prospectus Department, telephone: 800-678-9147, or email at rothecm@roth.com, or by visiting the SECs website at http://www.sec.gov.

About BioRestorative Therapies, Inc. BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders or as a complementary therapeutic to a surgical procedure. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat chronic lower back pain arising from degenerative disc disease.

Metabolic Program (ThermoStem): We are developing a cell-based therapy candidate to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in animals may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, those set forth in the Company's latest Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT:

Email: ir@biorestorative.com

See more here:
BioRestorative Therapies Prices $23 Million Public Offering - GlobeNewswire

Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World – Intelligent Living

Our Need For Things Lab-Grown

What was once something of the movies objects forming themselves in thin air is real now. Various things can be grown in a laboratory setting, some even on a large scale for commercial distribution. This technology could be a big part of the solution to establish sustainable societies. At the moment, we harvest organs from the deceased, rear animals for meat and dairy, destroy forests by cutting down trees for wood, mine the earth for diamonds, and the list goes on. All these things can already be lab-made or are on the brink of reality.

Once these staples of society can be mass-made affordably, they could supply the world while minimally impacting the natural environment. Acres of land wouldnt need to be used for food and building materials, meaning deforestation can cease, for starters. Looking at lab-grown meats alone: they require 99% less land than traditionally farmed meats, generate up to 96% fewer emissions, use up to 96% less water, and no animals need to be slaughtered in the process.

Naturally, there will be short-term disruptions, particularly job-related. For example, eco-friendly agriculture will mean fewer farms and agriculture jobs. But new employment opportunities will emerge in the scientific and technical fields related to lab-grown foods.

Whats the difference between 3D printing (additive manufacturing) and lab-grown, you may be wondering? 3D printing uses material as ink anything from plastic to cellular material whereas lab-grown materials start off as a bit of material that multiplies on its own, replicating natural processes. Thus, lab-grown material has the same cellular structure as the naturally occurring material and mimics the natural formation process but within a much shorter period.

In the future, we are bound to see various lab-grown breakthroughs coming from the medical field. Eventually, there should be alternative sources for organs and blood cultured from stem cells. In addition, there will likely be lab-produced medicines (lotions, ointments, balms, nutraceuticals, energy drinks, etc.), breast milk, and more.

Scientists are well on the way to functioning full-sized organs, with several innovations in fully functional mini-organs, or organoids, making headlines in recent years. For now, these organoids are tools for testing new drugs and studying human diseases. But soon enough, these research teams will take the technology to the next level and develop organs that can be used for implantation when someone needs an organ replacement. So far, the brain, liver, lungs, thymus, heart, blood, and blood vessels are among the growing list of lab-grown medical accomplishments.

A team of scientists from the University of Pittsburgh managed to grow miniature human livers using induced pluripotent stem cells (IPSCs) made from human skin cells. Meaning, in the far future, someone needing a liver transplant could have the organ grown from their own skin cells! This method may even reduce the chances of a patients immune system rejecting the new tissue because it would recognize the cells as self. Whats more, their lab-grown livers matured in under a month compared to two years in a natural environment.

The scientists tested their fully-functional mini-livers by transplanting them into rats. In this proof-of-concept study, the lab-made organs survived for four days inside their animal hosts, secreting bile acids and urea like a healthy liver would.

A research team led by the University Hospital Dsseldorf induced pluripotent stem cells (iPSCs) to grow into pea-sized brain organoids with rudimentary eye structures that sense light and send signals to the rest of the brain. They used skin cells taken from adult donors, reverted them back into stem cells, and placed them into a culture mimicking a developing brains environment, which encourages them to form specific brain cells. Their mini-brains grew optic cups, vision structures of the eye found where the optic nerve and retina meet. The cups even grew symmetrically, as eyes would, and were functional!

Jay Gopalakrishnan, a senior author of the study, said:

Our work highlights the remarkable ability of brain organoids to generate primitive sensory structures that are light sensitive and harbor cell types similar to those found in the body. These organoids can help to study brain-eye interactions during embryo development, model congenital retinal disorders, and generate patient-specific retinal cell types for personalized drug testing and transplantation therapies.

This achievement is the first time an in vitro system shows nerve fibers of retinal ganglion cells reaching out to connect with their brain target an essential aspect of the mammalian brain.

Scientists from Michigan State University developed functional miniature human heart models grown from stem cells complete with all primary heart cell types and with functioning chambers and vascular tissue. The models could help researchers better understand how hearts develop and provide an ethical platform for treating disease and testing drugs or new treatments.

The teams lab-grown mini hearts follow the fetal development of a human heart, offering a new view into that process. The organoids start beating by day six, and they grow into spheres approximately 1 mm (0.4 in) wide, with all significant cardiac cell types and multiple internal chambers by day 15.

Aside from research purposes, full-sized lab-grown hearts could solve the shortage problem of hearts the world faces today. More than 25 million people suffer heart failure each year. In the United States, approximately 2,500 of the 4,000 people in line for heart transplants receive them. That means almost 50% of the people needing a new heart to keep them alive wont get it.

Unlimited supplies of blood for transfusions are possible with lab-growing technology. Blood has been challenging to grow in the lab. However, real breakthroughs in creating artificial blood have sprung up!

A couple of years ago, Japanese researchers developed universal artificial blood that worked for all blood types. It even has a shelf life of one year stored at room temperature, therefore eliminating the problem of identifying blood type and storage simultaneously.

Like that wasnt impressive enough, last year, a team of scientists from the South China University of Technology, the University of New Mexico, and Sandia National Laboratories created artificial red blood cells (RBCs) with more potential capabilities than real ones! The synthetic RBCs mimic the properties of natural ones such as oxygen transport, flexibility, and long circulation times with the addition of a few new tricks up their sleeves, such as toxin detection, magnetic targeting, and therapeutic drug delivery. In addition, blood contains platelets and red blood cells, so these new cells could be used to make superior artificial blood.

Researchers from the University of British Columbia successfully coaxed stem cells to grow into human blood vessels. The thing that is so remarkable about this study is that the system of blood vessels grown in the lab is virtually identical to the ones currently transporting blood throughout the body. They are using this now to generate new leads in diabetes treatment. They put the lab-grown blood vessels in a petri dish designed to mimic a diabetic environment.

The global demand for meat and dairy is expected to rise by almost 90% over the next 30 years, regardless of the need to cut back on meat consumption. The risk of environmental damage and the rising food demand itself is a problem many have recently addressed. Thats why companies worldwide are on the verge of scaling up all sorts of lab processes to produce various food items, including steaks, chicken, cheese, milk, ice cream, fruits, and more.

