Vita Therapeutics Raises $32 Million in Oversubscribed Series A Financing Led by Cambrian Biopharma to Advance the Development of Therapies to Treat…

BALTIMORE, Md.--(BUSINESS WIRE)--Vita Therapeutics, a cell engineering company harnessing the power of genetics to develop cellular therapies that follow an autologous and universal hypoimmunogenic approach, today announced the completion of an oversubscribed $32 million Series A. The financing was led by Cambrian Biopharma with participation from Kiwoom Bio, SCM Life Sciences, and Early Light Ventures.

At Vita Therapeutics our mission is to deliver long-term disease-modifying cell engineered treatments for patients living with muscular dystrophies and other high unmet medical needs, said Douglas Falk, M.S., Chief Executive Officer of Vita Therapeutics. We are pleased this high-caliber group of new and existing investors share our enthusiasm and belief in Vitas ability to progress our innovative treatments to help these patients. This oversubscribed round of financing will enable the company to take the next steps toward achieving our mission.

"Cell therapies have two grand challenges - getting enough cells and differentiating them into the right cell type to make a long-term impact on a patient's disease," said James Peyer, PhD., newly appointed board member of Vita and Chief Executive Officer of Cambrian Biopharma. By mastering the transition from iPSC to muscle stem cell, Vita can make an unlimited amount of carefully defined muscle stem cells, which has never been possible before. I am so glad to count Vita as a Cambrian affiliate, and I have no doubt Vita will become a genre-defining cell therapy company.

Vitas lead therapy, VTA-100, is currently undergoing investigational new drug (IND)-enabling studies for the treatment of limb-girdle muscular dystrophy (LGMD) 2A/R1. It is designed to be an autologous treatment that combines gene correction and induced pluripotent stem cell (iPSC) technology to help repair and replace muscle cells. Vitas second therapeutic, VTA-200, is a genetically engineered iPSC derived hypoimmunogenic treatment designed to treat multiple types of muscular dystrophy.

The Series A financing will support the completion of all remaining IND-enabling studies for VTA-100 and its subsequent IND submission to the U.S. Food and Drug Administration. This funding will also support the manufacturing of cells needed for clinical evaluation as well as patient recruitment efforts for the first clinical trial. In addition, this financing will be used to further the development of VTA-200 and the development of VTA-300, an undisclosed cell type.

About Limb-Girdle Muscular Dystrophy

Limb-girdle muscular dystrophy (LGMD) is a group of disorders that cause weakness and wasting of muscles closest to the body (proximal muscles), specifically the muscles of the shoulders, upper arms, pelvic area, and thighs. The severity, age of onset, and disease progression of LGMD vary among the more than 30 known sub-types of this condition and may be inconsistent even within the same sub-type. As the atrophy and muscle weakness progresses, individuals with LGMD begin to have trouble lifting objects, walking, and climbing stairs, often requiring the use of assistive mobility devices. There is currently no cure for LGMD, with treatments limited to supportive therapies such as corticosteroids.

About Vita Therapeutics

Vita Therapeutics, a Cambrian Biopharma affiliate, is a cell engineering company harnessing the power of genetics to develop cellular therapies that follow a dual manufacturing strategy, first beginning autologously before moving to a universal hypoimmunogenic cell line. Vita was originally founded out of the labs of Dr. Gabsang Lee and Dr. Kathryn Wagner at Johns Hopkins University and the Kennedy Krieger Institute in 2019 by Douglas Falk, M.S. and Peter Andersen, PhD. The company utilizes induced pluripotent stem cell (iPSC) technology to engineer specific cell types designed to replace those that are defective in patients. We are currently working to progress our lead therapeutic, VTA-100, for the treatment of limb-girdle muscular dystrophy (LGMD), into clinical trials. For more information and important updates, please visit http://www.vitatx.com or follow us on Twitter @Vita_Tx and LinkedIn.

See more here:
Vita Therapeutics Raises $32 Million in Oversubscribed Series A Financing Led by Cambrian Biopharma to Advance the Development of Therapies to Treat...

Updates in the treatment of peripheral T-cell lymphomas | JEP – Dove Medical Press

Introduction

Peripheral T-cell Lymphomas (PTCLs) represent a relatively rare disease accounting for 610% of all cases of non-Hodgkin lymphomas (NHLs) in western countries.1 The incidence of PTCLs exhibits a geographical dependence, reaching 2025% of NHLs in some parts in Asia and South America.2 PTCLs constitute a heterogeneous group of hematologic malignancies that differ in clinical behavior and anatomical location. The World Health Organization (WHO) recognizes at least 29 distinct entities of mature post thymic T-cell NHLs in the updated classification of hematological and lymphoid neoplasms.3 The last classification proposed several provisional subtypes and introduced the T-follicular helper (TFH) phenotype. TFH lymphoma and nodal T-cell lymphoma with TFH phenotype are thus separate subtypes different from PTCLs not otherwise specified (PTCL-NOS). PTCLs could be anatomically classified as nodal, extranodal, cutaneous and leukemic forms (Table 1). The most frequent subtypes are PTCL-not otherwise specified (NOS) (30% of PTCLs), angioimmunoblastic T-cell lymphoma (AILT; 1530% of PTCLs), anaplastic large T-cell lymphoma (ALCL; 15% of PTCLs), extranodal natural killer (NK) cell/T cell lymphoma (ENKTCL; 10% of PTCLs), and intestinal T cell lymphomas (~56% of PTCLs, including enteropathy-associated T cell lymphoma (EATL) and monomorphic epitheliotropic intestinal T cell lymphoma (MEITL).4 Adult T-cell leukemia/lymphoma (ATLL) is most commonly diagnosed in countries with a high prevalence of human T-cell lymphotropic virus type 1 (HTLV-1) infection, especially in Japan and the Caribbean.5 The intrinsic variability of PTCLs and their scarcity had stymied progress in the treatment outcome. Despite the recent major advances in the understanding of PTCLs, including new laboratory methods for diagnosis and new therapeutic approaches, the prognosis of the majority of PTCLs remains poorer than with aggressive B-cell lymphoma, except for anaplastic lymphoma kinase (ALK)-positive ALCL. The 5-year overall survival (OS) for ALK+ ALCL, ALK- ALCL, AITL, and PTCL-NOS is 80.2%, 44.7%, 35.4%, and 25.4%, respectively.6 This review aims to discuss the molecular and genetic patterns of PTCLs, first-line treatment including bone marrow transplantation, as well as treatment of relapsed/refractory PTCLs and future therapeutic directions.

Table 1 Mature T-Cell and NK-Cell Neoplasm Based on the WHO 2016 Classification

As previously mentioned, there are 29 different subtypes of PTCLs according to the 2016 WHO classification. PTCL-NOS harbors no specific characteristic immunophenotype. However, two subgroups have been identified using the Gene Expression Profiles (GEPs) with different gene expression driven by the transcription factors TBX-21 or GATA-3. The GATA-3 PTCL-NOS subgroup has significantly poor survival outcomes.7,8

Patients with ALK+ ALCL most frequently present t(2;5) that fuses nucleophosmin gene (NPM) with the ALK gene leading to an oncogenic tyrosine kinase (NPM-ALK) that promotes signaling of the JAK/STAT pathway. GEPs showed hyperactivation of STAT3 in ALCL caused mainly by ALK rearrangements or activating mutations in the JAK/STAT pathway. Based on rearrangements revealed by cytogenetics, ALK negative patients could be classified into three groups: DUSP22 +, TP63 +, and triple negative group (ALK-, DUSP22- and TP63-). ALK-negative ALCLs have chromosomal rearrangements of DUSP22 or TP63 in 30% and 8% of the cases respectively. DUSP22-rearranged cases have favorable outcomes similarly to ALK+ ALCLs, whereas other genetic variants have inferior outcomes.9

The molecular profiling of other PTCLs revealed several mutations of genes involved in DNA methylation such as TET2, IDH2 and DNMT3.10 TET2 mutations have been described in 47% of patients with AITL, and in 38% of patients with PTCL-NOS. This high incidence in PTCL-NOS is probably related to the TFH phenotype being included in this subgroup in the previous 2008 WHO classification.11 Furthermore, 76% of patients with AITL have TET2 mutations.10 DNMT3A mutations occurred in 33% of patients with AITL, and are frequently associated with TET2 mutations (100% of the patients with reference to Odejide et al). IDH2 mutations, initially reported in patients with acute myeloid leukemia (AML) and Glioblastoma Multiforme, had also been found in 20 to 45% of patients with AITL, and were detected in different loci.12 Moreover, IDH2 mutations co-occur frequently with TET2 mutations.10 These mutations are highly reported in patients with AITL (67%), and less frequently in patients with PTCL-NOS (18%). RHOA mutations do not seem to have an epigenetic influence, despite being associated with T-cell proliferation and invasiveness.13,14 GEPs revealed multiple mutations in patients with ATLL such as RHOA, TET2, loss-of-function mutations in TP53, and overexpression of PD-L1.15

Other interesting mutations in PTCLs are those affecting T-cell receptor (TCR)-related genes such as PLCG1 (14%), CD28 (9%, exclusively in AITL), PI3K elements (7%), CTNNB1 (6%), and GTF2I (6%). More importantly, most variants in TCR-related genes represent gain-of-function mutations that could be addressed by new potential drugs.16

Activating mutations in TCR pathway genes had also been reported especially in patients with AITL and PTCL-NOS leading to lymphomagenesis by activating NF-kB pathway. The most common mutation leads to PLCG1 and was also described in CTCL.17

Due to the paucity of randomized clinical trials in this setting, no clear gold standard exists for the treatment of patients with newly diagnosed PTCLs. Treatment regimens are extrapolated from those initially developed in aggressive B-cell lymphoma. CHOP (cyclophosphamide, Adriamycin, vincristine and prednisolone) or CHOP-like regimens have been widely considered as the standard of care in patients with newly diagnosed PTCLs. Controlled studies are rare and the largest studies in PTCLs are retrospective. Up to one-third of patients with PTCLs may progress during first-line treatment.18 The adoption of CHOP regimen was initially based on the results of a large randomized phase III clinical trial of patients with high-grade and/or advanced stage B-cell or T-cell NHLs. This study compared CHOP with more dose-dense regimens (MACOP-B, ProMACE-CytaBOM and m-BACOD), and failed to demonstrate a significant benefit when compared to CHOP.19 Reyes et al found that ACVBP was superior to CHOP in patients with low-risk localized aggressive lymphoma.20 More intense chemotherapy regimens such as hyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone followed by methotrexate and cytarabine) and DA-EPOCH (dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) showed good results in terms of response rate and progression-free survival (PFS), but at the cost of higher myelosuppression rates leading to poor treatment adherence and early deaths.21,22 Retrospective and non-randomized studies suggested that the addition of etoposide to CHOP (CHOEP) in young and fit patients could be associated with a better outcome.23,24

More recently, the results of the first multicenter, double blind, randomized, placebo-controlled phase III trial in PTCLs were reported. The ECHELON-2 compared brentuximab vedotin (BV), cyclophosphamide, doxorubicin and prednisone (BV + CHP) with the standard CHOP regimen in previously untreated CD30+ PTCLs. The study met its primary endpoint of PFS, demonstrating the superiority of BV containing regimen. At a median follow-up of 36 months, BV + CHP was associated with significantly longer PFS than CHOP: 48.2 months (95% CI, 35.2-not reached) vs 20.4 months (95% CI, 12.747.6), with a hazard ratio 0.71 (95% CI, 0.540.93, p=0.0110). The 3-year PFS rate was 57.1% (95% CI, 49.963.7%) for the BV + CHP arm versus 44.4% (95% CI, 37.650.9%) for the CHOP arm. The two groups had similar adverse events, including incidence and severity of febrile neutropenia (41 [18%] patients in the BV + CHP group and 33 [15%] in the CHOP group) and peripheral neuropathy (117 [52%] in the BV + CHP group and 124 [55%] in the CHOP group).25 In addition, more than 70% of patients included in the trial had ALCL including ALK+ or ALK- disease, an entity characterized by high expression of CD30. Importantly, the inclusion criteria of the ECHELON-2 trial required an expression of at least 10% of CD30 on tumor cells. Based on the results of this trial, The Food and Drug Administration (FDA) approved the BV + CHP regimen in patients with CD30+ PTCLs in November 2018.26 Nowadays, most experts recognize BV + CHP treatment as standard of care for patients with any level CD30+ ALCL. However, the debate concerning the extrapolation of the results to other histologic subtypes continues since the ECHELON-2 trial was not powered enough to answer this question by performing histology-based subgroup analysis. In fact, the European Medicines Agency (EMA) restricted the approval of BV + CHP to the patients with CD30+ systemic ALCL only.

