Merakris Therapeutics, Inc. Announces FDA Clearance for – GlobeNewswire

RESEARCH TRIANGLE PARK, N.C., May 25, 2021 (GLOBE NEWSWIRE) -- Merakris Therapeutics, Inc. (Merakris) announced that it has received U.S. Food and Drug Administration (FDA) clearance for a Phase II clinical trial involving its investigational new drug (IND), Dermacyte Amniotic Wound Care Liquid. The study will address the frequency of administration, safety and efficacy of Dermacyte Liquid in treating non-healing venous stasis ulcers (VSUs).

Merakris is a Research Triangle Park-based biotechnology business dedicated to the research, development and marketing of regenerative healthcare products.

The company initially met with the FDA in 2020 to discuss the clinical trial and IND filing, according to CEO Chris Broderick. He said the team at Merakris which includes experts in regulatory affairs, Good Clinical Practices, clinical data management, and clinical trial design and oversight will manage the study. It will work with a Good Manufacturing Practice (GMP) laboratory partner to ensure that the investigational product is manufactured in accordance with all FDA requirements.

We are excited about the potential benefits Dermacyte Liquid offers to patients in terms of healing difficult-to-treat venous leg ulcers caused by venous reflux disease, Broderick stated. And we look forward to more closely assessing the safety and efficacy of this product in our upcoming clinical trial.

Dermacyte Amniotic Wound Care Liquid is an acellular, sterile-filtered human amniotic fluid allograft. Merakris lead scientist has shown that the product stimulates skin cell migration and activates the gene expression pathways required to promote wound healing. If approved, it will be the first subcutaneous (below the skin) biologic indicated for VSUs.

The global market for the treatment of venous leg ulcers was valued at $2.95 billion in 2018 and is forecasted to reach $4.84 billion by 2026, Merakris reported. An estimated 500,000-600,000 people suffer from VSUs in the U.S. alone. Topical cellular/biological skin graft substitutes are often used as advanced skin graft substitutes to treat VSUs.

Dermacyte Liquid contains the natural biomolecules present in amniotic tissues and fluids. In a discovery-based translational research project, the company has isolated various components of Dermacyte Liquid and is studying how it affects the stages of wound healing. The data from the project suggest that these components may allow us to usher in a new era of precision wound healing, based on a patients personal wound profile, Broderick pointed out.

He said the company has filed patents covering Dermacyte Liquid and its unique mode of action and plans to conduct additional pre-clinical and clinical studies to evaluate the products safety and efficacy in cutaneous wound healing.

MerakrisTherapeutics, founded in 2016, is pioneering the use of commercially scalable stem cell-derived biotherapeutic technologies to promote the healing of damaged tissue. Its mission is to improve global patient care and outcomes through regenerative biotechnologies. The companys products include:

The company also is investigating other novel biotechnology solutions to promote wound healing and skin rejuvenation.

About the Dermacyte Liquid Phase II Clinical Trial Dermacyte Liquid will be evaluated in a Phase II clinical trial entitled, A Two-Part, Randomized Study of Dermacyte Amniotic Wound Care Liquid for the Treatment of Non-Healing Venous Stasis Ulcers. The clinical trial has been designed to include an initial open-label study group (Part 1) followed by a randomized, double-blind, placebo-controlled study group (Part 2) in subjects with a non-infected venous stasis ulcer (VSU) that has failed to demonstrate improvement after receiving at least 4 weeks of standard, conventional wound therapy to evaluate the efficacy and safety of the biological drug product.

The run-in phase of the study (Part 1) will enroll 10 eligible subjects. In Part 1, patients will be randomized 1:1 to receive active Dermacyte once weekly or once every two weeks with standard of care. The data from Part 1 will be reviewed to determine the administration frequency of the study product (once weekly or once every two weeks) in Part 2 of the Study.

In Part 2, approximately 30 subjects will be randomized 1:1 to receive Dermacyte Liquid or placebo with standard of care. Subjects will be followed for 12 weeks.

Subjects will receive localized subcutaneous injection of Dermacyte Liquid or placebo into and/or around the wound bed during clinic visits over a 12-week period and assessed for safety and efficacy measures at Screening, Baseline, and Weeks 4, 8, and 12. Percent reduction of the wound surface area will be formally collected at Baseline, Weeks 4, 8, and 12. To assess healing, the ulcer will be evaluated by assessing the change in the surface area (L X W) from Baseline. Overall change in patient reported pain scores from Baseline to Week 12 will be evaluated and total wound closure will be evaluated at Week 12.