Thinktank RethinkX even published research suggesting that proteins from precision fermentation (lab-grown protein using microbes) will be about ten times cheaper than animal protein by 2035, resulting in a collapse of the livestock industry. It says the new food economy will subsequently:

replace an extravagantly inefficient system that requires enormous quantities of inputs and produces considerable amounts of waste with one that is precise, targeted, and tractable. [Using tiny land areas, with a massively reduced requirement for water and nutrients, it] presents the most significant opportunity for environmental restoration in human historyFarm-free food offers hope where hope is missing. We will soon be able to feed the world without devouring it.

The worlds pace of meat consumption is placing a significant strain on the environment. Many studies show that eating less meat is just as crucial to slowing down global warming as using solar panels and zero-emissions vehicles. Unfortunately, animal farming generates an obscene amount of greenhouse gas emissions. Yet again, scientists come to the rescue, working diligently to fix this situation.

Over a decade ago, researchers created something akin to ground beef, but the complex structure of steak didnt happen until recently, with Aleph Farms debuting its thick-cut rib-eye steak in 2018. Furthermore, that first burger cost around US$345,000, but now the price has dropped dramatically to the point that lab-grown chicken is to be commercially produced and hit grocery store shelves as of this year.

SuperMeat, Eat Just, and Aleph Farms are todays most prominent startups working on getting lab-grown meats to people looking to lower their carbon and environmental footprints. In addition, their products are made from actual animal cells, so theyre real meat, but no animals had to be hurt or killed.

Speaking of Aleph Farms, the company also grew meat in space to show that it can even be done in a zero-gravity environment with limited resources.

Aside from Aleph Farms figuring out how to make steak like an authentic steak, a group of Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) researchers also devised a solution to the texture challenge. First, they made edible gelatin scaffolds that have the texture and consistency of real meat. Then, they grew rabbit and cow muscle cells on this scaffolding. The research demonstrates how realistic meat products are possible!

Parker and his Disease Biophysics Group developed a technique to produce the scaffolding. Its a fiber-production system inspired by cotton candy known as immersion Rotary Jet-Spinning (iRJS). It enabled the team to spin long nanofibers of a specific shape and size using centrifugal force. So, they spun food-safe gelatin fibers, creating the base upon which cells could grow.

Natural muscle tissue is composed of an extracellular matrix, which is the glue that holds the tissue together. As a result, it contributes to the texture of the meat. The spun gelatin fibers mimicked this extracellular matrix and provided the texture to make the lab-grown meat realistic. When the team seeded the fibers with animal (rabbit and cow) muscle cells, they anchored to the gelatin scaffolding and grew in long, thin structures, similar to real meat.

Meanwhile, Boston College developed a new, even greener technology that uses the skeleton of spinach leaves to support bovine animal protein growth. However, animal products arent eliminated from the process entirely. For example, lab-grown steak and chicken are created by painlessly harvesting muscle cells from a living cow, subsequently fed and nurtured to multiply and develop muscle tissue. But for this to have the same texture as real meat, the cells need structural support to flourish and are therefore placed in a scaffold.

Singapore is leading the way, becoming the first country in the world to approve the sale of Eat Justs cultured chicken. The company will start by selling nuggets at a restaurant. Meanwhile, SuperMeat has been handing out lab-grown chicken burgers in Israel for free. Theyre aiming to gain public acceptance of the idea.

The cultured chicken starts as a tiny number of harvested cells. Those cells are put into a bioreactor and fed the same nutrients the living animal would consume to grow. The cells multiply and turn into an edible portion of cultured chicken meat. The meats composition is identical to that of real chicken and offers the same nutritional value. And its cleaner because its antibiotic-free!

Labs are manufacturing dairy products by utilizing the fermentation process of living microbes to produce dairy proteins like whey and casein. These proteins are then used to make dairy products like butter, cheese, and ice cream. Two leading companies in this category are Imagindairy and Perfect Day, which already have several products on supermarket shelves in the United States.

Researchers havent figured out how to make fruits and vegetables yet, but a team is perfecting a cell cultivation process that generates plant biomass. The stuff tastes like the natural-grown product from which the cells were obtained and even exceeded its nutritional properties. Although, the texture of the biomass is different. For example, an apple isnt a solid apple akin to one grown from a tree. Instead, its like applesauce.

Lab-produced materials Including wood, diamonds, leather, glass, clothing, crystals, gels, cardboard, and plastics for making objects are either under development or already available. Many materials need to be taken from nature mined from the earth or cut down from forests. If they can be made in a lab instead, then people could leave nature alone!

A recent project led by a Ph.D. student at MIT paves the way for lab-grown wood one of the worlds most vital resources used to make paper, build houses, heat buildings, and so much more. The process begins with live plant cells cultivated in a growth medium coaxed using plant hormones to become wood-like structures. Next, a gel matrix is used to guide the shape of the cellular growth, and controlling the levels of plant hormones regulates the structural characteristics. Therefore, the technology could grow anything from tables and chairs to doors to boats and so on.

The environmental and socio-economic impact of traditionally mined diamonds has been exposed in recent years, and as awareness grows, the rising popularity of lab-grown diamonds does too. Mined diamonds are linked to bloody conflicts, and their excavation produces carbon emissions, requires substantial water use, and causes severe land disturbances.

Research has found that 1,000 tons of earth have to be shifted, 3,890 liters or more of water is used, and 108kg of carbon is emitted per one-carat stone produced. In addition, the traditional diamond mining industry causes irreversible damage to the environment, hence why, a decade ago, researchers started experimenting with how to grow them in the lab. Its been a feat a long time in the making, but we finally have lab-grown diamonds available for eco-conscious consumers to buy.

Diamonds are made of pure carbon. It takes extreme heat and pressure for carbon to crystalize. In nature, this happens hundreds of miles beneath the Earths surface. The ones being mined were shot out by a volcano millions of years ago. So how have scientists managed to hack such an intense and time-consuming process?

They began by investigating the mechanisms behind the diamond formation, zooming in at the atomic level. This led to the invention of a novel technology that utilizes the process of HPHT (high pressure, high temperature) to mimic the natural atmospheric conditions of diamond formation. Labs can use it to replicate the process and turn pure carbon into diamonds in 2-6 weeks.

Lab-grown gems are eco-friendly rocks, especially when theyre made entirely from the sky, like SkyDiamonds. Even the electricity used to grow its stones is from renewables, so theyll indeed be the worlds first zero-impact diamonds.

But how are the diamonds created out of thin air? They are made of carbon from the sky and rainwater. The sky mining facility is in Stroud. Energy is sourced from wind and sunlight. The CO2 is sourced directly from the air. Hydrogen is produced by splitting rainwater molecules in an electrolysis machine using renewable energy. The captured carbon and hydrogen are then used to make methane, used to grow the diamonds. The final product is a diamond anatomically identical to those mined from the ground. It is even accredited, fully certified, and graded by the International Gemological Institute.