Histone deacetylase inhibitor (HDACi) romidepsin can be combined with CHOP in the first-line setting.27 It has been investigated in a phase III randomized double-blind trial in comparison with standard CHOP. The addition of romidepsin to CHOP did not improve PFS, the primary endpoint of the study. In addition, response rates and OS were similar with the combination.28 Other combinations are ongoing in for previously untreated PCTLs patients, and are summarized in Table 2.

Table 2 Novel Combinations Under Investigation in Previously Untreated PTCLs

The role of autologous stem cell transplantation (ASCT) in patients with PTCLs is controversial due to limited data, heterogeneous populations in the current studies, and the lack of randomized trials clearly evaluating ASCT procedure. ASCT has been investigated to prevent the high relapse rate in chemosensitive patients.29 The largest prospective studies based on cohort or registry were conducted by the Nordic Lymphoma Group, the German Group, Lysa French group, and United States of America group. The Nordic Lymphoma Group trial enrolled 160 patients with a confirmed diagnosis of PTCLs excluding those with ALK+ ALCL. Patients received 6 cycles of biweekly CHOEP-14 except for those aged 60 years and older who received CHOP-14. One hundred fifteen patients underwent ASCT. At a median follow-up of 60.5 months, OS rate was 51% and PFS rate was 44%. Patients with ALK ALCL had the highest OS and PFS (70% and 61%, respectively) compared with other histological subtypes (PTCL-NOS, AITL and EATL). The differences between the four groups were not statistically significant.30 In the German study, the second largest prospective trial reported by Reimer et al, 83 patients with newly diagnosed PTCLs were enrolled. Patients received 4 to 6 cycles of CHOP followed by mobilization, and those who were in CR or PR underwent myeloablative chemo-radiotherapy (fractionated total-body irradiation and high-dose cyclophosphamide) and ASCT. Fifty-five (66%) of the 83 patients received transplantation. The main reason for not receiving ASCT was progressive disease. At a median follow-up of 33 months, the estimated 3-year OS was 48% for the intention-to treat population. Failure to achieve CR was associated with markedly inferior results.31 More recently, the role of up-front ASCT in PTCLs for responders after induction was reported by the French LYSA study. Two hundred sixty-nine patients were analyzed; they had mostly PTCL-NOS, AITL, or ALK+ ALCL with partial (N = 52, 19%) or complete response (N = 217, 81%) after induction. One hundred and thirty-four patients were allocated to ASCT in ITT, and 135 were not. The median PFS was 3.7 years, and the median OS was 8.4 years for the entire cohort. No OS difference was observed according to histological subtype. The authors failed to depict a survival advantage in favor of ASCT as a consolidation procedure for patients who responded after induction. Subgroup analyses did not reveal any further difference for patients with respect to response status, stage disease, or risk category.29 Moreover, a large multi-center prospective study was reported from the COMPLETE registry (Comprehensive Oncology Measures for Peripheral T-cell Lymphoma Treatment).This cohort compared the survival outcomes in patients with nodal PTCLs who received or not consolidative ASCT in the upfront setting. The authors did not find any statistical difference in terms of survival between the ASCT and non-ASCT groups. They also suggested that subgroups of patients with nodal PTCLs, especially those with AITL and/or high-risk features (advanced-stage disease or intermediate-to-high IPI scores), might benefit from consolidative ASCT in terms of initial complete response.32

Collectively, these results did not sufficiently support the use of ASCT for up-front consolidation in patients with PTCLs in complete or partial response after induction therapy. The role of consolidative ASCT after first remission needs to be defined in prospective randomized trials.

Evidence for ASCT in the relapsed/refractory (R/R) setting is scarce and comes from registry data and retrospective studies. The results suggest that the outcomes could be improved with the use of consolidation HSCT, with the most benefiting group being the ALCL subtype, reaching a 3-years OS of 50% and a PFS of 65%.33 Data from the CIBMTR registry revealed no significant difference in survival between ASCT and allogenic stem cell transplantation (SCT), although a 34% TRM was reported with allogenic SCT by contrast to only 6% with ASCT.34 All these results show that SCT could be considered for eligible patients in the salvage setting and in chemotherapy-sensitive patients who have never had it before.

The role of allogenic SCT has been investigated recently by a randomized Phase 3 trial comparing ASCT and allogenic SCT as part of first-line therapy in poor-risk PTCL patients.35 Patients received conventional chemotherapy with 4 cycles of CHOEP and 1 cycle of DHAP followed by intensification. Patients were randomized to receive BEAM followed by ASCT or myeloablative conditioning (fludarabine, busulfan, cyclophosphamide) followed by allogenic SCT from a matched related or unrelated donor. One hundred and three patients were enrolled (ASCT: 54, allogenic SCT: 49), of whom 36 35%) could not proceed to transplantation mostly due to early disease progression. The 3-year event-free survival (EFS) and OS did not significantly differ between allogenic SCT and ASCT (EFS: 43% vs 38%, p=0.58, and 57% vs 70%, p=0.41 respectively). However, the treatment-related mortality (TRM) after allogenic SCT was 31%, with no reported deaths after ASCT. In younger patients with T-cell lymphoma, standard chemotherapy consolidated by either autologous or allogeneic transplantation result in comparable survival, thus eliminating a role for allogenic stem cell transplantation in the first-line setting.35 These results are in line with the retrospective analysis of the MD Anderson Cancer Center for patients with PTCLs that failed to show any difference in outcomes between ASCT and allogenic SCT. In addition, a CR prior to SCT initiation was associated with improved outcomes.36

In a prospective Phase II trial, Corradini et al evaluated the graft-versus-lymphoma effect of reduced-intensity conditioning (RIC) (thiotepa, cyclophosphamide and fludarabine) followed by allogenic SCT in relapsed PTCLs. Seventeen patients were enrolled, of whom two had chemo-refractory disease and 15 had relapsed disease. Eight patients (47%) had disease relapse after ASCT. Salvage therapy consisted of 4 to 6 cycles of DHAP followed by RIC and allogenic SCT. At a median follow-up of 28 months, the estimated 3-year OS and PFS rates were 81% and 64% respectively, and the transplantation-related mortality rate was 12%. Donor lymphocyte infusions induced a response in two patients progressing after transplantation, suggesting the existence of a graft-versus-lymphoma effect.37

Zain et al retrospectively reported the results of a case series of patients with R/R PTCLs, undergoing related or unrelated donors allogenic SCT between 2000 and 2007. Thirty-seven pretreated patients were enrolled, 68% (25 patients) of whom had either relapsed or progressive disease. All patients were ineligible for ASCT. Thirteen patients received fully ablative conditioning regimens, while 24 patients underwent reduced-intensity conditioning. The 5-year OS and PFS were 52.2% and 46.5%, respectively. At the time of analysis, nine (24.3%) patients had either relapsed (n = 6) or progressed (n = 3) post allogenic SCT. At 5 years, the cumulative incidences of non-relapse and relapse/progression mortality were 28.9% and 24.3%, respectively. There were no statistically significant predictors for survival or relapse by univariate Cox regression analysis of disease and patient characteristics; differences between CTCL and other histologies were not significant. The relapse/progression curves reached and maintained a plateau after 1 year post-transplant, demonstrating that long-term disease control is possible after allogenic SCT in patients with PTCLs with advanced disease.38 Collectively, these results indicate that allogenic SCT remains an option in patients with R/R PTCLs.

In relapsing patients, the subsequent treatment is not clearly defined. Conventional chemotherapy and/or autologous or allogenic SCT may result in disease control in a small number of patients. New drug development is the most promising way to improve survival for patients with R/R disease. Over the past decade, the FDA approved 4 new agents for the treatment of R/R PTCLs: pralatrexate, romidepsin, belinostat, and brentuximab vedotin. Two other drugs are approved in China and Japan. These molecules showed a single-agent activity based on the results of published phase II trials summarized in Table 3. However, the EMA did not recognize pralatrexate, romidepsin, and belinostat for the treatment of patients with PTCLs. In fact, these agents were associated with a good response rate, yet the PFS remains largely unchanged in this high risk group of patients.

Table 3 Approved Agents for the Treatment of PTCLs

Pralatrexate, a novel folate analogue metabolic inhibitor with high affinity for reduced folate carrier type 1 (RFC-1), was the first drug approved for the treatment of relapsed and/or refractory PTCLs in September 2009 based on the results of the PROPEL study (Pralatrexate in Patients with Relapsed or Refractory Peripheral T-Cell Lymphoma). Pralatrexate was given intravenously weekly at a dosage of 30mg/m2 for 6 weeks in a 7-week cycle. The ORR was 29%.39 Maruyama et al reported the results of a Japanese phase I/II trial evaluating pralatrexate in 20 patients with R/R PTCLs. The ORR was 45%, including two CR; median PFS was 150 days. The median duration of response (DOR) and OS were not reached, and the safety profile was comparable to the PROPEL study.40 More recently, Hong et al published the outcomes of a single-arm multicenter study of 71 patients with R/R PTCLs after a median of two previous treatment lines. The ORR was 52% with a median DOR of 8.7 months, median PFS of 4.8 months, and median OS of 18.0 months.41 This suggests that earlier treatment with pralatrexate may be associated with better clinical outcome.

Romidepsin is a bicyclic class 1 selective HDAC inhibitor. It has been isolated form Chromobacterium violaceum. In June 2011, the FDA approved romidepsin for the treatment of patients with R/R PTCLs who have progressed after at least one systemic therapy regimen. In a phase II trial conducted by the National Cancer Institute, the ORR with romidepsin in patients with R/R PTCLs was 38%, and the median DOR was 8.9 months.42 The pivotal registration-directed phase II trial enrolled 130 patients who were treated with romidepsin 14mg/m2 intravenously on days 1, 8 and 15 every 28-day cycle. Coiffier et al reported an ORR of 25% including 15% CR/CRu (unconfirmed CR) with a median PFS of 4 months and median DOR of 28 months among responders, leading to an accelerated FDA approval.43

Belinostat, a hydroxamic acid-derived pan-class I and II HDAC inhibitor, has also been approved by the FDA in July 2014 for the treatment of patients with R/R PTCLs who failed at least one previous treatment line. This was based on the results of the pivotal phase II BELIEF trial, a multicenter open label trial of belinostat in patients with relapsed or refractory T-cell lymphoma. A total of 129 patients were enrolled and received 1000mg/m2 of belinostat on days 15 in 21-day cycles. The median number of previous treatment lines was 2, and the authors reported an ORR of 25.8% including 10.8% CRs. Patients with PTCL-NOS achieved an ORR of 23%, those with AITL had an ORR of 46%, and patients with ALK- ALCL had an ORR of 15%. The median DOR, PFS and OS were 13.6 months, 1.6 months, and 7.9 months, respectively.44

Chidamide is an oral class I/II HDAC inhibitor that has been studied in a pivotal Chinese phase II trial in patients with R/R PTCLs (mainly PTCL-NOS, ALCL, ENKTL, and AITL). Eighty-three patients had been enrolled and received chidamide 30 mg orally twice per week. The ORR was 28% including 14% of CR/CRu. The median PFS was 2.1 months and the median OS was 21.4 months.45 Based on these results, chidamide was approved only in China for the treatment of patients with R/R PTCLs.