Forward-Looking Statements

This press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, as amended. Forward-looking statements are statements that are not historical facts. These statements include projections and estimates regarding the marketing and other potential of Merakris products, or regarding potential future revenues from any such product. Forward-looking statements are generally identified by the words "expects", "anticipates", "believes", "intends", "estimates", "plans" and similar expressions. Although Merakris management believes that any forward-looking statements in this press release are reasonable, investors are cautioned that forward-looking information and statements are subject to various risks and uncertainties, many of which are difficult to predict and generally beyond the control of Merakris, that could cause actual results and developments to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include among other things, unexpected regulatory actions or delays, or government regulation generally, that could affect the availability or commercial potential of the product, the fact that product may not be commercially successful, the uncertainties inherent in research and development, including future clinical data and analysis of existing clinical data relating to the product, including post marketing, unexpected safety, quality or manufacturing issues, competition in general, risks associated with intellectual property and any related future litigation and the ultimate outcome of such litigation, and volatile economic and market conditions may have on us, our customers, suppliers, vendors, and other business partners, and the financial condition of any one of them, as well as on our employees and advisors and on the global economy as a whole.

Read the original post:
Merakris Therapeutics, Inc. Announces FDA Clearance for - GlobeNewswire

The Rise of Longevity Therapeutics – Pharmaceutical Executive

Aging is the ultimate risk factor for most diseases, such as cancer, neurodegenerative, cardiovascular, diabetes, degenerative fibrosis and many others. When we are young, we are typically healthy, despite a predisposition that will lead inevitably to a specific degenerative condition. However, the degenerative processes do not kick in until a certain age, when we are older. It looks like when we are younger, the body can compensate cumulative stress and damage caused to our cells in the tissues, allowing to maintain that equilibrium, called homeostasis, that keeps our organs functional and healthy. However, over time this buffering capacity becomes thinner and thinner, until things wear off: our tissues stop working as they used to. These changes are typically caused by an initial small number of rare but bad cells, that progressively increase over time, causing additional damage to the good cells that eventually stop working efficiently, causing a vicious cycle. Eventually the bad cells take over leading to the onset of a disease.

Our body is equipped with a number or regenerative and healing functions. Some are intrinsic in every cell, such as DNA repair mechanisms that are triggered when something compromises the integrity of our genomic structures. These are important functions that enable a cell, for example when it replicates, to repair errors and other damages that might have happened to our DNA. For example, two large proteins called ATM and ATR, involved in the cellular response to DNA damage, are responsible to maintain genomic instability caused by intrinsic and external DNA-damaging agents, such as UV light or various chemicals and toxins. A lack of functions of these proteins results in progressive neurodegeneration, immunodeficiency, predisposition to malignancy or radiation sensitivity. Mutations on the genes encoding these proteins can cause premature aging and premature development of these diseases, but this occurs also naturally, over time.

Cells also have an intrinsic immune system, producing factors called interferons employed by the cells as antiviral agents and to modulate other immune functions. It can be triggers by a viral infection so when a cell is infected will release interferons, protecting the neighbor cells against potential infection. Interferons can also suppress growth of blood vessels preventing tumors to get nutrients and growing. They can also activate immune cells so they can better fight viruses, tumors and others agents. Unfortunately, an age-related decline or impaired innate interferon functions in the cells results in a number of negative consequences in the body, such as increased susceptibility of the elderly to infections, tumors and damage.

In the body there are several cell types responsible to keep the tissues in check. The immune system is specialized to recognize remove and remember damaging agents. Those could be external, such as virus, bacteria or parasites, or internal, such as tumorigenic cells or senescent cells (see below). The immune system is a very sophisticated network of cell types, intercommunicating with each other to maintain the body clean from damaging factors. As we age the immune system also ages and loses capacity to recognize or responding to these damaging agents. It also become exhausted by an increasing chronic inflammation that progressively accumulate as we age, phenomenon also called inflammaging.

Another important repairing mechanism is the regenerative tissue functions, driven by the stem cells. Those cells are progenitor cells, often dormant in a quiescent state in the tissue and waiting to be activated by some damage. Stem cells are critical because once activated they can generate a progeny of daughter cells capable of re-growing the damaged tissue back to its original structure and function. Stem cells have another important function: they can regenerate themselves, in a process called self-renewal. This is important so that the new repaired tissue can repeat the process if a new damage occurs. The regenerative capacity of our body is remarkable, allowing our tissues to keep their integrity, health and functions. However, over time also stem cells age or respond to the aged microenvironment where they live (called the niche), and they become less efficient to repair tissues or to self-renewing. As a result, our tissues change, become atrophic, fibrotic or dysfunctional leading eventually to diseases.

In regenerative medicine, the application of stem cells resulted of the generation of multiple new therapeutic opportunities. A promising area uses stem cells to generate bioengineering strategies to grow new tissues in a petri dish to be then transplanted in the body to repair damaged tissues. Some applications are already in clinical use, such as for skin grafts. Many others are on their way, either in preclinical development or in clinical trials for many different tissue types and for different clinical indications.