Another company, Climeworks, is also making diamonds using carbon sucked from the sky. However, SkyDiamonds takes it a step forward by using rainwater and sunshine in the process.

The last lab-grown object were going to discuss is not something in the works, but an idea a fantastic and outlandish one thats jumping far into the future but was thought up in 2010 by Mercedes Benz. The luxury car companys ambitious BIOME idea shows just how wild imagination can get with lab-grown technology. It envisions a day when it can grow an entire supercar from scratch.

Mercedes-Benz explained when launching the concept:

The interior of the BIOME grows from the DNA in the Mercedes star on the front of the vehicle, while the exterior grows from the star on the rear. The Mercedes star is genetically engineered in each case to accommodate specific customer requirements, and the vehicle grows when the genetic code is combined with the seed capsule. The wheels are grown from four separate seeds.

This list of lab-grown possibilities is just the tip of the iceberg! Other materials in the pipeline include leather, chocolate, and silk. This intelligent technology can make anything a scientist can dream up! The only limit is the imagination and dedication of brilliant people.

See the rest here:
Lab-Growing Everything Might Be The Only Way To Attain A Sustainable World - Intelligent Living

Probiotics Market to Experience Significant Growth during the Forecast Period 2021-2028 Bolivar Commercial – Bolivar Commercial

Probiotics Market is anticipated to observe growth during the forecast period due to growing demand at the end user level. The business report gives a clue about the uncertainties that may come up due to changes in business activities or introduction of a fresh product in the market. The facts and figures included to produce this report are based on the data collection modules with large sample sizes. It is a meticulous analysis of current scenario of the market, which takes into consideration several market dynamics. Probiotics Market Research study assists customers in understanding a range of drivers and restraints in theProbiotics Marketwhich impacts the market during forecast period.

In addition, the whole Probiotics Market report provides with the information about company profile, product specifications, capacity, production value, and market shares for each company for the year 2021 to 2028 with the help of competitive analysis study. A strong research methodology used in the report consists of data models that include market overview and guide, vendor positioning grid, market time line analysis, company positioning grid, company market share analysis, standards of measurement, top to bottom analysis and vendor share analysis. The world class Probiotics Market research report certainly helps to diminish business risk and failure.

DOWNLOAD FREE SAMPLE REPORT:https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-probiotics-market&Shiv

CAGR

Probiotics market is expected to gain market growth in the forecast period of 2020 to 2027. Data Bridge Market Research analyses the market to account to USD 91.25 billion by 2027 growing at a CAGR of 7.12% in the above-mentioned forecast period. The growing popularity of probiotic dietary supplements among customers is driving the growth of the probiotics market.

The top most players with the entire requirement cover in this report:

The major players covered in the probiotics market report are Chr. Hansen Holding A/S, Yakult Honsha Co., Ltd, Nestl, DuPont, MORINAGA & CO., LTD., BioGaia AB, Protexin, Daflorn Probiotics UK. , DANONE, Yakult USA, Deerland Enzymes, Inc., UAS Laboratories, among other domestic and global players

Segmentation

Global Stem Cell Therapy Market By Type (Allogeneic Stem Cell Therapy, Autologous Stem Cell Therapy), Technology (Cell Acquisition, Cell Production, Cryopreservation, Expansion and Sub-Culture), Product (Adult Stem Cells, Human Embryonic Stem Cells, Induced Pluripotent Stem Cells), Applications (Musculoskeletal Disorders, Wounds, Injuries, Cardiovascular Diseases, Surgeries, Gastrointestinal Diseases, Other Applications), End Users (Therapeutic Companies, Cell And Tissues Banks, Tools And Reagent Companies, Service Companies), Country (U.S., Canada, Mexico, Germany, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe, Japan, China, India, South Korea, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia- Pacific, Brazil, Argentina, Rest of South America, South Africa, Saudi Arabia, UAE, Egypt, Israel, Rest of Middle East & Africa) Industry Trends and Forecast to 2027

Access Full TOC, Table & Figures:https://www.databridgemarketresearch.com/toc/?dbmr=global-probiotics-market&Shiv

The Report Consolidates All The Fundamental Factors:

The cutthroat scene gives intensive portion of the overall industry for driving business sector players as indicated by deals and volume produced. The report conveys a presence, contenders, and gross edge for each driving player. Besides, the report likewise cooks the natty gritty data about the essential angles, for example, drivers and limiting elements which will characterize the future development of the market. The report gives a serious scene to the main market players. The report shares restrictive experiences into the market to assist with keying players and new contestants comprehend the capability of interests in the Probiotics Market.

The report is an unobtrusive exertion of informed authorities and experts to convey market gauge and investigation. It highpoints the exceptional discernments conveyed by industry specialists. The report gives a natty gritty appraisal of key market elements and extensive data about the construction of the Probiotics Market industry. The report considers contending factors which is significant to take your business to the creative level. This archive is a splendid source that gives present just as future investigation of the business exhaustively.

The report gives imperative bits of knowledge into the overall market, especially the predominant development openings, patterns, and serious situations. The Probiotics Market report gives a natty gritty examination of item advancements, item types, import-trade, esteem chain streamlining, piece of the pie, development sway on homegrown and limited market players.

ACCESS FULL REPORT: https://www.databridgemarketresearch.com/reports/global-probiotics-market?utm_source=Shiv&utm_medium=Shiv&utm_id=Shiv

It isolates the market size, by volume and worth, contingent on the sort of usage and region. The report involves past and figures grandstand information, domains of utilization, esteem procedures, and fundamental associations by the geographical region.

Further, the statistical surveying report gives local market examination creation, deals, exchange, and territorial estimate. it additionally gives Probiotics Market money growth strategies like item includes, value pattern examination, channel highlights, territorial and industry speculation opportunity, cost and income estimation, financial execution assessment.

Key Benefits of The Report:

Link:
Probiotics Market to Experience Significant Growth during the Forecast Period 2021-2028 Bolivar Commercial - Bolivar Commercial

Hiltzik: The battle against unlicensed stem cell clinics – Los Angeles Times

In 2017, the Food and Drug Administration closed a loophole exploited by clinics pitching unproven, ineffective and potentially hazardous stem cell therapies directly to consumers.

Those treatments were illegal, the FDA ruled. That was the good news. The agency, however, suspended its enforcement for three years to give these operators time to get right with its regulations. During the pandemic, the FDA added six months to the deadline, so its period of regulatory forbearance expired on May 31.

What happened in the meantime? Instead of stem cell purveyors reaching out to the FDA to work out how to meet federal regulations, a torrent of shady operations poured into the field so many that the task of protecting the public from them may now exceed the FDAs capabilities.

Dont believe the hype.

The FDAs warnings against unlicensed stem cell clinics

Thats the concern of Leigh Turner, a public health expert at UC Irvine, longtime critic of stem cell treatment claims and author of a new study that tracked the explosion of businesses offering purported stem cell treatments and cures during the FDAs hands-off period.