Brentuximab vedotin is the fourth drug approved by the FDA for the treatment of patients with R/R ALCL in August 2011, and extended for primary CTCL and CD30-expressing Mycosis Fungoides in November 2017. In a pivotal phase II trial, BV was evaluated for patients with R/R systemic ALCL. It was administered intravenously as single-agent at a dose of 1.8mg/kg every 3 weeks for up to 16 cycles. Fifty-eight patients were enrolled; the ORR was 86% with 57% of CR, and the median PFS was 13.6 months. Among patients who achieved CR, 5-year OS was 79% and 5-year PFS was 57%.46 These data led to approval of BV in the USA, European Union, and Japan for patients with sALCL. Many ongoing trials are evaluating the combination of BV with other drugs in both relapsed and upfront settings.

Mogamulizumab is a defucosylated humanized IgG1 monoclonal antibody that targets CC chemokine receptor 4 (CCR4) which is mainly expressed in ALK- ALCL, PTCL-NOS, AITL, and transformed mycosis fungoides. It was approved in Japan for patients with R/R CCR4+ ATLL and cutaneous T-cell lymphoma based on the results of a multicenter phase II trial evaluating mogamulizumab for the treatment of patients with relapsed ATLL. The study enrolled 28 patients who received intravenous infusions of mogamulizumab once per week for 8 weeks at a dose of 1.0 mg/kg. The ORR was 50% including 30% of CR. Median PFS and OS were 5.2 months and 13.7 months, respectively.47 Furthermore, mogamulizumab was approved in the USA for the treatment of R/R mycosis fungoides and Sezary syndrome.

Crizotinib, an oral ALK-ROS1-MET inhibitor, was associated with an ORR of 90% in a pediatric study of 26 patients having R/R ALK+ ALCL with a good safety profile. Among the 23 patients who achieved a response, 39% maintained their response for at least 6 months, and 22% maintained their response for at least 12 months.48 Crizotinib was approved by the FDA for the treatment of patients with R/R ALK+ ALCL in children and young adults in January 2021.

Duvelisib, an oral PI3K-delta-gamma inhibitor was associated with an ORR of 50% in PTCL, and 31.6% in CTCL with 3 complete responses in a phase II trial when used as monotherapy for patients with R/R PTCLs.49 Everolimus, an oral mammalian target of rapamycin (mTOR) pathway inhibitor, given at 10 mg daily continuously resulted in an ORR of 44% in a phase II trial of 16 patients with R/R PTCL. The median PFS was 4.1 months and the median OS was 10.2 months. Six patients (38%) required a dose reduction to 5mg daily.50

Hypomethylating agents (HMAs), initially approved for the treatment of AML and myelodysplastic syndrome, have been studied in R/R PTCLs. HMAs are the pharmacologic counterbalance of epigenetics modified tumor by IDH2, TET2 and DNMT3A mutations.12 5-Azacitidine used as monotherapy at a dose of 75 mg/m2 subcutaneously for 7 consecutive days every 28-days cycle in patients with AITL was associated with an ORR of 75% (9/12) and CR rate of 50% (6/12). Patients presented durable responses with a median PFS and OS of 15 and 21 months, respectively.51 An ongoing phase III trial is comparing oral 5-Azacitidine with investigators choice therapy (romidepsin, bendamustine or gemcitabine) in patients with R/R AITL (NCT03593018).

Lenalidomide, an immunomodulatory agent targeting cereblon and aiolos/ikaros transcription factors and approved in B-cell NHL and multiple myeloma, has shown modest activity when used as monotherapy in the EXPECT phase II trial with an ORR of 22%.52 In patients with R/R ATLL, lenalidomide demonstrated clinically meaningful antitumor activity with an ORR of 42% including 4 CR and 1 unconfirmed CR in a multicenter phase II trial.53

Programmed death-ligand 1 (PD-L1) was mainly detected in AITL (>90%) and PTCL-NOS (3060%), and rarely in other subtypes.54 In NKTCL, PD-L1 expression ranged between 56 and 93% in different studies, while PD-1 level was consistently low.55 In addition, Kataoka et al demonstrated that PD-L1 amplifications represent a strong genetic predictor of worse outcomes in patients with both aggressive and indolent ATLL.56 The efficacy of nivolumab, a PD-1 inhibitor, was evaluated in a Phase I, open-label, dose-escalation, cohort expansion trial for the treatment of patients with R/R TCL. Twenty-three patients were enrolled. The ORR among these patients was 17%.57 In a retrospective case series, pembrolizumab, another PD-1 inhibitor, showed high efficacy (100%) in 7 patients with R/R NK/T cell lymphoma that relapsed after treatment with L-asparaginase. Complete response was observed in 5 patients (71%), and this was sustained after a median follow-up of 6 months.58 In a multicenter single-arm phase II trial, pembrolizumab given at a dosage of 200mg intravenously every three weeks, was evaluated for patients with R/R PTCLs. Of 18 enrolled patients, 13 were evaluable for the primary endpoint. The ORR was 33%, with 4 patients showing a CR. The median PFS was 3.2 months and the median OS was 10.6 months. The median duration of response was 2.9 months. Two of the 4 patients who presented CR remained in remission for at least 15 months. The trial was halted early after a preplanned interim futility analysis.59 PD-1 inhibitors had modest activity when used as monotherapy and these drugs could be more active when combined with another agent such as HDAC inhibitors, HMAs, or antifolates. Table 4 summarizes the major clinical trials evaluating novel combinations of immunotherapy in R/R PTCLs.

Table 4 Novel Combinations of Immunotherapy Under Investigation in R/R PTCLs

A new strategy was adopted for the treatment of patients with R/R PTCLs based on the combination of approved and non-approved medications in the field. Available data concerning these combinations are summarized in Table 5. However, most of these data are reported from small single-center studies without central pathology review.

Table 5 Experimental Combinations of Approved Agents in R/R PTCLs

Romidepsin is an HDAC inhibitor approved for R/R PTCLs. In preclinical models of PTCLs, romidepsin and pralatrexate showed a potent synergy in in-vitro and in-vivo models at dose levels of 50% of the maximal tolerated dose (MTD).60 Amengual et al reported the results of the first Phase I trial evaluating the combination of these two drugs to determine the MTD, pharmacokinetic profile, and response rate. Pralatrexate 25mg/m2 and romidepsin 12 mg/m2 administered concurrently every other week were recommended for the Phase 2 trial. In this phase I study, the ORR for all patients was 57% (13/23), whereas the response rate in patients with PTCLs was 71% (10/14), and 33% (3/9) in patients with B-cell lymphoma.61 The phase II trial is still ongoing (NCT01947140).

The combination of HDACi and HMAs could be a novel approach for the treatment of PTCLs, targeting the epigenetic dysregulation of the disease. Marchi et al demonstrated a marked synergy between HDACi and HMAs in preclinical models of PTCLs.62 The encouraging results of a multicenter phase I trial evaluating the combination of romidepsin and oral 5-Azacitidine in R/R PTCLs were recently reported. The ORR for all patients was 32%, for non-TCL was 10%, and 73% for patients with T-cell lymphoma. The CR rates were 23%, 5% and 55%, respectively. The MTD retained for phase 2 trial was 5-Azacitidine 300mg on days 1 to 14 and romidepsin 14mg/m2 on days 8, 15 and 22 of a 35-day cycle.63 The phase II trial is still ongoing (NCT01998035).

A novel interesting combination in the treatment of R/R PTCLs is the association of HDACi and duvelisib. The results of the phase I/II trial evaluating the association of duvelisib and romidepsin were reported in an abstract form by Horwitz et al The MTD of duvelisib was 75mg BID on days 1 to 28, given with romidepsin 10mg/m2 on days 1, 8 and 15 of a 28-day cycle. The ORR was 55%, and CR occurred in 27% of the patients. Grade 3 or higher adverse events were seen in 65% of patients.64 These results suggest that romidepsin + duvelisib could be a potential therapeutic strategy to be evaluated in larger studies.

Another experimental combination was the association of HDACi and proteasome inhibitors based on the activity and the efficacy of these two classes in PTCLs. Tan et al reported the results of a phase II trial evaluating the combination of panobinostat and bortezomib. Patients received 20 mg oral panobinostat three times a week and 13 mg/m(2) intravenous bortezomib two times a week, both for 2 of 3 weeks for up to eight cycles. The ORR was 43% (10 of 23 patients), and the CR rate was 22% (5 of 23 patients). However, the PFS was very limited, which can be attributed to the short response time in highly aggressive disease.65

The management of patients with PTCLs remains challenging, with slow progress being made in the field, and only few drugs are currently approved. This is mainly due to the rarity of the disease and its aggressiveness, much complicating trial recruitment. Furthermore, given the various biological and molecular patterns, and the increasingly precise dissection of the molecular and immunological abnormalities of the disease, international collaboration seems crucial, and pan T-cell lymphomas trials are more and more regarded as a failed strategy. Innovative drugs targeting epigenetic mechanisms, immune checkpoint modulations, CD30 and TCR abnormalities with cellular therapies portend much hope to improve the outcomes of these patients in the upcoming years.

Dr Jean-Marie Michot reports being a principal/sub-investigator of clinical trials for Abbvie, Amgen, Astex, AstraZeneca, Debiopharm, Lilly, Roche, and Xencor, during the conduct of the study. Dr Vincent Ribrag reports non-financial support from Astex, Abbvie, BMS, Sanofi, and Servier, grants and non-financial support from Argenx, personal fees from Gilead, Roche, Incyte, and Nanostring, and personal fees and non-financial support from MSD and AZ, during the conduct of the study. The authors report no other potential conflicts of interest for this work.

1. Vose J, Armitage J, Weisenburger D. International T-cell lymphoma project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):41244130. doi:10.1200/JCO.2008.16.4558

2. dAmore F, Gaulard P, Trmper L, et al. Peripheral T-cell lymphomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v108115. doi:10.1093/annonc/mdv201

3. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):23752390. doi:10.1182/blood-2016-01-643569

4. Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer. 2020;20(6):323342. doi:10.1038/s41568-020-0247-0

5. Hermine O, Ramos JC, Tobinai KA. Review of new findings in adult T-cell leukemia-lymphoma: a focus on current and emerging treatment strategies. Adv Ther. 2018;35(2):135152. doi:10.1007/s12325-018-0658-4

6. Timmins MA, Wagner SD, Ahearne MJ. The new biology of PTCL-NOS and AITL: current status and future clinical impact. Br J Haematol. 2020;189(1):5466. doi:10.1111/bjh.16428

7. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):29152923. doi:10.1182/blood-2013-11-536359

8. Wang T, Feldman AL, Wada DA, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014;123(19):30073015. doi:10.1182/blood-2013-12-544809

9. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):14731480. doi:10.1182/blood-2014-04-571091

10. Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123(9):12931296. doi:10.1182/blood-2013-10-531509

11. Lemonnier F, Couronn L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120(7):14661469. doi:10.1182/blood-2012-02-408542

12. Marchi E, OConnor OA. The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management. CA Cancer J Clin. 2020;70(1):4770. doi:10.3322/caac.21589

13. Palomero T, Couronn L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166170. doi:10.1038/ng.2873

14. Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171175. doi:10.1038/ng.2872

15. Kataoka K, Nagata Y, Kitanaka A, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47(11):13041315. doi:10.1038/ng.3415

16. Vallois D, Dobay MPD, Morin RD, et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood. 2016;128(11):14901502. doi:10.1182/blood-2016-02-698977

17. Rohr J, Guo S, Huo J, et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia. 2016;30(5):10621070. doi:10.1038/leu.2015.357

18. Ghez D, Danu A, Ribrag V. Investigational drugs for T-cell lymphoma. Expert Opin Investig Drugs. 2016;25(2):171181. doi:10.1517/13543784.2016.1121994

19. Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkins lymphoma. N Engl J Med. 1993;328(14):10021006. doi:10.1056/NEJM199304083281404

20. Reyes F, Lepage E, Ganem G, et al. ACVBP versus CHOP plus radiotherapy for localized aggressive lymphoma. N Engl J Med. 2005;352(12):11971205. doi:10.1056/NEJMoa042040

21. Escaln MP, Liu NS, Yang Y, et al. Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M. D. Anderson Cancer Center experience. Cancer. 2005;103(10):20912098. doi:10.1002/cncr.20999

22. Maeda Y, Nishimori H, Yoshida I, et al. Dose-adjusted EPOCH chemotherapy for untreated peripheral T-cell lymphomas: a multicenter phase II trial of west-JHOG PTCL0707. Haematologica. 2017;102(12):20972103. doi:10.3324/haematol.2017.167742

23. Schmitz N, Trmper L, Ziepert M, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2010;116(18):34183425. doi:10.1182/blood-2010-02-270785

24. Ellin F, Landstrm J, Jerkeman M, Relander T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish lymphoma registry. Blood. 2014;124(10):15701577. doi:10.1182/blood-2014-04-573089

25. Horwitz S, OConnor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2019;393(10168):229240. doi:10.1016/S0140-6736(18)32984-2

26. Research C for DE and FDA approves brentuximab vedotin for previously untreated sALCL and CD30-expressing PTCL. FDA; December 20, 2019. Available from: https://www.fda.gov/drugs/fda-approves-brentuximab-vedotin-previously-untreated-salcl-and-cd30-expressing-ptcl. Accessed January 9, 2021.