Another promising stem cells application is the direct transplantation into damaged tissues, where they can grow and engraft repairing. However, as we age stem cells become less efficient. What if we If we could rejuvenate them? We could restore their capacity to repair our tissues and maintain homeostasis. Promising and exciting strategies are advancing in that direction. For example, we and others showed that it is possible to reprogram epigenetically a cell so it can become the younger and healthier version of itself (Sarkar et al., 2020). This is a mechanism that every cell has encoded in its DNA, but normally works only in the germline (the sperm and the egg) during the embryogenesis to make sure that the cellular clock is turned back to zero, before initiating the cellular programs to generate the embryo. This important for example to prevent making old newborn babies. This intrinsic rejuvenative mechanism is locked in the other somatic cells of the body. We found it is possible to re-activate it transiently and safely, without changing the identity of the cell, enabling to push back the cellular clock of aged human cells to make them healthier and restore their functions. These technologies are under development to be translated into therapeutics with the promise that one day could rejuvenate the aged cells in the body so they can become the younger version of themselves, repeating the process over time when needed.

Among many of the drivers of the aging process, there is one that seems to stands out as the lower hanging fruit among the emerging space of the longevity therapeutics. This is cellular senescence. Every damage that occurs to the cells in our body can push the cells to stop what they are doing and activate a safety mechanism that locks them into an arrested state called cellular senescence. Senescent cells cannot replicate anymore preventing them to cause additional damage, such as becoming cancer cells. All sort of damage can trigger this response leading to cellular senescence such as, oxidative stress, mitochondrial dysfunctions, DNA damage, viral infection, cigarette smoking, pollutions, chemicals, etc. They all can induce that safety lock and push damage cells to become senescent.

Senescent cells dont die easily but they stick around in the tissue, accumulating slowly over time. Importantly, cellular senescence is a pleiotropic mechanism, meaning it can be both good or bad. When we are young, we can efficiently get rid of senescent cells. The body uses them positively such as for tissue repair, wound healing or tissue remodeling. However, as we age, and our immune system ages (partially trough cellular senescence, a phenomenon called immune-senescence), our body become less efficient in removing senescent cells, which then start to accumulate.

Being able to make a new generation of drugs that are very selective for senescent cells, will enable the promise to achieve rejuvenative clinical results in humans similarly to what we found in preclinical results. On that end, we recently published a targeted strategy with the goal to advance the field in that direction (Doan et al., 2020). Using a prodrug, we engineered a small molecule to generate a selective senolytic compound to develop a targeted therapy. This prodrug is inactive in non-senescent cells but activated by senescent cells, taking advantage of an enzymatic function of those cells. In geriatric mice this prodrug showed to be well tolerated but also efficacious to clear senescent cells, resulting in restored cognitive functions, muscle functions, stem cells functions, vitality and overall health. As we advance senolytic drugs to the clinic to treat age-related diseases, it is very important to be mindful that elderly individuals, who are frail, with co-morbidities and exposed to multiple medications, will not well tolerate drugs that are not safe and effective. Importantly, not all senescent cells are the same. They are rare, interspersed in the tissues but are also very heterogeneous. Being able to hit the right senescent cells, in the right diseased tissue will be key to enable effective therapies. Developing drugs that are very potent, selective and potent and safe will be pivotal.

The longevity therapeutics space is emerging, but is already disrupting the medical industry. The goal of longevity therapeutics is not just to add years to life, extending lifespan. The true goal is to add life to years and extend health span. A target that gets closer every day.

Marco Quarta is CEO, Rubedo Life Sciences.

See the original post:
The Rise of Longevity Therapeutics - Pharmaceutical Executive

Tooth Regeneration Market Size | COVID-19 Impact Analysis | Forecast to 2027 investigated in the latest research – WhaTech

Tooth Regeneration Market Global Trends, Market Share, Industry Size, Growth, Opportunities and Market Forecast - 2021 to 2027. The tooth regeneration market size is expected to grow significantly from 2021 to 2027.

The tooth regeneration marketsize is expected to grow significantly from 2021 to 2027.

Tooth regeneration is a stem cell-based regenerative medical procedure used in the fields of tissue engineering and stem cell biology. The tooth regeneration procedure replaces damaged or lost teeth by growing on autologous stem cells.

Somatic cells are collected and reprogrammed to derive pluripotent stem cells and tooth layers with the help of resorbable biopolymers.

(Getthis Report)

A full report of Global Tooth Regeneration Market is available at: http://www.orionmarketreports.com/tooth-rket/55394/

Market Segments

By Type

By Process

By End-use

Key Players

Key players operating in the global tooth regeneration market include Unilever, Ocata Therapeutics, Integra LifeSciences, CryoLife, Inc., BioMimetic Therapeutics, Inc. (Wright Medical Group, Inc.), Cook Medical, and StemCells Inc.

Scope of the Report

The research study analyzes the global Tooth Regeneration industry from 360-degree analysis of the market thoroughly delivering insights into the market for better business decisions, considering multiple aspects some of which are listed below as:

Recent Developments

o Market Overview and growth analysis o Import and Export Overview o Volume Analysis o Current Market Trends and Future Outlook o Market Opportunistic and Attractive Investment Segment

Geographic Coverage

o North America Market Size and/or Volume o Latin America Market Size and/or Volume o Europe Market Size and/or Volume o Asia-Pacific Market Size and/or Volume o Rest of the world Market Size and/or Volume

Key Questions Answered by Tooth Regeneration Market Report

1. What was the Tooth Regeneration Market size in 2019 and 2020; what are the estimated growth trends and market forecast (2021-2027).