The paper is essentially a follow-up to a seminal study Turner conducted with Paul Knoepfler of UC Davis in 2016, which identified 351 businesses hawking stem cell treatments directly to consumers through 540 clinics.

Newsletter

Get the latest from Michael Hiltzik

Commentary on economics and more from a Pulitzer Prize winner.

Enter email address

Sign Me Up

You may occasionally receive promotional content from the Los Angeles Times.

Turners new study, which was published Thursday in the peer-reviewed journal Cell Stem Cell, identified 1,480 businesses operating 2,754 clinics nationwide.

That hardly seems like progress, Turner told me. Now the problem the FDA faces is four times larger than what existed in 2016. The FDA only has so many employees and so many inspectors. They dont really have enough inspectors to send them to 1,480 businesses.

The FDA hasnt been entirely inactive. Over the last 3 years it issued more than 400 warning letters to stem cell marketers, clinics and healthcare providers, notifying them that they may be operating outside the law. But it hasnt done much more than that.

The proliferation of stem cell claims points to a major breakdown in Americas healthcare regulatory system generally.

Given the size of this clinic industry the risk to the public is huge, Knoepfler says. The industry threatens the authority of the FDA itself. It might be one of the largest and most serious noncompliance challenges that the FDA has ever faced in its history. What would the FDA do if pharmaceutical firms were selling unapproved drugs at 2,700 clinics all over the country? It would be considered a national emergency.

State medical boards, which have at least nominal authority to ride herd on the practices of licensed physicians in this field, have done little of note. The Medical Board of California, a state that with 347 clinics is the largest center of facilities in Turners database, created a two-member Stem Cell and Regenerative Therapy Task Force in 2018.

The task force hasnt met since 2019, according to a board spokesman, and hasnt issued any reports. Board records indicate that it received 33 complaints about stem cell treatments from 2018 through this year, and has taken no disciplinary or administrative actions in response.

California hasnt done much to rise to the challenge, Turner says.

A few words may be useful about the regulatory environment. The chief targets of the FDAs enforcement program, such as it is, have been clinics that extract fat cells from customers through liposuction and then supposedly extract stem cells from the fat and inject them back into the customers bodies as treatments. Some purportedly extract stem cells from customers bone marrow.

The conditions for which these treatments are commonly offered include pain, sports injuries, heart and lung disease, multiple sclerosis, Parkinsons, Alzheimers, autism, diabetes, vision loss and erectile dysfunction.

No scientifically validated evidence exists for any of these claims, the FDA notes. The only stem cell products approved by the FDA are a few derived from umbilical cord blood, and then only for a very limited category of blood system diseases.

Beyond that, the agency advises consumers, Dont believe the hype.

The purveyors of unproven and unlicensed treatments identified by Turner charge as much as $28,000 for their services, with an average of more than $5,000 often ponied up by unwary customers seduced by advertising and irresponsibly credulous reports in the press.

The treatments typically are not covered by insurance, so customers are paying out of pocket.

Under FDA regulations, most stem cell treatments being sold to customers are illegal. Thats because the products are deemed to be unlicensed drugs. Exceptions exist for some surgical procedures and in cases in which almost identical cells are reinjected into patients, but the FDA says few of the targeted clinics qualify.

The FDAs position was endorsed by a federal judge in Miami in 2019, when she shut down a clinic that the FDA had sued for offering unapproved stem cell procedures. The clinic lost an appeal of her ruling in June. A separate lawsuit the FDA filed against California Stem Cell Treatment Center and associated businesses is awaiting a verdict from U.S. Judge Jesus G. Bernal in Riverside following a trial he conducted in May.

The offered treatments are not only unproven, but potentially hazardous. Reports of adverse outcomes from unlicensed treatments have proliferated, some of them gruesome. In a report issued in June, researchers at the Pew Charitable Trusts documented reports of adverse outcomes from 360 patients between 2004 and mid-2020.

These figures are almost certainly conservative, as clinics operating outside the law are highly unlikely to follow rules mandating that they report adverse reactions among their customers. Indeed, the FDA in its lawsuit against the California defendants asserted that numerous adverse outcomes experienced by their patients were not reported to the agency.

A note cited by the FDA from the file of one patient who was unable to walk for six months after receiving a stem cell injection in her knee from a clinic associated with the defendants, read, Not all treatments are successful. Not really adverse event due to the treatment. At trial, defendant Mark Berman said the clinics product has had very rare adverse events.

FDA officials have said that their expectations that stem cell treatment purveyors would engage with the agency during the forbearance period to work out how to come into compliance with its regulations proved wildly optimistic. We have been very disappointed in the number of clinics that have come in, Wilson Bryan, a top FDA official, told a law conference in June.

The FDA may not have recognized that the clinics they were targeting never had any intention of meeting its regulations.

Were talking about a huge number of businesses that are failing to comply with federal law, but have no reasonable prospects of coming into compliance, Turner says. They dont have clinical research programs. They dont have qualified stem cell researchers. Theyre just peddlers putting out a shingle on the internet.

Instead of using that three-year period to change their practices and comply with the law, lots of businesses stayed in the marketplace and did nothing to change what they were doing, and a huge number of other operators poured into the marketplace.

Over the last five years or so, or since Turner and Knoepfler published their original report, stem cell treatment claims have become just one more offering by practitioners advertising other services of dubious effectiveness.

Stem cell treatment has become just a routine claim, Turner says, from all kinds of orthopedic clinics, sports medicine clinics, podiatrists, chiropractors, naturopaths, wellness clinics. They market an array of services and stem cells are just something else they can sell, like cryotherapy or acupuncture.

Its unclear whether some of these operations really even use stem cells some may be offering just costly placebos, Turner conjectures.

The threat to public health from unlicensed and unproven stem cell claims will only get worse if the FDA fails to act forcefully.

People make the mistake of thinking that these are businesses that will go under if they get a bit of a push from the FDA or FTC [Federal Trade Commission] Turner says. The truth is that some of them are quite well capitalized and have the resources to go out and join these battles.

The FDA may be waiting for Judge Bernals ruling before taking the next step but thats dependent on his finding in the FDAs favor. It could seek mass injunctions, admittedly a big practical challenge, Knoepfler says. He adds, Looking ahead, the agency should take quick, large-scale, and even creative actions if it has any hope to make a dent in this clinic industry.

Read this article:
Hiltzik: The battle against unlicensed stem cell clinics - Los Angeles Times

Cell therapy biotech PlateletBio reels in $75M as it looks ahead to first clinical test – MedCity News

PlateletBio, a company developing a new class of cell therapies based on the biology of platelets, has raised $75.5 million to advance its drug pipeline, including a lead candidate for a rare bleeding disorder on track to reach the clinic next year.