27. Dupuis J, Morschhauser F, Ghesquires H, et al. Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: a non-randomised, phase 1b/2 study. Lancet Haematol. 2015;2(4):e160165. doi:10.1016/S2352-3026(15)00023-X

28. Bachy E, Camus V, Thieblemont C, et al. Final analysis of the ro-CHOP phase III study (conducted by LYSA): romidepsin plus CHOP in patients with peripheral T-cell lymphoma. Blood. 2020;136(Supplement 1):3233. doi:10.1182/blood-2020-134440

29. Fossard G, Broussais F, Coelho I, et al. Role of up-front autologous stem-cell transplantation in peripheral T-cell lymphoma for patients in response after induction: an analysis of patients from LYSA centers. Ann Oncol. 2018;29(3):715723. doi:10.1093/annonc/mdx787

30. dAmore F, Relander T, Lauritzsen GF, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol. 2012;30(25):30933099. doi:10.1200/JCO.2011.40.2719

31. Reimer P, Rdiger T, Geissinger E, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol. 2009;27(1):106113. doi:10.1200/JCO.2008.17.4870

32. Park SI, Horwitz SM, Foss FM, et al. The role of autologous stem cell transplantation in patients with nodal peripheral T-cell lymphomas in first complete remission: report from COMPLETE, a prospective, multicenter cohort study. Cancer. 2019;125(9):15071517. doi:10.1002/cncr.31861

33. Abeyakoon C, van der Weyden C, Harrop S, et al. Role of haematopoietic stem cell transplantation in peripheral T-cell lymphoma. Cancers (Basel). 2020;12(11):3125. doi:10.3390/cancers12113125

34. Smith SM, Burns LJ, van Besien K, et al. Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol. 2013;31(25):31003109. doi:10.1200/JCO.2012.46.0188

35. Schmitz N, Truemper LH, Bouabdallah K, et al. A randomized phase 3 trial of auto vs. allo transplantation as part of first-line therapy in poor-risk peripheral T-NHL. Blood. 2020;(blood.2020008825). doi:10.1182/blood.2020008825

36. Beitinjaneh A, Saliba RM, Medeiros LJ, et al. Comparison of survival in patients with T cell lymphoma after autologous and allogeneic stem cell transplantation as a frontline strategy or in relapsed disease. Biol Blood Marrow Transplant. 2015;21(5):855859. doi:10.1016/j.bbmt.2015.01.013

37. Corradini P, Dodero A, Zallio F, et al. Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkins lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol. 2004;22(11):21722176. doi:10.1200/JCO.2004.12.050

38. Zain J, Palmer JM, Delioukina M, et al. Allogeneic hematopoietic cell transplantation for peripheral T-cell NHL results in long-term disease control. Leuk Lymphoma. 2011;52(8):14631473. doi:10.3109/10428194.2011.574754

39. OConnor OA, Pro B, Pinter-Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011;29(9):11821189. doi:10.1200/JCO.2010.29.9024

40. Maruyama D, Nagai H, Maeda Y, et al. Phase I/II study of pralatrexate in Japanese patients with relapsed or refractory peripheral T-cell lymphoma. Cancer Sci. 2017;108(10):20612068. doi:10.1111/cas.13340

41. Hong X, Song Y, Huang H, et al. Pralatrexate in Chinese patients with relapsed or refractory peripheral T-cell lymphoma: a Single-Arm, Multicenter Study. Target Oncol. 2019;14(2):149158. doi:10.1007/s11523-019-00630-y

42. Piekarz RL, Frye R, Prince HM, et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117(22):58275834. doi:10.1182/blood-2010-10-312603

43. Coiffier B, Pro B, Prince HM, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631636. doi:10.1200/JCO.2011.37.4223

44. OConnor OA, Horwitz S, Masszi T, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the Pivotal Phase II BELIEF (CLN-19) Study. J Clin Oncol. 2015;33(23):24922499. doi:10.1200/JCO.2014.59.2782

45. Shi Y, Dong M, Hong X, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26(8):17661771. doi:10.1093/annonc/mdv237

46. Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):21902196. doi:10.1200/JCO.2011.38.0402

47. Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837842. doi:10.1200/JCO.2011.37.3472

48. Moss YP, Voss SD, Lim MS, et al. Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: a Childrens Oncology Group Study. J Clin Oncol. 2017;35(28):32153221. doi:10.1200/JCO.2017.73.4830

49. Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-, inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018;131(8):888898. doi:10.1182/blood-2017-08-802470

50. Witzig TE, Reeder C, Han JJ, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 2015;126(3):328335. doi:10.1182/blood-2015-02-629543

51. Lemonnier F, Dupuis J, Sujobert P, et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood. 2018;132(21):23052309. doi:10.1182/blood-2018-04-840538

52. Morschhauser F, Fitoussi O, Haioun C, et al. A phase 2, multicentre, single-arm, open-label study to evaluate the safety and efficacy of single-agent lenalidomide (Revlimid) in subjects with relapsed or refractory peripheral T-cell non-Hodgkin lymphoma: the EXPECT trial. Eur J Cancer. 2013;49(13):28692876. doi:10.1016/j.ejca.2013.04.029

53. Ishida T, Fujiwara H, Nosaka K, et al. Multicenter phase II study of lenalidomide in relapsed or recurrent adult T-cell leukemia/lymphoma: ATLL-002. J Clin Oncol. 2016;34(34):40864093. doi:10.1200/JCO.2016.67.7732

54. Krishnan C, Warnke RA, Arber DA, Natkunam Y. PD-1 expression in T-cell lymphomas and reactive lymphoid entities: potential overlap in staining patterns between lymphoma and viral lymphadenitis. Am J Surg Pathol. 2010;34(2):178189. doi:10.1097/PAS.0b013e3181cc7e79

55. Jo J-C, Kim M, Choi Y, et al. Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann Hematol. 2017;96(1):2531. doi:10.1007/s00277-016-2818-4

56. Kataoka K, Iwanaga M, Yasunaga J-I, et al. Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood. 2018;131(2):215225. doi:10.1182/blood-2017-01-761874

57. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a Phase Ib Study. J Clin Oncol. 2016;34(23):26982704. doi:10.1200/JCO.2015.65.9789

58. Kwong Y-L, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):24372442. doi:10.1182/blood-2016-12-756841

59. Barta SK, Zain J, MacFarlane AW, et al. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2019;19(6):356364.e3. doi:10.1016/j.clml.2019.03.022

60. Jain S, Jirau-Serrano X, Zullo KM, et al. Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T-cell lymphoma. Clin Cancer Res. 2015;21(9):20962106. doi:10.1158/1078-0432.CCR-14-2249

See the original post here:
Updates in the treatment of peripheral T-cell lymphomas | JEP - Dove Medical Press

Novel Tafasitamab Combination Finds a Role in Second-line DLBCL Treatment – Targeted Oncology

Targeted OncologyTM: What are the approved treatment options for such a patient in the second-line setting? What disease characteristics would help to determine which regimen should be used?

SVOBODA: Once we would determine that the patient is not a candidate for transplant, the NCCN [National Comprehensive Cancer Network] guidelines [say that] the preferred regimens as of early 2021the next meeting is in September, so well have some other updatesare gemcitabine/oxaliplatin plus or minus rituximab [Rituxan] and polatuzumab vedotin [Polivy] plus or minus bendamustine plus or minus rituximab.1

The regimens [most oncologists are more] familiar with [include] dose-adjusted EPOCH [etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin] if the patient is not a transplant candidate in the second lineIm not sure where that would be, and Im not sure that people would use [this here]and CEOP [cyclophosphamide, etoposide, vincristine, prednisone], which is basically etoposide instead of erythromycin. Some of the other regimens that are mentioned [in the guidelines are] gemcitabine-based regimensthe GDP [gemcitabine, dexamethasone, carboplatin] and gemcitabine/vinorelbine. Rituximab monotherapy in the [older] or very fragile patients [has a] 20% response rate; and tafasitamab [Monjuvi] plus lenalidomide [Revlimid] is now approved for second line for those patients who are not eligible for autologous stem cell transplant [ASCT].

DLBCL is pretty heterogeneous, so we have been trying to always determine [if it is the] germinal center B-cell [GCB] origin or the nongerminal center activated B-cell [ABC] type. And for the nongerminal center type, which [is] CD10 negative, it seems that ibrutinib [Imbruvica] works particularly well, so its sometimes used in these more fragile patients as a monotherapy.

What is different about the novel agent tafasitamab?

Tafasitamab has been approved now for several months in combination with lenalidomide for adult patients with relapsed or refractory DLBCLthis can include the patients with lymphoma that transforms from, lets say, follicular or low-grade lymphoma and who are not eligible for ASCT.2

Tafasitamab is an antibody against CD19. For simplification purposes, you can think of [it as similar to rituximab] which is an anti-CD20 antibody, but this is an anti-CD19 monoclonal antibody. With rituximab or other monoclonal antibodies, the mechanism of action is binding the antibody to CD19-positive B cells, which causes direct cell death but also cell-mediated cytotoxicity and cellular phagocytosis.

Then I think the lenalidomide has synergy, in some ways, and potentiation of activity both in vivo and in vitro, and we know the lenalidomide can activate the T cells and natural killer cells. It can have activity alone, especially in the ABC subtype of DLBCL.

What data support the approval and use of this regimen in this setting?

So again, this is a combination. We know [that as a] single agent, tafasitamab may also have activity. It was fairly low activity in DLBCL, 25% or so, when it was studied as a monotherapy.3 But the interesting thing was that the patients who responded had a very nice, long duration of response [DOR] that lasted for quite some time. The median duration was around 20 months, so those were quite impressive data.

The study that was the basis for the FDA to approve tafasitamab with lenalidomide was a phase 2 study, single arm, open label [L-MIND trial; NCT02399085].4 It included about 80 patients with DLBCL. They were deemed not eligible for ASCT. Primary refractory patients were to be excluded initially, but some of the primary refractory patients got on the study.

Tafasitamab was given as an intravenous infusion, very similar to [rituximab], and its given weekly for the first 3 cycles for the first 3 months, with the asterisk [being] that, for the first cycle, they give the tafasitamab on day 1 and day 4so, Monday and Thursday, then another Monday, and then just on Mondays. For cycles 4 [through] 12, you would give it only twice a month, on day 1 and day 15, and you give the lenalidomide in the typical multiple myeloma dose25 mg per day, 3 weeks on, 1 week off.

This was done for a year for 12 cycles; and patients who had stable disease or better were allowed to continue on with tafasitamab maintenance, just twice a month, until progression. The primary end point was overall response; secondary end points were progression-free survival [PFS], DOR, safety, and biomarker analysis.