2. What will be the CAGR of the Tooth Regeneration Market during the forecast period (2021-2027)?

3. Which segments (product type/applications/end-user) were most attractive for investments in 2021? How these segments are expected to grow during the forecast period (2021-2027).

4. Which manufacturer/vendor/players in the Tooth Regeneration Market was the market leader in 2020?

5. Overview on the existing product portfolio, products in the pipeline, and strategic initiatives taken by key vendors in the market.

The report covers the following objectives:

About Us:

Orion Market Reports (OMR) endeavors to provide an exclusive blend of qualitative and quantitative market research reports to clients across the globe. Our organization helps both multinational and domestic enterprises to bolster their business by providing in-depth market insights and the most reliable future market trends.

Our reports address all the major aspects of the markets providing insights and market outlook to global clients.

This email address is being protected from spambots. You need JavaScript enabled to view it.

Original post:
Tooth Regeneration Market Size | COVID-19 Impact Analysis | Forecast to 2027 investigated in the latest research - WhaTech

Appia Bio aims for a new kind of off-the-shelf CAR-T with $52M raise – FierceBiotech

Nobel Prizewinner David Baltimore, Ph.D.has always dreamed of turning Los Angeles into a biotech hub. He tried to help it along as president of the California Institute of Technology some 20 years ago, but the idea didnt seem to stick. Now, hes getting another crack at it with a new cancer cell therapy company co-founded with a group of Caltech and Kite Pharma alums.

Appia Bio launches with $52 million to develop off-the-shelf cell therapies for cancer based on hematopoietic, or blood-forming, stem cells. Its platform, dubbed ACUA, allows the programming of stem cells to become invariant natural killer T (iNKT) cells, a powerful subtype of T cell that some folks think of as a hybrid between a natural killer (NK) cell and a T cell, said JeenJoo JJ Kang, Ph.D., CEO of Appia Bio.

Though everybody has iNKT cells in their body, these cells are exceedingly rare. They make up just a fraction of white blood cells found in the peripheral blood, so its hard to produce them in the traditional way, which is to draw blood and expand those cells, Kang said.

[iNKT] cells have multiple tumor cell-killing mechanisms through the natural killer and T cell pathway, she added. Were going to engineer them with a CAR and we think that is positive because it can address more heterogeneous tumor antigen presentations and get around antigen loss.

RELATED: Harper, Seidenberg's Westlake Village BioPartners reels in $500M across 2 funds

Antigen loss or antigen escape is a process in which cancer cells stop expressing the antigen the CAR-T is designed to hunt down, such as CD19. Targeting more than one antigen could disrupt that escape mechanism and prevent relapse. It could also improve the odds of cell therapy working in solid tumorsa major pain point.

Besides solving these problems, Appia also hopes to address the barrier of access. Autologous cell therapiesthat is, those made from a patients own cellsare complex, expensive and time-consuming to make. Some patients dont have enough T cells or T cells of good enough quality to make those treatments.

Producing large amounts of iNKT cells from stem cells that can be stored until theyre needed could make cell therapy available to more patients and at a lower cost.

Being able to mass-produce a cell therapy product that can be dosed to thousands of patients out of a single manufacturing run can significantly affect the economics of what the viable price point is, Kang said. That is another aspect that is a part of our goals: to bring that price down.

RELATED: Catamaran Bio sets sail with $42M to create off-the-shelf CAR-NK treatments

The ACUA technology is based on research out of the laboratory of co-founder Lili Yang, Ph.D., an associate professor at the University of California, Los Angeles who worked under Baltimore as a student and postdoc at Caltech.

Appias founding team also includes Pin Wang, Ph.D., of the University of Southern California and Kite alums Edmund Kim, Ph.D., and Jeff Wiezorek, M.D. Kim, who led corporate development at Kite, is Appias chief operating officer. Wiezorek,who led cell therapy development at Kite, is Appias chief medical officer.

Gilead acquired Kite in 2017, the same year its first CAR-T therapy, Yescarta, scored FDA approval. Later on, Wiezorek and Kims search for their next project coincided with the maturation of Yangs technology at UCLA.

Bringing the two together made a lot of sense, so we did that, Baltimore said. Kang came on board from The Column Group, the VC shop she joined in 2015 after completing her Ph.D. atyou guessed itCaltech.

RELATED: AACR: A look at next-gen CAR-T therapies for blood cancers

With the series A round in the bank, the team will turn to company building and advancing its lead programs in blood cancers and solid tumors, with plans to be in the clinic by the end of 2023, Kang said. 8VC led the financing, while Two Sigma Ventures, Sherpa Healthcare Partners and Freeflow Ventures also chipped in.

The company is setting up shop in Los Angeles County.