Platelets are components of blood best known for their role forming clots that stop bleeding. But Watertown, Massachusetts-based PlateletBio notes that platelets have other properties, including a role delivering growth factors and proteins throughout the body. PlateletBio is developing therapies that take advantage of these properties, but rather than using platelets from a patient or healthy donors, the startup makes them.

In the body, platelets are formed in bone marrow. PlateletBio produces its platelet-like cells, or PLCs, inside a bioreactor that mimics bone marrow conditions. The source material for its PLCs are stem cells, which have the ability to become almost any cell or tissue in the body.

Platelets are technically not cells. They dont have a nucleus, but thats an advantage for therapeutic applications. Since a PlateletBio therapy wont introduce DNA into a patients body, the potential risks that come from introducing foreign genetic material are avoided. PlateletBio says it can produce PLCs with new features and therapeutic payloads that include antibodies, signaling proteins, therapeutic proteins, and nucleic acids.

PlateletBios lead cell therapy candidate is being developed to treat immune thrombocytopenia, a blood disorder in which the immune system mistakenly sees a patients platelets as foreign and destroys them. Immune thrombocytopenia patients have dangerously low platelet counts that make them susceptible to bleeding.

There is no FDA-approved treatment for the underlying cause of immune thrombocytopenia, but corticosteroids are used to try to dampen the immune systems attack on platelets. Platelet transfusions are another option, but the National Organization for Rare Disorders notes that these treatments are usually reserved for emergencies because the platelets are likely to be destroyed by antibodies produced by the patient.

Patients who have not responded to earlier treatments have two FDA-approved small molecule options: Tavalisse, from Rigel Pharmaceuticals, and the Swedish Orphan Biovitrum drug Doptelet. Sanofi aims to treat the disease with a small molecule called rilzabrutinib. That drug is designed to block Brutons tyrosine kinase, a protein that plays a role in the development of a B cells, a type of immune cell. Sanofi acquired the molecule last year via its $3.7 billion acquisition of Principia Biopharma.

The lead disease target for the Principia drug was multiple sclerosis. In September, Sanofi reported that rilzabrutinib failed that Phase 3 study. A separate Phase 3 test in immune thrombocytopenia is ongoing, as is a mid-stage clinical trial in another autoimmune condition called IgG4-related disease.

PlateletBio isnt the only company trying to turn a component of the blood into a new type of cell therapy. Cambridge, Massachusetts-based Rubius Therapeutics is developing cell therapies based on red blood cells. After disappointing early clinical trial results in the rare disease phenylketonuria last year, Rubius shifted its focus to cancer and immune system disorders. PlateletBios PLCs would represent an entirely new approach to treating immune thrombocytopenia. According to PlateletBios website, the company plans to file an investigational new drug application for its therapeutic candidate in the first half of next year.

PlateletBio is based on the research of Harvard University scientist Joseph Italiano, who co-founded the company under the name Platelet BioGenesis. When the startup emerged in 2017, it was developing platelets that could address the platelet shortage problem facing blood donation centers. Two years ago, the startup expanded its Series A round with $26 million in additional financing and plans to make its platelets into cell therapies. Besides immune thrombocytopenia, other diseases the biotech aims to treat include osteoarthritis and liver fibrosis.

PlateletBios latest financing, a Series B round, adds new investors SymBiosis, K2 HealthVentures, and Oxford Finance. Earlier investors Ziff Capital Partners and Qiming Venture Partners also participated in the new round.

This is a major milestone for PlateletBio, adding capital and resources needed to advance our innovative platelet-like cell therapy science and manufacturing platform and support key corporate initiatives over the next 18 to 24 months, Sam Rasty, the startups president and CEO, said in a prepared statement.

Photo by Flickr user Marco Verch via a Creative Commons license

See more here:
Cell therapy biotech PlateletBio reels in $75M as it looks ahead to first clinical test - MedCity News

VDH: Cases surge again to third-worst on record – Vermont Biz

Vermont Business MagazineThe Vermont Department of Healthis reporting today that COVID-19 cases surged again to 376 cases, the third highest on record. This was an increase of 114 from Saturday.Cases Friday were377 and there were 487 cases on Thursday, which was the all-time record. The 12worst days have all come since mid-September, following fromthe Delta variant surge that began in July. There were no additional COVID-related death, which stand at384 statewide.

Based on record high cases this past week, Governor Phil Scott issued a statement Thursday afternoon urging Vermonters to get vaccinated. He said in part, "The simple fact is, this pandemic is being driven by the unvaccinated, including 53,000 eligible adults. The three lowest vaccinated counties account for 25% of todays cases, yet they only make up 10% of our state population. Unvaccinated Vermonters are up to 5 times as likely to contract COVID in Vermont and they account for 70-85% of our hospitalizations and ICU stays. Unvaccinated adults are directly contributing to the strain on our hospital capacity. Enough is enough, its time to step up and get vaccinated something over 90% of your fellow Vermont adults have done."

Cases have been especially high in the Northeast Kingdom, which has had elevated case rates in recent weeks. Chittenden County had the most cases with 83 and Washington County had51.

Meanwhile, the CDC gave final approval late Tuesday for Pfizer vaccines for children 5-11 and parents could start signing up their kids starting Wednesday morning (for vaccine information or to registerCLICK HERE). Shots for 5-11 are available starting Friday at some state clinics and as early as Sunday at some pharmacies.

There are about 44,000 kids in the 5-11 age band in Vermont. Human Services Secretary Mike Smith said there will be plenty of first and second doses available for all who sign up. The doses are a third of the strength of the adult dose and like the adult Pfizer regimen will require a followup shot for full immunity.

See locations of vaccine clinics and case dashboards below.

There are 45 people hospitalized (up thrtee) with 12in the ICU (downtwo).Hospitalizations are high but have been stable.

Recent fatalities have all been amongVermonters 50 and older, with most in the oldest age band, which has been the case since the beginning of the pandemic.

There were 39 COVID-related deaths in Vermont in October, which is the third-worst month on record. There are nine so far in November.

The 11 worst days for cases have all come since mid-September,as the Delta variant has taken oversince early July.

Financial Regulation Commissioner Michael Pieciak said both the case counts and fatalities have not shown dramatic reductions, as they have in other parts of the nation, particularly the South, or even in southern New England.

While the health experts do not understand exactly why this is, given Vermont's high vaccination rate, Pieciak said the three Northern New England states are all showing a similar pattern.

In addition, Health Commissioner Mark Levine, MD, continues to urge Vermontersto get their booster dose, especially if they're over 65. The immunity appears to wane over time and older Vermonters and those immunocompromised were among the first vaccinated last winter.