The 81 patients who were enrolled [had a] median age of 72, the majority had stage III or IV disease [75%], and the median [number of] prior lines of therapy was 2. They did sneak in some primary refractory patients, about 19%; those were the patients who didnt respond to their frontline [therapy]. There were also a few patients who had prior stem cell transplant. When you look at the GCB versus non-GCB [subtype], the majority were patients who were difficult to determine [67%], but it looked [like for patients for whom] we have the data, more had the non- GCB than the GCB [subtype]. The data [we have show that] the older the patients get, the more likely they are [to have] the non-GCB subtype.

What did the study findings show?

Response was pretty excellent for this situation. Again, this is in patients who are progressing after R-CHOP and are not candidates for transplant. There was a 43% complete response [CR] rate. I like the updated data from the 2-year follow-up, where the median DOR is 34 months. Thats pretty good3 years.5 There was partial response in 14 patients, or 17%; stable disease, 15%; progressive disease, 16%; not evaluable, 10%. The disease control rate was 74%. The Kaplan-Meier curves [for] DOR after 24 months of follow-up [show] pretty long durations, especially in the CR group, and so it looks like a good agent in that setting.

When you look at PFS rate at 1 year, its 50%. Median overall survival, which I think is quite important for this type of population, is 74% at 12 months and 18 months, 64%.4 With 2 years of follow-up, the median PFS was 16.2 months [and the] median overall survival was 31.6 months for all the patients.5

What was the safety profile like for the combination regimen?

The most common adverse events [AEs] were hematologic. I think that [the AEs are] not very different from the lenalidomide monotherapy. Im not sure whether there is a great mechanical or physiologic reason why the cytopenias, other than lymphopenia, would be clearly affected by the CD19 antibody. There were no deaths and no grade 5 hematologic or nonhematologic toxicities on the L-MIND study. There were definitely neutropenias, thrombocytopenias, but the numbers were fairly low.

There were a few episodes of neutropenic fever; there was 1 patient with agranulocytosis. Im not familiar with exactly what happened, but like with any treatment, you have to watch blood counts quite closely. Overall, the numbers look very good in terms of the AEs.

[For the] nonhematologic AEs, rashes we see with lenalidomide; diarrhea; fatiguedifficult to attribute to one or the otherbut overall, it was a well-tolerated [regimen].

In these older patients, the serious AEs that were found to be treatment related by investigator were about 19% of the patients15 out of 81. The serious AEs would [include] any hospitalization, for example, or longer [emergency department] visit, over 24 hours. These types of things happen over a year of active lymphoma. Twelve percent discontinued the combination due to AEs. So even though there were treatment-emergent AEs leading to death, that was defined by protocol. None were considered related to the study treatment, but they occurred during the treatment with this regimen. Im not sure exactly what details, but 4 patients out of the 81 died while on the study.

The combination had many more AEs than the tafasitamab alone, which is understandable because the combination has lenalidomide, [which] can cause cytopenias, anemia, and all of these other issues that we discussed already. For the tafasitamab monotherapy, there have been some cases of cytopenias, but its hard to know whether its just carried over, to some extent, from the lenalidomide. You could think, like with [rituximab] maintenance, whether you could have some increased infections. There were 2 cases of febrile neutropenia, but overall [it was] well tolerated.

References:

1. NCCN. Clinical Practice Guidelines in Oncology. B-cell lymphomas, version 3.2021. Accessed May 12, 2021. https://bit.ly/3geoS5N

2. FDA grants accelerated approval to tafasitamab-cxix for diffuse large B-cell lymphoma. FDA. Updated August 3, 2020. Accessed May 12, 2021. https://bit.ly/3bodb9v

3. Jurczak W, Zinzani PL, Hess G, et al. A phase IIa, open-label, multicenter study of single-agent tafasitamab (MOR208), an Fc-optimized anti-CD19 antibody, in patients with relapsed or refractory B-cell non-Hodgkins lymphoma: long-term follow-up, final analysis. Blood. 2019;134(suppl 1):4078. doi:10.1182/blood-2019-124297

4. Salles G, Duell J, Gonzlez Barca E, et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020;21(7):978-988. doi:10.1016/S1470-2045(20)30225-4

5. Salles G, Duell J, Gonzlez Barca E, et al. Primary analysis results of the single arm phase II study of MOR208 plus lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma (L-MIND). Abstract presented at: 15th International Conference on Malignant Lymphoma; June 18-23, 2019; Lugano, Switzerland. Accessed April 15, 2021. https://bit.ly/3wZgJIt

View original post here:
Novel Tafasitamab Combination Finds a Role in Second-line DLBCL Treatment - Targeted Oncology

Global Nerve Repair and Regeneration Devices Market to Reach $11. 8 Billion by 2026 – GlobeNewswire

New York, June 23, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Nerve Repair and Regeneration Devices Industry" - https://www.reportlinker.com/p05957490/?utm_source=GNW The rapid rise in the incidence of nerve injuries worldwide, increasing prevalence of various neurological disorders, especially in the expanding elderly population, and development of advanced technology-based nerve repair and regeneration products are fueling growth in the global market. The constant increase in incidence of nerve injuries is leading to high demand for nerve repair and regeneration products. The growing incidence of chronic nervous system disorders such as Parkinson`s and Alzheimer`s disease is also driving demand for nerve repair and regeneration procedures and devices. There is also increased funding for clinical trials aimed at development of effective and safe therapies for treatment of various neurological disorders. Initiatives such as stem cells in umbilical blood infusion for cerebral palsy; and the use of Polyethylene glycol (PEG) drug for promoting axonal fusion technique for repairing peripheral nerve injuries are favoring market growth.

- Amid the COVID-19 crisis, the global market for Nerve Repair and Regeneration Devices estimated at US$6.6 Billion in the year 2020, is projected to reach a revised size of US$11.8 Billion by 2026, growing at a CAGR of 10% over the analysis period. Neurostimulation & Neuromodulation Devices, one of the segments analyzed in the report, is projected to grow at a 9.7% CAGR to reach US$10.9 Billion by the end of the analysis period. After a thorough analysis of the business implications of the pandemic and its induced economic crisis, growth in the Biomaterials segment is readjusted to a revised 11.7% CAGR for the next 7-year period. This segment currently accounts for a 13.8% share of the global Nerve Repair and Regeneration Devices market. The neurostimulation and neuromodulation devices segment growth will be fueled by rising incidence of peripheral nerve injuries, development of technologically advanced products and favorable reimbursement scenario. Within the segment, internal neurostimulation and neuromodulation devices category is being driven due to the devices` ability to lower occurrence of post-surgical complications and reducing duration of hospitalization. Biomaterials segment is expected to witness high growth, driven by broadening application range, increased availability of government funding for innovations, and development of advanced products.

The U.S. Market is Estimated at $2.2 Billion in 2021, While China is Forecast to Reach $1.8 Billion by 2026

- The Nerve Repair and Regeneration Devices market in the U.S. is estimated at US$2.2 Billion in the year 2021. The country currently accounts for a 30.45% share in the global market. China, the world`s second largest economy, is forecast to reach an estimated market size of US$1.8 Billion in the year 2026 trailing a CAGR of 13% through the analysis period. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 7.7% and 8.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.2% CAGR while Rest of European market (as defined in the study) will reach US$2 Billion by the end of the analysis period. Increasing incidence of neurological diseases and expanding geriatric population, increasing spending on healthcare sector, positive reimbursement framework and presence of several leading industry players are fueling growth in the North America region. Asia-Pacific is poised to grow at a robust pace, driven by sizeable patient pool, favorable healthcare initiatives and high unmet healthcare needs. The Asia-Pacific market is expected to gain from notable surge in aging population, increasing awareness regarding neurological disorders, and rising incidence of cancer and osteoporosis. Select Competitors (Total 61 Featured)

Read the full report: https://www.reportlinker.com/p05957490/?utm_source=GNW

CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

1. MARKET OVERVIEW Impact of Covid-19 and a Looming Global Recession 2020 Marked as a Year of Disruption & Transformation EXHIBIT 1: World Economic Growth Projections (Real GDP, Annual % Change) for 2019 to 2022 Global Nerve Repair & Regeneration Market Buckles under COVID- 19 Strain Covid-19 Patients in Prone Position Suffering Nerve Damage Bodes Well for Market Growth Nerve Repair and Regeneration Market Set for a Robust Growth Neurostimulation & Neuromodulation Devices Hold Commanding Slot in Nerve Repair & Regeneration Market Biomaterials to Exhibit Rapid Growth Nerve Repair and Regeneration Market by Application US and Europe Dominate the Market Asia-Pacific and other Emerging Regions Display Impressive Growth Potential Recent Market Activity

2. FOCUS ON SELECT PLAYERS

3. MARKET TRENDS & DRIVERS High Incidence of Neurological Disorders: A Key Market Driver EXHIBIT 2: Annual Incidence of Adult-Onset Neurologic Disorders in the US Effects of COVID-19 on the Nervous System Sheds Focus on Neuromodulation Applications Increasing Cases of Peripheral Nerve Injuries Drive the Nerve Repair and Regeneration Market Growing Number of Vehicular Accidents Drive the Peripheral Nerve injuries Repair Market Rising Geriatric Population and Subsequent Growth in Prevalence of Neurological Disorders EXHIBIT 3: Global Population Statistics for the 65+ Age Group in Million by Geographic Region for the Years 2019, 2025, 2035 and 2050 Growing Incidence of Neurodegenerative Diseases Propels the Market for Deep Brain Stimulation Devices EXHIBIT 4: Global Alzheimers Prevalence by Age Group EXHIBIT 5: Diagnosed Prevalence Cases of Parkinson?s Disease Across Select Countries EXHIBIT 6: Global DBS Market by Leading Player (2020E): Market Share Breakdown of Revenues for Medtronic, Boston Scientific, and Abbott Select Available Deep Brain Stimulation Devices Available in the Market Intensified Research Activity Across Various Neural Disciplines Induces Additional Optimism Stem Cell Therapy: A Promising Avenue for Nerve Repair and Regeneration Increasing Cases of Epilepsy Drives the Demand for Vagus Nerve Stimulation Devices EXHIBIT 7: Epilepsy Incidence by Type (2019): Percentage Share Breakdown for Idiopathic and Symptomatic Epilepsy EXHIBIT 8: Symptomatic Epilepsy Incidence by Type (2019): Percentage Share Breakdown of Congenital, Degenerative, Infective, Neoplastic, Trauma, and Vascular Epilepsy Spinal Cord Injuries Propel the Demand for Spinal Cord Stimulation Devices Recent Developments in Spinal Cord Injury Treatment Biomaterials (Nerve Conduits and Nerve Wraps) to Witness Rapid Growth New Biomaterials Pave the Way for Innovative Neurodegeneration Therapies Role of Nerve Conduits in the Treatment of Peripheral Nerve Injury Innovative Nerve Conduits from Stryker TENS (Transcutaneous electrical nerve stimulation devices) Market Witnesses Rapid Growth Non-Invasiveness of TMS (Transcranial Magnetic Stimulation) Propelling the adoption of TMS devices Nerve Grafts for Bridging Larger Nerve Gaps Role of Nerve Grafting in Treatment of Peripheral Nerve Injuries FDA-approved Nerve Tubes for Peripheral Nerve Repair

4. GLOBAL MARKET PERSPECTIVE Table 1: World Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 2: World Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 3: World 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets for Years 2012, 2020 & 2027

Table 4: World Current & Future Analysis for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 5: World Historic Review for Neurostimulation & Neuromodulation Devices by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 6: World 15-Year Perspective for Neurostimulation & Neuromodulation Devices by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 7: World Current & Future Analysis for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 8: World Historic Review for Biomaterials by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 9: World 15-Year Perspective for Biomaterials by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 10: World Current & Future Analysis for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 11: World Historic Review for Neurostimulation & Neuromodulation Surgeries by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 12: World 15-Year Perspective for Neurostimulation & Neuromodulation Surgeries by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 13: World Current & Future Analysis for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 14: World Historic Review for Neurorrhaphy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 15: World 15-Year Perspective for Neurorrhaphy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 16: World Current & Future Analysis for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 17: World Historic Review for Nerve Grafting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 18: World 15-Year Perspective for Nerve Grafting by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 19: World Current & Future Analysis for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 20: World Historic Review for Stem Cell Therapy by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 21: World 15-Year Perspective for Stem Cell Therapy by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 22: World Current & Future Analysis for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 23: World Historic Review for Hospitals & Clinics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 24: World 15-Year Perspective for Hospitals & Clinics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