Im overjoyed that were getting space in Culver City and the people that we found really appreciate Los Angeles, Baltimore said. Maybe we can make it a biotech hubwe'll seebut at least we can get this company going."

Excerpt from:
Appia Bio aims for a new kind of off-the-shelf CAR-T with $52M raise - FierceBiotech

Keeping the physical appointment was critical, the show of support appreciated by Renville County Commissioner – West Central Tribune

When he called the Olivia Hospital and Clinic to postpone his physical, he was urged to keep it. Physicals are important, he was reminded.

Keeping that date proved to be a lifesaving decision.

The physical went well, and shortly after he told his daughter that he was as fit as a horse.

But Dr. Jon Kemp, his primary physician who had urged him to keep the date for the physical, noticed a slight abnormality in a standard blood test. He recommended further testing.

On Dec. 20 Kramer was diagnosed with multiple myeloma.

Thanks to the early diagnosis, Kramer, age 62, has the means of keeping this disease at bay. Its a cancer of the plasma cells in bone marrow, and is the second most common blood cancer.

He is about to undergo a stem cell transplant this week as part of his treatment.

He learned that hes not alone on the journey ahead.

At Tuesdays meeting of the Renville County Board of Commissioners, fellow board members came wearing T-shirts proclaiming: In this county, nobody fights alone.

Organizers of the surprise sold 76 of the T-shirts to show support for Kramer and raise funds for the Renville County Walk in the Park campaign. More than 40 T-shirt wearing supporters joined the meeting via Zoom. Staff in the health department sang a song to express their support, and staff members told him they would keep him in their thoughts and prayers.

Thank you, said Kramer. He told the West Central Tribune that he was totally surprised by the display of support.

He has lots of support from family and friends, and its all-important. Kramer farms in eastern Renville County. He has lined up plenty of helping hands while he undergoes the stem cell transplant, which will sideline him for at least six weeks.

He said doctors are confident the stem cell transplant can knock the cancer into remission. They will be harvesting bone marrow cells and freezing a portion of them to make it possible to perform at least two more transplants in future years as well.

The decision to keep the date of that routine physical made all the difference. Absolutely, said Kramer.

Health providers told him that in too many cases, multiple myeloma is not diagnosed until a patient comes in with a broken leg or other bone, and wondering why. The cancer carves holes and weakens bones as it progresses unbeknownst to the person.

Thanks to the early diagnosis, Kramer said they found only pinholes in his bones, having caught the disease in the first of its three stages. He began chemotherapy in early January, and it has proven effective, he added.

Read the original:
Keeping the physical appointment was critical, the show of support appreciated by Renville County Commissioner - West Central Tribune

Experimental treatments risk further medicalisation of menopause – The BMJ

Many women experience debilitating menopause symptoms. Fledgling interventions aimed at delaying menopause or treating symptoms are attracting commercial interest, but robust evidence of potential benefit and harms for patients is lacking. Sally Howard reports

Ovarian tissue cryopreservation and transplantation (OTCT)surgical procedures successfully used to restart ovarian function in young women who have undergone chemotherapy1are being offered to healthy women in the United Kingdom with a view to reinstate their pre-menopausal endocrine function. But robust evidence of effectiveness and safety in this indication is lacking, and some experts see this as overmedicalisation of menopause.

The private Birmingham based clinic Profam charges healthy women between 7000 and 11000 (8000-12500; $9500-$15000) for OTCT. Before menopause, a slice of oocyte rich ovary is laparoscopically resected, cryopreserved, and then regrafted into the pelvis or subcutaneously in the forearm after menopause.

Meanwhile, patients in Canada are being advertised a proposed surgical treatment for early menopause that would involve transferring newly recognised germline stem cells from the ovarian lining to the ovary despite limited knowledge of their development into new oocytes.2 Fertility CARE: The IVF Center, a clinic based in Florida, US, markets the treatment OvaPrime as a means of stopping your biological clock, which is on the cusp of being approved for mainstream use just over the northern border.3

Were seeing something like the commercial big bang that happened with IVF in the 1990s, says Evelyn Telfer, a biologist at the University of Edinburgh who researches the clinical potential of germline oocyte precursor cells. Private IVF clinics have proliferated since the 1990s, and some now sell a plethora of non-evidence based add-on interventions. This risks what we saw with IVFpatients paying a lot of money for treatments not ready to be rolled out, she says.

ProFams cofounder Simon Fishel, an IVF scientist,

Follow this link:
Experimental treatments risk further medicalisation of menopause - The BMJ

Biopreservation Market Know the diverse technological advancements in the biopreservation – BioSpace

Biopreservation is a process for conserving the tissues, organs and cells along with maintaining their integrity and functionality at different temperatures for a prolonged period of time. The necessary products for biopreservation are cryo bags, tubes, refrigerators, liquid nitrogen tanks, and freezers. These biopreservation equipment have applications in stem cell, DNA, and plasma and tissue research which helps the market to grow steadily. Various researches being carried out in cell therapy and the increasing number of bio banks also encourage market expansion. Currently, the geriatric population is affected with many disorders related to their lifestyle, namely cardiovascular disease, chronic illness, hypertension, and cancer. Biopreservation applications such as drug discovery, regenerative medicines, and bio banking help the consumers or patients during their life span and even at the time of death.