The elderly have been especially vulnerable to COVID, with the vast majority of fatalities coming among those 80 and over (206total deaths, while having by far the fewest number of infections for any age band.). One death Saturday for 80+.

Thestate announced last Thursday nightthat boosters for Moderna (like already approved Pfizer, six months after second dose) and Johnson & Johnson (two months after first dose)would begin immediately. The CDC is also allowing people to change/ mix and match vaccines.

TheFDA Tuesdayapproved the low-dose Pfizer vaccine for children5-11. Human Services Secretary Mike Smith said if the CDC approves it tonight then the state will allow parents to sign up their kids as early as 8 am tomorrow morning with doses being available as early as Thursday.

He said that in addition to the usual vaccination clinics, the state will also be bringing the vaccine directly to 112 schools around the state, especially to those in outlying areas where transportation or fewer pharmacies could make it more difficult for kids to get their shots.

Dr Rebecca Bell, President, Vermont Chapter of the American Academy of Pediatrics, at the governor's press conference Tuesday, sought to alleviate parents' fears.

She said the efficacy of this lower dose children's vaccine is still 91 percent. And unlike with adults, children in the control group did not show any of the flu-like symptoms that some adults have experienced.

Parents should also take comfort that a vaccinated child would no longer have to quarantine if they were a close contact to someone that tested positive. This issue has kept many kids out of school even though they never contracted COVID.

The Northeast Kingdom has the highest case rate of any region of the state, with Orleans County having the highest county rate, with over 1,000 cases per 10,000 residents. Bennington has the second highest rate with over 900 per 10,000.

Smith said the state will reinstitutepop up vaccination sitesin the NEK to increase vaccination rates, which are the lowest in the state. See list of upcoming NEK clinicsHEREand see below for statewide list of clinics.

COVID cases reported today were high in southern Vermont, with Bennington County alone reporting 34 and Rutland County 24.

But with all three boosters now available, vaccines for kids available and cases apparently declining, Governor Scott said Tuesday,"I'm more hopeful today than I have been in weeks."

Education Secretary Dan French announced Tuesday that the state was once again delaying the roll out of the 80 percent rule for ending school mask mandates. It will not happen go into effect until January 18, 2022, when students return to school after the Martin Luther King Holiday break.

The governor and his staff reiterated that these are recommendations only, because there is no State of Emergency, not mandates. The local school districts, like local businesses and individuals, must make their own rules.

As the Delta variantcontinues to be active in Vermont, Governor Scottiscalling on all Vermonters to act responsibly.

The new school guidance reads:

"To allow school districts time to calculate the percentage of currently eligible students who have received two doses of a two-dose vaccine, schools should require universal masking for all students and staff when indoors until January 18, 2022.

"Currently, all Vermonters ages 12 and older are eligible to be vaccinated.

"After January 18, 2022, masks should no longer be required for all those eligible for vaccination when the vaccination rate (two doses of a two-dose vaccine) among students is equal to or greater than 80% of the schools currently eligible population.

"Masks should be required indoors for students younger than 12, who are not eligible to be vaccinated at this time.

"Masks, when required, may be removed when needed for instructional or operational purposes.

"Masks are currently required for all passengers on buses per federal regulation, regardless of age or vaccination status.

"Masks should not be required outdoors. Guidance will be updated when vaccine eligibility expands."

The state also released school sports guidance Tuesday.

See Vaccination & COVID-19 Dashboards & Vaccination Sites TableBelow

Addison County

New Cases:5

Recent Cases 14 days:91

Bennington County

New Cases:20

Recent Cases 14 days:352

Caledonia County

New Cases:30

Recent Cases 14 days:204

Chittenden County

New Cases:83

Recent Cases 14 days:651

Essex County

New Cases:8

Recent Cases 14 days:90

Franklin County

New Cases:48

Recent Cases 14 days:301

Grand Isle County

New Cases:2

Recent Cases 14 days:26

Lamoille County

New Cases:15

Recent Cases 14 days:134

Orange County

New Cases:14

Recent Cases 14 days:169

Orleans County

New Cases:42

Recent Cases 14 days:334

Pending Validation

New Cases:4

Recent Cases 14 days:6

Rutland County

New Cases:15

Recent Cases 14 days:412

Washington County

New Cases:51

Recent Cases 14 days:283

Windham County

New Cases:6

Recent Cases 14 days:176

Windsor County

New Cases:33

Recent Cases 14 days:261

Most cases in Vermont are in the younger age groups with the 20-29 reporting the most, with nearly 7,300 total cases out of 37,100+, but only one death. The over 79 demographic has the fewest cases (just over 1,200) but by far the most fatalities with 188, or more than half the state total.

Financial Commissioner Michael Pieciak said Tuesday (SEE HIS FULL SLIDE DECK HERE) cases across the nation are falling fast and that the seven-day and 14-day averages in Vermont and the Northeast also are falling but at a slower rate. Vermont's seven-day infection rate is down15 percent. For the 14-day average, while overall it is down 2 percent for those who are fully vaccinated, it's up 9percent for those who are not fully vaccinated (which includes the unvaccinated).

Cases in high vaccination regions of the country are not displaying the typical Delta variant pattern, as in India, of a spike followed by a steep drop off after a couple months.

In Vermont, Delta has shown slow growth and a long plateau. Health Commission Mark Levine suggested that the drop off here could be another couple of weeks off, but he frankly was not sure.

He and Governor Scott and Human Services Secretary Mike Smith all urged that everyone who is eligible to get a vaccine to get one now, to get a booster now and to wear a mask while at an indoor gathering.

Governor Scott said the data shows that virus transmission with Delta is occurring at things like weddings and baby showers and birthday parties, sort of small and medium events where people are gathered for a period of time. It is not happening while visiting a convenience store or other type place where you are in an out, he said. Nor is it happening at outdoor gathering events.

Pieciak,in his COVID-19 Modeling presentation, said deaths seem to have slowed down a little as Delta has taken its toll. There have been 23 in October so far (as of the 21st)

Still, September was the second worst month for COVID-related deaths in Vermont since the beginning of the pandemic, with 45.

December 2020 was the worst with 71 and April 2020 was third worst with 35.

Meanwhile, the state is ramping up antigen testing in schools to keep kids in school who otherwise would be sent home if there were a close contact of someone who tests positive. Children now have a higher rate of infection than adults.

Governor Scott and state officials are urging all those who are eligible now to get vaccinated or get a booster shot, to do so, in order to reduce community transmission of the novel coronavirus (see clinic sites below).

As of October 1, many more Vermonters can now schedule and receive their Pfizer vaccine booster shots. He said there is plenty of vaccine supply.

We know vaccines are safe and effective, and these additional doses add even more protection. So, I encourage anyone who is eligible to register for your booster today, said Governor Scott. At the same time, we continue to urge those who have not yet gotten their first dose to get vaccinated. The data shows we are now in a pandemic of the unvaccinated, and vaccines are the best way to protect yourself, friends and family, and to make sure we continue moving forward from the pandemic.