Table 25: World Current & Future Analysis for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 26: World Historic Review for Ambulatory Surgery Centers by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 27: World 15-Year Perspective for Ambulatory Surgery Centers by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific, Latin America, Middle East and Africa for Years 2012, 2020 & 2027

III. MARKET ANALYSIS

UNITED STATES Table 28: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 29: USA Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 30: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 31: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 32: USA Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 33: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 34: USA Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 35: USA Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 36: USA 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

CANADA Table 37: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 38: Canada Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 39: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 40: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 41: Canada Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 42: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 43: Canada Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 44: Canada Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 45: Canada 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

JAPAN Table 46: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 47: Japan Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 48: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 49: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 50: Japan Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 51: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 52: Japan Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 53: Japan Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 54: Japan 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

CHINA Table 55: China Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 56: China Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 57: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 58: China Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 59: China Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 60: China 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 61: China Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 62: China Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 63: China 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

EUROPE Table 64: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 and % CAGR

Table 65: Europe Historic Review for Nerve Repair and Regeneration Devices by Geographic Region - France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 66: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK, Spain, Russia and Rest of Europe Markets for Years 2012, 2020 & 2027

Table 67: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 68: Europe Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 69: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 70: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 71: Europe Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 72: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 73: Europe Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 74: Europe Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 75: Europe 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

FRANCE Table 76: France Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 77: France Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 78: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 79: France Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 80: France Historic Review for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 81: France 15-Year Perspective for Nerve Repair and Regeneration Devices by Application - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy for the Years 2012, 2020 & 2027

Table 82: France Current & Future Analysis for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 83: France Historic Review for Nerve Repair and Regeneration Devices by End-Use - Hospitals & Clinics and Ambulatory Surgery Centers Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 84: France 15-Year Perspective for Nerve Repair and Regeneration Devices by End-Use - Percentage Breakdown of Value Sales for Hospitals & Clinics and Ambulatory Surgery Centers for the Years 2012, 2020 & 2027

GERMANY Table 85: Germany Current & Future Analysis for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Table 86: Germany Historic Review for Nerve Repair and Regeneration Devices by Product - Neurostimulation & Neuromodulation Devices and Biomaterials Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 and % CAGR

Table 87: Germany 15-Year Perspective for Nerve Repair and Regeneration Devices by Product - Percentage Breakdown of Value Sales for Neurostimulation & Neuromodulation Devices and Biomaterials for the Years 2012, 2020 & 2027

Table 88: Germany Current & Future Analysis for Nerve Repair and Regeneration Devices by Application - Neurostimulation & Neuromodulation Surgeries, Neurorrhaphy, Nerve Grafting and Stem Cell Therapy - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 and % CAGR

Link:
Global Nerve Repair and Regeneration Devices Market to Reach $11. 8 Billion by 2026 - GlobeNewswire

The growing global "infodemic" around stem cell therapies – Axios

An industry centered around unproven stem cell therapies is flourishing due to misinformation.

Why it matters: Stem cells offer a tantalizing potential to address a large number of diseases, like Parkinson's, ALS, cancers and bodily injuries. But only a small number of therapies have been found safe and effective through clinical trials, while misinformation continues to proliferate.

The latest: The Pew Charitable Trusts issued a brief in early June that describes a rising number of reported adverse events.

Background: Clinics with unregulated stem cell products or therapies began emerging in the early 2000s all over the world, "taking advantage of the media hype around stem cells and patients hope and desperation," says Mohamed Abou-el-Enein, executive director of the Joint USC/CHLA Cell Therapy Program at USC's Keck School of Medicine.

Regulatory agencies like the FDA need to crack down on these misinformation campaigns, several experts say.

What they're saying: Turner says in that period the FDA contacted about 400 businesses to warn of noncompliance and issued several warning letters, but adds that was "probably of very little consequence. ... A one-year period could be justified, but three years is basically like a security guard walking away from the post, and you can guess what's going to happen."

The big picture: This is a global threat as well, Master and Abou-el-Enein say. In a recent perspective in the journal Stem Cell Reports, they argue for the WHO to establish an expert advisory committee to explore global standards.

What's next: Researchers are still hopeful stem cell therapies can be effective but emphasize the need for more research into how stem cells work and how they can be manipulated for therapies.

See original here:
The growing global "infodemic" around stem cell therapies - Axios

NanoString Launches nCounter Stem Cell Characterization Panel to Advance the Development of Stem Cell Therapy – Yahoo Finance

SEATTLE, Jun 22, 2021--(BUSINESS WIRE)--NanoString Technologies, Inc. (NASDAQ: NSTG), a leading provider of life science tools for discovery and translational research, today announced the launch of the nCounter Stem Cell Characterization Panel for the analysis and optimization of stem cell lines used in the development of potential novel therapeutics.

Recent breakthroughs in stem cell therapy, regenerative medicine, and CRISPR engineering have advanced the development of promising new treatments for debilitating diseases across a broad range of research areas, including neurological and cardiovascular disease, vision loss, and certain types of cancers. However, one of the biggest challenges with stem cell research is the high variability found within the development and manufacturing process that impacts the ability of the stem cells to differentiate and function. The new nCounter Stem Cell Characterization panel measures the eight essential components of stem cell biology and provides a novel, standardized assay for evaluating factors that influence and determine viability, functionality, and pluripotency.

"The simple, automated workflow and highly reproducible, digital results make the nCounter system an excellent fit for all types of stem cell applications," said Chad Brown, senior vice president of Sales and Marketing at NanoString. "With this panel, researchers have a powerful new tool that can quickly assess stem cell health to advance development efforts and optimize stem cell production, achieving robust results in less than 24 hours."

"The Process Development team at ARMI-BioFabUSA is very excited to use the nCounter Stem Cell Characterization panel across a number of our projects where we are developing human tissues composed of mature cells differentiated from stem cells. The Stem Cell Characterization Panel will give us greater insight into the differentiation status of our cells and the success of our current process development and manufacturing runs," said Damian Hile, senior process development scientist at Advanced Regenerative Manufacturing Institute-BioFabUSA (ARMI-BioFabUSA).

Story continues

The novel 770 gene panel is available for humans and mice and was designed at NanoString with input from leading stem cell experts. To learn more about the nCounter Stem Cell Characterization Panel, visit NanoString at the virtual 2021 ISSCR Conference June 21-26. In addition, NanoString is sponsoring the Cellular Identity: Pluripotency Dynamics session, with Joseph Beechem, Ph.D., chief scientific officer at NanoString.

To learn more about the panel and how the development of the panel can expedite stem cell research, visit the Brief nCounters stem cell experience.

About ARMI-BioFabUSA

The Advanced Regenerative Manufacturing Institute (ARMI), headquartered in Manchester, NH, is an organization funded by the United States Department of Defense. ARMI's mission is to make practical the large-scale manufacturing of engineered tissues and tissue-related technologies to benefit existing industries and grow new ones. ARMI brings together a consortium of over 150 partners from across the industry, government, academia and the non-profit sector to develop next-generation manufacturing processes and technologies for cells, tissues and organs. For more information on ARMI-BioFabUSA, please visit http://www.ARMIUSA.org.

About NanoString Technologies, Inc.

NanoString Technologies is a leading provider of life science tools for discovery and translational research. The company's nCounter Analysis System is used in life sciences research and has been cited in more than 4,300 peer-reviewed publications. The nCounter Analysis System offers a cost-effective way to easily profile the expression of hundreds of genes, proteins, miRNAs, or copy number variations, simultaneously with high sensitivity and precision, facilitating a wide variety of basic research and translational medicine applications, including biomarker discovery and validation. The company's GeoMx Digital Spatial Profiler enables highly-multiplexed spatial profiling of RNA and protein targets in a variety of sample types, including FFPE tissue sections.

For more information, please visit http://www.nanostring.com.

NanoString, NanoString Technologies, the NanoString logo, GeoMx, and nCounter are trademarks or registered trademarks of NanoString Technologies, Inc. in various jurisdictions.

View source version on businesswire.com: https://www.businesswire.com/news/home/20210622005265/en/

Contacts

Doug Farrell, NanoString Vice President, Investor Relations & Corporate Communications dfarrell@nanostring.com Phone: 206-602-1768

Go here to read the rest:
NanoString Launches nCounter Stem Cell Characterization Panel to Advance the Development of Stem Cell Therapy - Yahoo Finance

Catalent to Acquire RheinCell Therapeutics, Strengthening a Path Towards Industrialization of Induced Pluripotent Stem Cell-based Therapies – Yahoo…

Catalent, the leading global provider of advanced delivery technologies, development, and manufacturing solutions for drugs, biologics, cell and gene therapies, and consumer health products, today announced that it has reached an agreement to acquire RheinCell Therapeutics GmbH, a developer and manufacturer of GMP-grade human induced pluripotent stem cells (iPSCs). Upon completion, the acquisition will build upon Catalent's existing custom cell therapy process development and manufacturing capabilities with proprietary GMP cell lines for iPSC-based therapies. The deal will enable Catalent to offer the building blocks to scale iPSC-based cell therapies while reducing barriers to entry to the clinic for therapeutic companies and is expected to close before the end of 2021, subject to customary conditions. Financial details of the transaction have not been disclosed.

SOMERSET, N.J., June 24, 2021 /PRNewswire-PRWeb/ -- Catalent, the leading global provider of advanced delivery technologies, development, and manufacturing solutions for drugs, biologics, cell and gene therapies, and consumer health products, today announced that it has reached an agreement to acquire RheinCell Therapeutics GmbH, a developer and manufacturer of GMP-grade human induced pluripotent stem cells (iPSCs). Upon completion, the acquisition will build upon Catalent's existing custom cell therapy process development and manufacturing capabilities with proprietary GMP cell lines for iPSC-based therapies. The deal will enable Catalent to offer the building blocks to scale iPSC-based cell therapies while reducing barriers to entry to the clinic for therapeutic companies and is expected to close before the end of 2021, subject to customary conditions. Financial details of the transaction have not been disclosed.

iPSCs are cells that can be differentiated into various cell types to address a wide range of therapeutic indications. Founded in 2017, RheinCell has undertaken significant research and development of full GMP human leukocyte antigen (HLA)-matched cell banks with superior genomic integrity, as well as investing in development-scale operational capabilities. RheinCell is based in Langenfeld, near Dsseldorf, Germany. Upon closing, RheinCell's current employees will join Catalent's Cell & Gene Therapy business.

Story continues

"We formed RheinCell based on our deep scientific and regulatory expertise in the promising field of cell-based therapies," commented Juergen Weisser, Chief Executive Officer, RheinCell Therapeutics. He added, "We are convinced Catalent will be able to substantially accelerate RheinCell's future growth and help to support customers around the globe that are interested in our GMP-grade iPSC lines and iPSC-based services to feed their development pipelines in this exciting and highly demanding new therapeutic field."

"By offering a renewable, and standardized, source of cells for further product development, iPSCs have the potential to be a disruptive technology that could fuel the development of the next generation of cell therapies and substantially enhance the ability to manufacture at scale," said Julien Meissonnier, Vice President and Chief Scientific Officer, Catalent. He added, "Catalent is committed to building a full-scale value chain for emerging modalities and accelerating their path to market through expertise and innovation. This acquisition further strengthens Catalent's position in these new therapeutic areas, by pioneering tools and techniques to substantially advance scale-up to meet the demands of clinical and commercial manufacturing."

"This latest acquisition fuels the extraordinary growth of Catalent Cell & Gene Therapy, and the expertise and deep knowledge in iPSC cell lines that RheinCell brings will immediately boost our cell therapy portfolio, allowing us to offer iPSC banks to our customers as a premium source for their therapeutic development pathway," said Manja Boerman, Ph.D., President, Catalent Cell & Gene Therapy. She added, "The addition of the RheinCell team to our growing cell therapy network will create an opportunity to share cutting-edge expertise across our global centers of excellence."