The enormous growth in the global biopreservation market is accelerated by the rising healthcare expenditure, increasing trend of conserving cord blood stem cells of newborns, and the growing investments in research and development pertaining to this field. A considerable healthcare spending is expected to drive the gene banks, bio banks and hospitals to focus on biopreservation. High costs of advanced techniques and stability issues such as tissue injury during thawing and freezing have been considered as some of the primary factors restraining the biopreservation market growth. One of the prominent names in the industry, BioLife Solutions has signed a ten years business supply agreement with Bellicum Pharmaceuticals for manufacturing, marketing of proprietary tissue and cell, and various cellular immunotherapies which target solid tumors and blood cancers. The influential regions for the biopreservation market are North America, Europe and Asia Pacific. Asia Pacific is expected to offer significant growth opportunities to market players, mostly driven by the demand arising from India and China.

Grab an exclusive PDF Brochure of this report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1340

Global Biopreservation Market: Overview

Biopreservation involves maintaining the functionality and integrity of cells, tissues, and organs outside their natural environment for an extended period of storage at different temperatures. For instance, vaccines save 3 million lives every year in the U.S, however, vaccines worth US$ 20 million are wasted each year due to inadequate storage and improper refrigeration.

Biopreservation safeguards the stability, purity, and quality of biospecimens saved in hospitals, biobanks, and gene banks. For instance, preservation of red blood cells (RBCs) is required for the ready availability of safe blood for blood transfusion needs. The biopreservation of RBCs for clinical purposes can be divided on the basis of techniques used to attain biologic stability and safeguard a viable state after extended storage times.

Global Biopreservation Market: Key Trends

The major factors driving the global biopreservation market include increasing R&D expenditure, increasing number of sperm and egg banks, increasing demand for preserving the stem cells of newborns, and rising adoption of regenerative medicine.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=1340&ltype=S

Across the world, the increasing healthcare expenditure for health and well-being will stimulate the growth of the biopreservation market. This is because healthcare expenditure accounts for a significant part of the developmental budget of most countries. According to data from the World Bank, public healthcare spending is expected to rise at a substantially high rate, which along with a substantial healthcare spending will be an important driver for gene banks, hospitals, and biobanks, which are the key end-users of biopreservation market.

A large population afflicted with chronic disorders such as cardiovascular diseases, diabetes, cancer, and hypertension as well as lifestyle diseases will bolster the markets growth. The increasing public and private spending on, medical goods and services, rising disposable income, increasing demand for biobanking services for the preservation of cells, tissues, and organs, and rising disposable income are also expected to further enhance the growth of the global biopreservation market.

Global Biopreservation Market: Market Potential

In a recent development in the biopreservation industry, BioLife Solutions, a leading name in developing, manufacturing, and marketing of proprietary cell and tissue has entered into a ten year business supply agreement with Bellicum Pharmaceuticals. The latter is a leading name in the development of cellular immunotherapies for cancers and inherited blood disorders. On account of this supply agreement, BioLifes CryoStor cell freeze media is incorporated into Bellicums production process for various cellular immunotherapies that targets blood cancers and solid tumors.

In another industry development, BioLife Solutions has entered into a partnership with transportation firm MNX and expects heightened demand for its biologistics services with the entry of more cell therapies into the clinic.

Global Biopreservation Market: Regional Outlook

The global biopreservation market can be analyzed with respect to the regional segments of North America, Europe, Asia Pacific, and Rest of the World. In North America, the U.S. accounts for almost half the revenue of the region. This is due to the increasing demand for detection of chronic diseases, government stipulations for the ethical usage of biological samples, and introduction of newer of biopreservation methodologies.

Asia Pacific biopreservation market, driven by India and China will display a sustainable growth over the next couple of years

Global Biopreservation Market: Competitive Analysis

Some of the key companies operating in the global Biopreservation market include Thermo Fischer Scientific Inc., VWR Corporation, Lifeline Scientific Inc., BioCision LLC, Custom Biogenic Systems Inc., Princeton Cryotech Inc., Sigma-Aldrich Corporation, Biolife Solutions Inc., Cesca Therapeutics Inc., Core Dynamics Ltd., and So-Low Environmental Equipment Co. Inc.

Top companies in the market are focused on mergers and acquisitions, practicing effective services, and develop new products to stay competitive in the biopreservation market. Expanding geographical reach and developing a broad product portfolio with respect to refrigerators, freezers, and consumables is also leading to the increased market share of some of the top players.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1340

This study provides a particularized anatomy according to the L.E.A.P mechanism

The regional analysis offers market assays across:

The study, prepared through the L.E.A.P mechanism adds a dimension of infallibility and assures precise information on all the growth dynamics.