Governor Scott said that the state will take a very broad interpretation of eligibility.

"We've reflected on this," Scott said. "We'regoing to be quitelenientin terms of whoshould beincluded and if they'd like tohave a booster we'd like to find a wayfor them to have it. So Iexpect that number is substantiallyhigherat this point. So our interpretation ofthis will be,again, quite broad."

Addition of Rapid Testing Tools Will Help Keep More Kids in School

When a student or staff member with COVID-19 is present in school during their infectious period, the school may implement Test to Stay for unvaccinated close contacts.

Unvaccinated, asymptomatic students (ages 5 and up) and staffwho areclosecontacts of a positiveCOVID-19case.

View post:
VDH: Cases surge again to third-worst on record - Vermont Biz

ElevateBio Supercharges Gene Editing and Therapeutic Product Development Capabilities Through Acquisition of Life Edit Therapeutics – Yahoo Finance

- Life Edit's genome editing capabilities to be fully integrated with ElevateBio's other cell and gene enabling technologies, including induced pluripotent stem cells (iPSCs), viral vector, and cellular engineering

- Brings a broad array of editing modalities, including deletion, insertion, base editing, and CRISPRa/CRISPRi

CAMBRIDGE, Mass., October 27, 2021--(BUSINESS WIRE)--ElevateBio, LLC (ElevateBio), a cell and gene therapy technology company focused on powering transformative cell and gene therapies, today announced that it has acquired all of AgBiome Delta, LLCs (AgBiome) shares of Life Edit Therapeutics, Inc. (Life Edit). Life Edit offers a powerful suite of gene editing technologies that have the potential for any genomic sequence of interest to be removed, added, or altered. Life Edit holds one of the world's largest and most diverse arrays of novel RNA-guided nucleases and base editors that offer greater specificity and broad genome access. These nucleases were derived from AgBiome's proprietary non-pathogenic microbe collection, which could potentially reduce immunogenicity risks.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20211027005153/en/

"ElevateBios powerful suite of enabling technologies, which now includes Life Edits genome editing capabilities as well as our existing iPSC, viral vector, and cell engineering platforms, is designed to disrupt the rapidly advancing fields of cell and gene therapy," said David Hallal, Chairman and Chief Executive Officer of ElevateBio. "Our vision is to build a world-class center of excellence in genome engineering to push the boundaries of therapeutic development and drive innovation for our own therapeutic pipeline as well as provide access to these critical technologies to our growing number of industry partners."

"Genome editing is a central component of all cell and gene therapy development, and access to novel RNA-guided nucleases and base editors that offer specificity and broad genome coverage will be critical. We believe Life Edit's technology is one of the most versatile in the field, opening up enormous potential," Mitchell Finer, Chief Executive Officer of Life Edit and President, R&D of ElevateBio. "This integration will also enable Life Edit to have greater access to ElevateBios drug development and manufacturing capabilities as we build and advance the pipeline, which will initially focus on developing in vivo gene therapies to address neurologic conditions with high unmet need. In addition, by combining Life Edit's gene engineering capabilities with ElevateBios iPSC technology, our goal is to expand the number of therapeutic uses, including potentially making universal or hypoimmune cells that go undetected by the immune system."

Story continues

Life Edit was spun out of AgBiome in October 2020 and AgBiome continues to retain rights for gene editing outside of human therapeutics.

About Life Edit Therapeutics:Life Edit has one of the world's largest and most diverse arrays of novel RNA-guided nucleases and base editors active in mammalian cells. They were developed from a proprietary collection of non-pathogenic organisms and offer gene editing tools with higher fidelity, novel functionality, reduced immune response risk, and easier delivery. Life Edit has a large and diverse library of RNA-guided nucleases, including Type II and Type V systems that encompass knock-out and knock-in capabilities, transcriptional regulation, and base editing when coupled with one of our proprietary deaminases. The company's nuclease collection has a broad range of Protospacer Adjacent Motifs (PAMs). These short sequences must accompany the DNA sequence for the enzyme to edit a gene, which offers unprecedented access to genomes. Life Edit has identified several classes of DNA modifying enzymes, including novel deaminases that can edit cytidine (C) or adenine (A). Many of the company's RGNs are smaller than widely used CRISPR-Cas systems, offering ease and flexibility for in vivo delivery and manufacturing.

Life Edit is headquartered in Morrisville, NC. Visit us at http://www.lifeeditinc.com, or follow Life Edit on LinkedIn and Twitter.

About ElevateBio:ElevateBio is a cell and gene therapy technology company built to power the development and manufacturing of transformative cell and gene therapies today and for many decades to come. The company has assembled industry-leading talent, built world-class facilities, and integrated diverse technology platforms necessary for rapid innovation and commercialization of cell, gene, and regenerative therapies. The company has built an initial technology stack, including gene editing, induced pluripotent stem cells, and protein, viral, and cellular engineering, that can be leveraged across the entire portfolio and by strategic partners. At the center of the business model is ElevateBio BaseCamp, a centralized research and development (R&D) and manufacturing company that offers R&D, process development (PD), and Current Good Manufacturing Practice (CGMP) manufacturing capabilities. The company is focused on increasing long-term collaborations with industry partners while also developing its own highly innovative cell and gene therapies. ElevateBio's team of scientists, drug developers, and company builders are redefining what it means to be a technology company in the world of drug development, blurring the line between technology and healthcare.

ElevateBio is located in Waltham, MA. Visit us at http://www.elevate.bio, or follow ElevateBio on LinkedIn, Twitter, or Instagram.

View source version on businesswire.com: https://www.businesswire.com/news/home/20211027005153/en/

Contacts

Investor: Catherine Hu chu@elevate.bio 646-535-8276

Media: Courtney Heath ScientPR Courtney@scientpr.com 617-872-2462

See the original post here:
ElevateBio Supercharges Gene Editing and Therapeutic Product Development Capabilities Through Acquisition of Life Edit Therapeutics - Yahoo Finance

ReNeuron enters cancer therapy collaboration with UCL – ShareCast

Cell-based therapeutic specialist ReNeuron has entered a collaboration agreement with University College London (UCL), it announced on Tuesday, to conduct research into the generation of immune cells from induced pluripotent stem cells (iPSCs), for anti-cancer cell therapies.

The AIM-traded firm said it would be working alongside Dr Claire Roddie, associate professor at the UCL Cancer Institute, and the team at the UCL CAR-T cell cancer therapy programme.

It said it would provide UCL with iPSCs from its CTX immortalised neural progenitor cell line to be assessed for their ability to differentiate into functional T cells and natural killer (NK) cells.