Since 2020, Catalent has invested in its cell therapy capabilities with four strategic expansions at its Gosselies, Belgium, campus the location of its European Center of Excellence for cell and gene therapy. Together with its U.S. cell and gene therapy facilities across Texas and Maryland, Catalent continues to increase its clinical and commercial-scale manufacturing capabilities across the full range of cell and gene therapy activity.

About RheinCell Therapeutics GmbH RheinCell develops and manufactures GMP-grade human induced pluripotent stem cells (iPSCs) for the next generation of cell therapies. Its production pipeline focuses on high immune compatibility and low rejection potential, with a spotlight on solutions for off-the-shelf, allogenic therapeutics. RheinCell provides exclusive access to clinically approved and consented cord blood cells, proprietary cell reprogramming protocols, state-of-the-art cleanroom and cell culture facilities, GMP-compliant manufacturing processes, and a first-class community of iPSC workflow experts who also develop GMP-compliant differentiation protocols in close cooperation with customers. For more information, visit http://www.rheincell.de

About Catalent Cell & Gene Therapy Catalent Cell & Gene Therapy is an industry-leading technology, development, and manufacturing partner for advanced therapeutics. Its comprehensive cell therapy portfolio includes a wide range of expertise across a variety of cell types including CAR-T, TCR, TILs, NKs, iPSCs, and MSCs. With deep expertise in viral vector development, scale-up and manufacturing for gene therapies, Catalent is a full-service partner for plasmid DNA, adeno-associated viral (AAV), lentiviral and other viral vectors, oncolytic viruses, and live virus vaccines. An experienced and innovative partner, Catalent Cell & Gene Therapy has a global network of dedicated, small- and large-scale clinical and commercial manufacturing facilities, including an FDA-licensed viral vector facility, and fill/finish capabilities located in both the U.S. and Europe.

About Catalent Catalent is the leading global provider of advanced delivery technologies, development, and manufacturing solutions for drugs, biologics, cell and gene therapies, and consumer health products. With over 85 years serving the industry, Catalent has proven expertise in bringing more customer products to market faster, enhancing product performance and ensuring reliable global clinical and commercial product supply. Catalent employs over 15,000 people, including approximately 2,400 scientists and technicians, at more than 45 facilities, and in fiscal year 2020 generated over $3 billion in annual revenue. Catalent is headquartered in Somerset, New Jersey. For more information, visit http://www.catalent.com

More products. Better treatments. Reliably supplied.

Media Contact

Chris Halling, Catalent, +447580041073, chris.halling@catalent.com

Richard Kerns, Northern Exposure Public Relations, +441617285880, chris.halling@catalent.com

SOURCE Catalent

Read more here:
Catalent to Acquire RheinCell Therapeutics, Strengthening a Path Towards Industrialization of Induced Pluripotent Stem Cell-based Therapies - Yahoo...

Immusoft Announces Formation of Scientific Advisory Board – Business Wire

SEATTLE--(BUSINESS WIRE)--Immusoft, a cell therapy company dedicated to improving the lives of patients with rare diseases, announced today the formation of its Scientific Advisory Board (SAB) composed of world-renowned experts to provide external scientific review and high-level counsel on the Companys research and development programs.

The SAB will work closely with the Immusoft leadership team to advance and expand its leadership position in B cells as biofactories for therapeutic protein delivery, a novel approach that Immusoft has pioneered. The Company is currently preparing for the near-term clinical development of its lead investigational drug candidate ISP-001, a first-in-class investigational treatment for Hurler syndrome, the most severe form of mucopolysaccharidosis type 1 (MPS I), a rare lysosomal storage disease.

We are excited and privileged to have the opportunity to work with this group of rare disease and cell therapy experts, on the development of our pipeline, said Sean Ainsworth, Chief Executive Officer, Immusoft. These thought leaders bring tremendous understanding of rare diseases, as well as extensive experience in drug development from discovery through to late-stage clinical trials. We look forward to their continued contributions at Immusoft as we enter a new stage in advancing ISP-001 into clinical trials this year."

Members of the Immusoft Scientific Advisory Board are as follows:

Robert Sikorski, M.D., Ph.D., is Head of the SAB and consulting Chief Medical Officer at Immusoft. Dr. Sikorski currently serves as the Managing Director of Woodside Way Ventures, a consulting and investment firm that helps biotechnology companies and investors advance lifesaving technologies through clinical development. Prior to that, he was Chief Medical Officer of Five Prime Therapeutics (acquired by Amgen). Earlier in his career, he played a leading role in building MedImmunes oncology portfolio through partnering and acquisition efforts. Before joining Medimmune, he led late-stage clinical development and post-marketing efforts for several commercial drugs and drug candidates at Amgen. Dr. Sikorski began his career as a Howard Hughes Research Fellow and Visiting Scientist at the National Cancer Institute and the National Human Genome Research Institute in the laboratory of Nobel Laureate Harold Varmus. Additionally, he has served as an editor for the journal Science and Journal of the American Medical Association. Dr. Sikorski obtained his MD and PhD degrees as a Medical Scientist Training Program awardee at the Johns Hopkins School of Medicine.

Paula Cannon, Ph.D., is a Distinguished Professor of Molecular Microbiology and Immunology at the Keck School of Medicine of the University of Southern California, where she leads a research team that studies viruses, stem cells and gene therapy. She obtained her PhD from the University of Liverpool in the United Kingdom, and received postdoctoral training at both Oxford and Harvard universities. Her research uses gene editing technologies such as CRISPR/Cas9, to develop treatments for infectious and genetic diseases of the blood and immune systems. In 2010, her team was the first to show that gene editing could be used to mimic a natural mutation in the CCR5 gene that prevents HIV infection, and which has now progressed to a clinical trial in HIV-positive individuals.

Michael C. Carroll, Ph.D., is a Senior Investigator at Boston Children's Hospital and Professor of Pediatrics, Harvard Medical School. His recent research focuses on two major areas, i.e. neuroimmunology and peripheral autoimmunity. Using murine models of neuro-psychiatric lupus, his group is testing their hypothesis that interferon alpha from peripheral inflammation enters the brain and mediates synapse loss and symptoms of cognitive decline observed in patients. Following-up on a large genetic screen in schizophrenia patients, they recently reported that over-activation of a process known as complement-dependent, microglia-mediated synaptic pruning in novel strains of mice can induce psychiatric symptoms of schizophrenia. In a murine lupus model, his lab has identified that self-reactive B cells evolve with kinetics similar to that of foreign antigen responding B cells providing a novel explanation for epitope spreading. Dr. Carroll received his PhD from UT Southwestern Medical School and his postdoctoral training with the Nobel Laureate, Professor Rodney R. Porter at Oxford University. He is a recipient of awards from the Pew Foundation, American Arthritis Foundation and the National Alliance for Mental Health.

Hans-Peter Kiem, M.D., Ph.D. is the Stephanus Family Endowed Chair for Cell and Gene Therapy at Fred Hutchinson Cancer Research Center. He is a world-renowned pioneer in stem-cell and gene therapy and in the development of new gene-editing technologies. His focus has been the development of improved treatment and curative approaches for patients with genetic and infectious diseases or cancer. For gene editing, his lab works on the design and selection of enzymes, known as nucleases, which include CRISPR/Cas. These enzymes function as molecular scissors that are capable of accurately disabling defective genes. By combining gene therapys ability to repair problem-causing genes and stem cells regenerative capabilities, he hopes to achieve cures of diseases as diverse as HIV, leukemia and brain cancer. He is also pioneering in vivo gene therapy approaches to make gene therapy and gene editing more broadly available and accessible to patients and those living with HIV, especially in resource-limited settings. He received his M.D. and Ph.D. at the University of Ulm, Germany.

Bruce Levine, Ph.D., Barbara and Edward Netter Professor in Cancer Gene Therapy is the Founding Director of the Clinical Cell and Vaccine Production Facility in the Department of Pathology and Laboratory Medicine and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania. First-in-human adoptive immunotherapy trials include the first use of a lentiviral vector, the first infusions of gene edited cells, and the first use of lentivirally-modified cells to treat cancer. Dr. Levine has overseen the production, testing and release of 3,100 cellular products administered to more than 1,300 patients in clinical trials since 1996. Dr. Levine is a recipient of the William Osler Patient Oriented Research Award, the Wallace H. Coulter Award for Healthcare Innovation, the National Marrow Donor Program/Be The Match ONE Forum 2020 Dennis Confer Innovate Award, serves as President of the International Society for Cell and Gene Therapy, and on the Board of Directors of the Alliance for Regenerative Medicine. Dr. Levine received a B.A. in Biology from the University of Pennsylvania and a Ph.D. in Immunology and Infectious Diseases from Johns Hopkins University.

Peter Sage, Ph.D., is an Assistant Professor of Medicine at Harvard Medical School and an Associate Immunologist at Brigham and Womens Hospital. Dr. Sage is also a member of the Committee on Immunology (COI) at Harvard Medical School. Dr. Sage obtained his PhD in Immunology from Harvard Medical School in 2013, during which he received the Jeffrey Modell Prize. He completed a post-doctoral fellowship in the laboratory of Dr. Arlene Sharpe in the Department of Immunology at Harvard Medical School in 2017. Dr. Sage started his independent laboratory in 2017 at the Transplantation Research Center in the Division of Renal Medicine of Brigham and Womens Hospital. Dr. Sages laboratory focuses on studying how the immune system controls B cell and antibody responses in settings of health and disease.

About Immusoft

Immusoft is a cell therapy company focused on developing a novel therapies for rare diseases using a sustained delivery of protein therapeutics from a patients own cells. The company is developing a technology platform called Immune System Programming (ISP), which modifies a patients B cells and instructs the cells to produce gene-encoded medicines. The B cells that are reprogrammed using ISP become miniature drug factories that are expected to survive in patients for many years. The company is based in Seattle, WA. For more information, visit http://www.immusoft.com.

See more here:
Immusoft Announces Formation of Scientific Advisory Board - Business Wire

Jasper Therapeutics and Aruvant Announce Research Collaboration to Study JSP191, an Antibody-Based Conditioning Agent, with ARU-1801, a Novel Gene…

REDWOOD CITY, Calif. and NEW YORK and BASEL, Switzerland, June 21, 2021 /PRNewswire/ --Jasper Therapeutics, Inc., a biotechnology company focused on hematopoietic cell transplant therapies, andAruvant Sciences, a private company focused on developing gene therapies for rare diseases, today announced that they have entered a non-exclusive research collaboration to evaluate the use of JSP191, Jasper's anti-CD117 monoclonal antibody, as a targeted, non-toxic conditioning agent with ARU-1801, Aruvant's investigational lentiviral gene therapy for sickle cell disease (SCD). The objective of the collaboration is to evaluate the use of JSP191 as an effective and more tolerable conditioning agent that can expand the number of patients who can receive ARU-1801, a potentially curative treatment for SCD.

"This research collaboration with Aruvant is the first to use a clinical-stage antibody-based conditioning agent and a novel clinical-stage gene therapy, giving this combination a clear advantage by moving beyond the harsh conditioning agents currently used for gene therapy and establishing this next-generation potentially curative treatment as a leader in sickle cell disease," said Kevin N. Heller, M.D., executive vice president, research and development of Jasper. "Our goal is to establish JSP191 as a potential new standard of care conditioning agent, broadly in autologous gene therapy and allogeneic hematopoietic stem cell transplantation."

Gene therapies and gene editing technologies generally require that a patient's own hematopoietic stem cells first be depleted from the bone marrow to facilitate the engraftment of the new, gene-modified stem cells through a process called conditioning. Other investigational gene therapies and gene editing approaches in SCD use a high-dose chemotherapy such as busulfan for the conditioning regimen, which can place patients at prolonged risk for infection and bleeding, secondary malignancy and infertility. ARU-1801 is currently the only gene therapy that has demonstrated durable efficacy using both a lower dose of chemotherapy and a different agent than busulfan with a more limited side effect profile. The Aruvant-Jasper partnership is focused on evaluating the potential of using JSP191, a highly targeted anti-CD117 (stem cell factor receptor) monoclonal antibody agent, as the foundationof a novel conditioning regimen for use in combination with ARU-1801 to further reduce the negative side effects while maintaining efficacy.