Latest Biotechnology Industry Research Reports @ https://www.tmrresearch.com/biotechnology-market-reports

READ EXCLUSIVE PRESS RELEASES AND ARTICLES: https://tmrresearchblog.com/

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

The rest is here:
Biopreservation Market Know the diverse technological advancements in the biopreservation - BioSpace

Reawakened immune cells attack cells tied to diseases of aging – STAT – STAT

Scientists have started to test whether natural killer, or NK, cells can be trained to go after hard-to-cure blood cancers in human patients. But making these sentinels of the innate immune system a potential boon to human health spans might be simpler: Rather than needing to be genetically engineered or primed with synthetic antibodies, they just need to be turned on.

In mice, researchers reported on Monday in the journal Med, activating NKT cells can eliminate the senescent cells partly responsible for many diseases of aging. If the results hold up, they could offer a promising alternative to senolytics experimental drugs that destroy these zombified cells that pile up and pollute your tissues as you get older. Although dozens of such drugs have postponed or even reversed diseases of aging in mouse experiments, clinical trials have thus far underwhelmed.

Its an interesting approach that works in experimental animals with two different conditions, said geriatrician James Kirkland of the Mayo Clinic, whose discovery that giving old mice senescent cell-crushing compounds makes the animals live longer, healthier lives, helped take senolytics from backwater to boomtown. Were going to need multiple ways of getting at senescent cells, he said. Any step forward is important, and this is quite a nice step forward. But he cautioned that a single senolytic strategy is unlikely to work for all age-related conditions.

advertisement

For decades, scientists had largely ignored senescent cells old and arrested in a permanent state of suspended animation dismissing them as a quirk of evolution, a clever way for the body to keep damaged cells from proliferating into cancer. But more recently, Kirkland and other researchers established that senescence is actually a driver of the decrepitude that comes with old age. As cells stop dividing, they dont exactly go dormant. In their zombie-like state, they start spewing a cocktail of toxic molecules that cause inflammation, damage surrounding tissues, and contribute to diseases like osteoarthritis, atherosclerosis, diabetes, and Alzheimers.

That realization spurred the creation of at least two dozen companies developing ways to systematically purge the body of senescent cells. Senolytics attracted this wave of investment because it promises a scintillating and fundamental shift in medicine away from the one-drug-one-target-one-disease paradigm of the last century, toward correcting a root cause behind many of them with a single treatment.

advertisement

One of those researchers is the new studys senior author, Anil Bhushan of the University of California, San Francisco. In 2019, his lab traced the progression of type 1 diabetes in mice and human pancreatic cells. They discovered that signatures of senescence preceded the onset of disease. When his team removed the senescent pancreatic cells in mice, their metabolism stabilized and their diabetes symptoms went away.

What Bhushan took away from that study was that senescence didnt just happen when the bodys biological clocks wound down too far. It occurred in acute diseases too. Thered been talk in the field that an immune surveillance system maintained tissue homeostasis, said Bhushan. We postulated that that system was failing in the disease state and gradually failing in aging, so the only time wed see senescent cells is when this system fails.

To test that hypothesis, his team first went looking for clues as to the identity of their indolent immune cells. By comparing the transcriptional profile which genes were turned on and off in senescent pancreatic cells to healthy ones, they uncovered that the senescent ones boosted production of their antigen-presenting machinery. These are the proteins that, if a cell were infected with a pathogen, would shuttle little bits of the bacteria or virus to its surface, displaying them for immune cells to find. Then they cross-referenced those results with an analysis of senescent stem cells that accumulate in the fat tissues of obese mice who are fed a chronic, high-fat diet. Those cells also upregulated antigen-presenting molecules, and one in particular: CD1d. That was the lock, said Bhushan. And once wed found it, the key was then obvious.

Only one kind of immune cell binds to CD1d invariant natural killer T cells, or iNKTs. Comprising less than 1% of all peripheral blood immune cells, iNKTs are rare but critical components of the bodys surveillance system, scanning for infected and defective cells in need of removal. When they find them, iNKTs expel torrents of cytokines, which signal to other immune cells to do the dirty work. Bhushan figured that something was interfering with that process. And though he wasnt sure what it was, he knew there was a way to fix it.

In the early 1990s, Japanese scientists from Kirin Brewerys pharmaceutical research lab, looking for anticancer treatments in the porous bodies of marine sponges collected in the Okinawan sea, purified a lipid compound called -galactosylceramide. And they discovered that when CD1d grabs onto this -GalCer lipid, it turns on iNKTs like crazy in mice.

So Bhushans team shot up some of their diet-induced obese mice with -GalCer. Within days, the levels of senescent cells in the mouse fat tissues had dropped. So did their fasting glucose. Their insulin sensitivity also improved. Their metabolism started to look normal.