If this first objective was met, the CTX-iPSC cell line would be further used to generate chimeric antigen receptors (CAR) T cells, or CAR-NK cells.

ReNeuron explained that CARs allow T and NK cells to target receptors present on the surface of cancer cells, allowing them to recognise and specifically kill tumour cells.

Dr Roddie and her team had extensive expertise in generating CAR cells, the company said, adding that both groups would work collaboratively to generate haematopoietic stem cells, lymphoid progenitors and cytotoxic T cells from the CTX-iPSCs.

We are very much looking forward to working with Dr Roddie and her team at UCL in this exciting and rapidly growing research space, said chief scientific officer Dr Stefano Pluchino.

This collaboration is another strong development for ReNeuron which demonstrates the uniqueness and strong translational potential of our proprietary iPSC technology platform and will allow us to further expand into the oncology space.

If this initial research is successful, significantly large numbers of cancer patients can be treated with next generation alternate cancer therapies.

At 1243 BST, shares in ReNeuron Group were up 4.91% at 119.6p.

Continued here:
ReNeuron enters cancer therapy collaboration with UCL - ShareCast

Shah on the Potential Utility of NK Cells in Multiple Myeloma – OncLive

Nina Shah, MD, discusses the potential utility of natural killer cells in multiple myeloma.

Nina Shah, MD, hematologist and oncologist, associate professor of medicine, Department of Medicine, University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, discussesthepotential utility of natural killer (NK) cells in multiple myeloma.

NK cells are a potential type of allogeneic cellular therapy for patients with multiple myeloma, explains Shah. However, a challenge with NK cells is that there are not as many NK cells as other cells; therefore, NK cells need to be expanded and often engineered, Shah explains. One example of engineeringinducibleNK cells is being evaluated by Fate Therapeutics. The NK cells are engineered from a human induced pluripotent stem cellbank to then be cultured, Shah adds.

Moreover, the NK cells strongly express CD16 and Fc receptor on the cell surface. Additionally, CD38 is engineered so utilizing daratumumab (Darzalex) is an option with both engineering tactics, Shah continues. Additionally, the cells are engineered in the context of CAR so targeting BCMA is an option to kill cells. An IL-15 receptor fusion protein was also engineered to allow the NK cells to persist. Preclinical data have shown that the cells are active and persistent, Shah explains.

Overall, more data are anticipated, which will include patients with relapsed/refractory multiple myeloma who received NK cells with a monoclonal antibody, such as daratumumab, Shah explains. Moreover, this approach would be given off-the-shelf, which could open an accessible option to patients, Shah concludes.

See original here:
Shah on the Potential Utility of NK Cells in Multiple Myeloma - OncLive

Exacis Biotherapeutics Announces Strategic Partnership With CCRM For Specialty Manufacturing Of Services And Investment For Development Of…

Cambridge, MA, - Exacis Biotherapeutics, Inc., a development-stage immuno-oncology company working to harness the immune system to cure cancer, today announced initiation of a strategic partnership with Toronto-based Centre for Commercialization of Regenerative Medicine (CCRM) for specialty manufacturing services related to the development of Exacis innovative, iPSC-derived mRNA-engineered NK cell products to treat cancer. The partnership also includes a cash investment into Exacis by CCRM Enterprises Holdings Ltd., the for-profit venture investment arm of CCRM, which will be used to fund operations.

Exacis CEO Gregory Fiore, MD, commented, We welcome CCRM as a key partner to allow us to rapidly advance our virus-free manufacturing processes to make novel NK cell products that are engineered for performance and to avoid rejection. CCRM is a recognized leader in iPSC-derived cell therapy development and manufacturing and we are thrilled to have them as a partner. Their confidence in Exacis is evidenced by the accompanying investment, by CCRM Enterprises Holdings Ltd., underscoring the unique value proposition offered by Exacis differentiated platform and approach to cell therapies. We look forward to partnering with CCRMs CDMO experts to apply our mRNA based technologies to develop best-in-class products to treat challenging hematologic and solid tumors.

Cynthia Lavoie, PhD, President and CIO of CCRM Enterprises Inc. added, We are pleased to support Exacis by way of an investment, and with our sector expertise and specialized infrastructure. This is a successful model that we have employed in the past to support promising technologies and together we will develop leading cell therapy products that utilize the substantial potential of the Exacis platform as it advances its iPSC-derived cell programs.

About Exacis Biotherapeutics

Exacis is a development stage immuno-oncology company focused on harnessing the human immune system to cure cancer by engineering next generation off-the-shelf NK and T cell therapies aimed at hematologic malignancies and solid tumors. Exacis was founded in 2020 with an exclusive global license to a broad suite of patents covering the use of mRNA based cell reprogramming and gene editing technologies for use in generating engineered NK and T cells for oncology applications. These patents were developed and are owned by Factor Bioscience.

Exacis differentiated cell therapy platform avoids the use of DNA and viruses and uses instead a proprietary mRNA based technology. Exacis uses the technology to generate iPSCs and to edit their genomes to create stealthed, potent allogeneic cell products, termed ExaNK, ExaCAR-T or ExaCAR-NK cells.

About CCRM

CCRM is a global, public-private partnership headquartered in Toronto, Canada. It receives funding from the Government of Canada, the Province of Ontario, and leading academic and industry partners. CCRM supports the development of regenerative medicines and associated enabling technologies, with a specific focus on cell and gene therapy. A network of researchers, leading companies, strategic investors and entrepreneurs, CCRM accelerates the translation of scientific discovery into new companies and marketable products for patients, with specialized teams, funding and infrastructure. CCRM is the commercialization partner of the University of Toronto's Medicine by Design. CCRM is hosted by the University of Toronto. Visit us at ccrm.ca.

About CCRMEnterprises Inc.

CCRMEnterprises Inc. is the for-profit venture investment arm of the Centre for Commercialization of Regenerative Medicine (CCRM).CCRM Enterprises invests in early stage ventures and projects developing therapeutics and enabling technologies. Through an extensive network of investors, it can bring together risk capital to support these early-stage ventures as they scale up along the development pathway.By tapping into CCRMs manufacturing infrastructure and expertise, CCRM Enterprises provides capital-efficient support to accelerate and de-risk these high potential, early-stage ventures, further enabling the development of an advanced therapies ecosystem. CCRM Enterprises Holdings Ltd. is the associated entity that holds shares in CCRM portfolio companies. Learn more about our investing strategy here.

About T and Natural Killer (NK) Cell Therapies

T and NK cells are types of human immune cells that are able to recognize and destroy cancer cells and can be modified through genetic engineering to target specific tumors.

Contact Exacis Biotherapeutics for further information and media:

Exacis Biotherapeutics info@exacis.com

View original post here:
Exacis Biotherapeutics Announces Strategic Partnership With CCRM For Specialty Manufacturing Of Services And Investment For Development Of...