"The unique attributes of ARU-1801 enable us to bring a potentially curative one-time therapy to individuals with sickle cell disease that can be delivered in the safest way possible," said Will Chou, M.D., Aruvant chief executive officer. "By partnering with Jasper to evaluate the use of JSP191 with ARU-1801, we are one step closer to developing a next-generation definitive therapy with an even more patient-friendly conditioning regimen. We believe that this combination may be able to further expand the number of patients who can benefit from ARU-1801 in the future, including potentially those with more moderate disease."

About JSP191 JSP191 is a humanized monoclonal antibody in clinical development as a conditioning agent that blocks stem cell factor receptor signaling leading to clearance of hematopoietic stem cells from bone marrow, creating an empty space for donor or gene-corrected transplanted stem cells to engraft. While hematopoietic cell transplantation can be curative for patients, its use is limited because standard high dose myeloablative conditioning is associated with severe toxicities and standard low dose conditioning has limited efficacy. To date, JSP191 has been evaluated in more than 90 healthy volunteers and patients. It is currently enrolling in two clinical trials for myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) and severe combined immunodeficiency (SCID) and expects to begin enrollment in four additional studies in 2021 for severe autoimmune disease, sickle cell disease, chronic granulomatous disease and Fanconi anemia patients undergoing hematopoietic cell transplantation.

About ARU-1801 ARU-1801 is designed to address the limitations of current curative treatment options, such as low donor availability and the risk of graft-versus-host disease (GvHD) seen with allogeneic stem cell transplants. Unlike investigational gene therapies and gene editing approaches which require fully myeloablative conditioning, the unique characteristics of ARU-1801 allow it to be given with reduced intensity conditioning ("RIC"). Compared to myeloablative approaches, the lower dose chemotherapy regimen underlying RIC has the potential to reduce not only hospital length of stay, but also the risk of short- and long-term adverse events such as infection and infertility. Preliminary clinical data from the MOMENTUMstudy, an ongoing Phase 1/2 trial of ARU-1801 in patients with severe sickle cell disease, demonstrate continuing durable reductions in disease burden.

The MOMENTUM Study Aruvant is conducting the MOMENTUM study, which is evaluating ARU-1801, a one-time potentially curative investigational gene therapy for patients with SCD. This Phase 1/2 study is currently enrolling participants, and information may be found at momentumtrials.comwhich includes a patient brochure, an eligibility questionnaireand information for healthcare providers.

About Jasper Therapeutics Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The company is advancing two potentially groundbreaking programs. JSP191, a first-in-class anti-CD117 monoclonal antibody, is in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplantation. It is designed to enable safer and more effective curative allogeneic and autologous hematopoietic cell transplants and gene therapies. In parallel, Jasper Therapeutics is advancing its preclinical engineered hematopoietic stem cell (eHSC) platform, which is designed to overcome key limitations of allogeneic and autologous gene-edited stem cell grafts. Both innovative programs have the potential to transform the field and expand hematopoietic stem cell therapy cures to a greater number of patients with life-threatening cancers, genetic diseases and autoimmune diseases than is possible today. For more information, please visit us at jaspertherapeutics.com.

About Aruvant Sciences Aruvant Sciences, part of the Roivant family of companies, is a clinical-stage biopharmaceutical company focused on developing and commercializing gene therapies for the treatment of rare diseases. The company has a talented team with extensive experience in the development, manufacturing and commercialization of gene therapy products. Aruvant has an active research program with a lead product candidate, ARU-1801, in development for individuals suffering from sickle cell disease (SCD). ARU-1801, an investigational lentiviral gene therapy, is being studied in a Phase 1/2 clinical trial, the MOMENTUM study, as a one-time potentially curative treatment for SCD. Preliminary clinical data demonstrate engraftment of ARU-1801 and amelioration of SCD is possible with one dose of reduced intensity chemotherapy. The company's second product candidate, ARU-2801, is in development to cure hypophosphatasia, a devastating, ultra-orphan disorder that affects multiple organ systems and leads to high mortality when not treated. Data from pre-clinical studies with ARU-2801 shows durable improvement in disease biomarkers and increased survival. For more information on the ongoing ARU-1801 clinical study, please visit http://www.momentumtrials.comand for more on the company, please visit http://www.aruvant.com. Follow Aruvant on Facebook, Twitter @AruvantSciencesand on Instagram @Aruvant_Sciences.

About Roivant Roivant's mission is to improve the delivery of healthcare to patients by treating every inefficiency as an opportunity. Roivant develops transformative medicines faster by building technologies and developing talent in creative ways, leveraging the Roivant platform to launch Vants nimble and focused biopharmaceutical and health technology companies. For more information, please visit http://www.roivant.com.

SOURCE Aruvant Sciences andJasper Therapeutics

Home

Read the original here:
Jasper Therapeutics and Aruvant Announce Research Collaboration to Study JSP191, an Antibody-Based Conditioning Agent, with ARU-1801, a Novel Gene...

Gamida Cell Announces Publication in Blood, the Journal of the American Society of Hematology, of the First Pivotal Trial to Evaluate a Cell Therapy…

BOSTON--(BUSINESS WIRE)--Gamida Cell Ltd. (Nasdaq: GMDA), an advanced cell therapy company committed to cures for blood cancers and serious hematologic diseases, today announced that the results of a Phase 3 clinical study of omidubicel have been published in Blood, the official journal of the American Society of Hematology. Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell transplant solution for patients with hematologic malignancies.

The results demonstrate that transplantation with omidubicel leads to faster neutrophil and platelet recovery compared to a standard umbilical cord blood graft, and results in fewer early bacterial and viral infections and less time in the hospital.

We are pleased that the data from this well-conducted international Phase 3 trial have been published in Blood, the highly respected, peer-reviewed journal of the American Society of Hematology, said Ronit Simantov, M.D., chief medical officer of Gamida Cell. The robust results of this clinical trial have demonstrated that omidubicel could provide an important new option for patients with hematologic malignancies in need of a bone marrow transplant.

Data from this study were previously presented at the Transplantation & Cellular Therapy Meetings of the American Society of Transplantation and Cellular Therapy and Center for International Blood & Marrow Transplant Research, and most recently during the Presidential Symposium at the 47th Annual Meeting of the European Society for Blood and Marrow Transplantation. The pivotal study was an international, multi-center, randomized Phase 3 trial designed to compare the safety and efficacy of omidubicel to standard umbilical cord blood transplant in patients with high-risk hematologic malignancies undergoing a bone marrow transplant.

Previous studies have shown that engraftment with omidubicel is durable, with some patients in the Phase 1/2 study now a decade past their transplant. The Phase 3 data reinforce omidubicels potential to be a new standard of care for patients who are in need of stem cell transplantation but do not have access to an appropriate matched donor, said Mitchell Horwitz, M.D., lead author of the paper and a professor of medicine at the Duke Cancer Institute.

The full Blood manuscript is available here: https://ashpublications.org/blood/article/doi/10.1182/blood.2021011719/476235/Omidubicel-Versus-Standard-Myeloablative-Umbilical.

Details of Phase 3 Efficacy and Safety Results Shared in Blood

The intent-to-treat analysis included 125 patients aged 1365 years with a median age of 41. Forty-four percent of the patients treated on study were non-Caucasian, a population known to be underrepresented in adult bone marrow donor registries. Patient demographics and baseline characteristics were well-balanced across the two study groups. Patients with acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome or lymphoma were enrolled at more than 30 clinical centers in the United States, Europe, Asia, and Latin America.

Gamida Cell previously reported in May 2020 that the study achieved its primary endpoint, showing that omidubicel demonstrated a statistically significant reduction in time to neutrophil engraftment, a measure of how quickly the stem cells a patient receives in a transplant are established and begin to make healthy new cells and a key milestone in a patients recovery from a bone marrow transplant. The median time to neutrophil engraftment was 12 days for patients randomized to omidubicel compared to 22 days for the comparator group (p<0.001).

All three secondary endpoints, details of which were first reported in December 2020, demonstrated a statistically significant improvement among patients who were randomized to omidubicel compared to patients randomized to standard cord blood graft. Platelet engraftment was significantly accelerated with omidubicel, with 55 percent of patients randomized to omidubicel achieving platelet engraftment at day 42, compared to 35 percent for the comparator (p = 0.028). Hospitalization in the first 100 days after transplant was also reduced in patients randomized to omidubicel, with a median number of days alive and out of hospital for patients randomized to omidubicel of 61 days, compared to 48 days for the comparator (p=0.005). The rate of infection was significantly reduced for patients randomized to omidubicel, with the cumulative incidence of first grade 2 or grade 3 bacterial or invasive fungal infection for patients randomized to omidubicel of 37 percent, compared to 57 percent for the comparator (p=0.027). Additional data reported in the manuscript included a comparison of infection density, or the number of infections during the first year following transplantation, which showed that the risk for grade 2 and grade 3 infections was significantly lower among recipients of omidubicel compared to control (risk ratio 0.5, p<0.001).

Data from the study relating to exploratory endpoints also support the clinical benefit demonstrated by the studys primary and secondary endpoints. There was no statistically significant difference between the two patient groups in incidence of grade 3/4 acute GvHD (14 percent for omidubicel, 21 percent for the comparator) or all grades chronic GvHD at one year (35 percent for omidubicel, 29 percent for the comparator). Non-relapse mortality was shown to be 11 percent for patients randomized to omidubicel and 24 percent for patients randomized to the comparator (p=0.09).

These clinical data results form the basis of a Biologics License Application (BLA) that Gamida Cell plans to submit to the U.S. Food and Drug Administration (FDA) in the fourth quarter of 2021.

About Omidubicel

Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell (bone marrow) transplants for patients with hematologic malignancies (blood cancers), for which it has been granted Breakthrough Status by the FDA. Omidubicel is also being evaluated in a Phase 1/2 clinical study in patients with severe aplastic anemia (NCT03173937). The aplastic anemia investigational new drug application is currently filed with the FDA under the brand name CordIn, which is the same investigational development candidate as omidubicel. For more information on clinical trials of omidubicel, please visit http://www.clinicaltrials.gov.

Omidubicel is an investigational therapy, and its safety and efficacy have not been established by the FDA or any other health authority.

About Gamida Cell

Gamida Cell is an advanced cell therapy company committed to cures for patients with blood cancers and serious blood diseases. We harness our cell expansion platform to create therapies with the potential to redefine standards of care in areas of serious medical need. For additional information, please visit http://www.gamida-cell.com or follow Gamida Cell on LinkedIn or Twitter at @GamidaCellTx.

Cautionary Note Regarding Forward Looking Statements

This press release contains forward-looking statements as that term is defined in the Private Securities Litigation Reform Act of 1995, including with respect to the potential for omidubicel to become a new standard of care and the anticipated submission of a BLA for omidubicel, which statements are subject to a number of risks, uncertainties and assumptions, including, but not limited to Gamida Cells ability to prepare regulatory filings and the review process therefor; complications in Gamida Cells plans to manufacture its products for commercial distribution; and clinical, scientific, regulatory and technical developments. In light of these risks and uncertainties, and other risks and uncertainties that are described in the Risk Factors section and other sections of Gamida Cells Annual Report on Form 20-F, filed with the Securities and Exchange Commission (SEC) on March 9, 2021, as amended on March 22, 2021, and other filings that Gamida Cell makes with the SEC from time to time (which are available at http://www.sec.gov), the events and circumstances discussed in such forward-looking statements may not occur, and Gamida Cells actual results could differ materially and adversely from those anticipated or implied thereby. Any forward-looking statements speak only as of the date of this press release and are based on information available to Gamida Cell as of the date of this release.

Originally posted here:
Gamida Cell Announces Publication in Blood, the Journal of the American Society of Hematology, of the First Pivotal Trial to Evaluate a Cell Therapy...