To see how generalizable the effect was, they repeated the experiment with mice whose lung tissues had been damaged by a chemotherapy drug a common model for idiopathic pulmonary fibrosis, a serious and incurable human lung disease, and one of the nastier complications of Covid-19. In those mice, -GalCer successfully activated iNKTs, again resulting in the removal of senescent cells. The treated mice had fewer damaged cells, and they also lived longer than the control group.

Finally, Bhushan and his colleagues looked at how well activated iNKT cells could tell senescent human cells from healthy ones when cultured together. After 18 hours, 100% of the senescent cells had been destroyed; the vast majority of healthy cells went unscathed. That could give the iNKT approach a potential advantage over the senolytics drugs already in development.

Most of them are repackaged cancer drugs that work by flipping on senescent cells self-destruct buttons. But because zombie cells share a lot of molecular features with their fully animated counterparts, those drugs run the risk of creating lots of collateral damage. Clinical trials of one such drug, 17-DMAG, were abandoned due to toxic side effects in the kidney and brain. Other groups are trying to solve this by engineering a different kind of immune cell, the CAR-T cell, to become a better anti-aging treatment. But CAR-Ts come with their own dangerous side effects and are expensive to make.

Bhushan is optimistic that by returning the cells best trained to suss out senescent cells to the ranks of active immune duty, both these safety and cost concerns can be ameliorated. We have this built in specificity of the immune cells part of their job is telling senescent cells apart from healthy ones were just helping them do their job, he said.

Its still an open question. But clinical trials to answer it could be underway by the end of next year. Bhushans initial discoveries are now being developed by a biotech startup called Deciduous Therapeutics, which he co-founded in 2018. Deciduous is backed by 8VC, CRV, and Laura Demings Longevity Fund, and has until now, been operating in stealth. CEO and co-founder Robin Mansukhani told STAT that the company has been focusing on developing compounds that can best stimulate human iNKTs, whose receptors are structurally a bit different from those of a mouse. He expects Deciduous to file its first investigational new drug application to start human testing within the next 18 months, likely for a metabolic disease or fibrotic lung disorder.

Investors pumped the brakes on senolytics after one of the biggest and brightest stars of the nascent sector and another Longevity Fund portfolio company, Unity Biotechnology, announced last August that its lead drug candidate had failed to reduce knee pain in patients with osteoarthritis. The experimental drug was immediately and unceremoniously dumped, along with nearly one-third of Unitys staff.

But despite the recent slowdown, Mansukhani remains optimistic. The issue in the field has always been what is the actual immune system process behind senescence clearing?he said. And I feel like weve uncovered that.

Mayos Kirkland cautions that deciphering one chapter of the immune system users manual isnt likely to be the whole story. Senescence can be caused by lots of things aging, yes, but also obesity, chemotherapy drugs, and radiation. There are about 40 to 50 different things that can push a cell into a death spiral, said Kirkland. That makes it really hard to define what a senescent cell is, because its molecular makeup depends on how its senescence was induced.

But the good news, according to Kirkland, is that all the fundamental aging processes mitochondria powering down, oxygen radicals disfiguring DNA, rampant inflammation, the spiral toward senescence appear to be tightly interlinked. Its looking increasingly like if you hit one part of this network of things going on, you affect all the rest, and usually in a positive way, he said.

Kirkland, together with his team at Mayo, have had some success with a cocktail of dasatinib and quercetin. In 2019, they reported positive results from a Phase 1 pilot study of nine diabetic kidney disease patients senescent cells were reduced. A Phase 2 study is now underway. And his team has several more trials for serious conditions, including osteoporosis and Alzheimers disease, in the pipeline. Kirkland serves as a scientific adviser to a new senolytics company called NRTK Biosciences that has yet to receive funding and anti-aging supplement company Elysium Health.

But the real question for the future, said Kirkland, is which interventions can you combine to get an additive, synergistic effect? Something that actually alleviates not just one disease of aging, but many, or even all of them? Figuring out how immune cells interplay with senescence is going to be the start of looking for those combinations.

Thats whats next for Bhushans lab a painstaking process of deleting different antigen-displaying peptides across dozens of types of immune cells, and mapping out the almost infinitely complex network of interactions brewing in the toxic stew surrounding senescent cells.

We know we only have part of the story, Bhushan said. We know we can fix whatever is going wrong with iNKTs, but we still dont know exactly what that is.

Science Writer

Megan Molteni is a science writer for STAT, covering genomic medicine, neuroscience, and reproductive tech.

Trending

Measuring blood sugar in real time is a game

Measuring blood sugar in real time is a game changer for patients and a health

Comparing the Covid-19 vaccines developed by Pfizer, Moderna, and

Comparing the Covid-19 vaccines developed by Pfizer, Moderna, and Johnson & Johnson

The story of mRNA: How a once-dismissed idea became

The story of mRNA: How a once-dismissed idea became a leading technology in the Covid vaccine

Recommended

Fibrogens data manipulation scandal came with questions. There need

Fibrogens data manipulation scandal came with questions. There need to be answers

Ginkgo plans a $17.5 billion merger with SPAC that

Ginkgo plans a $17.5 billion merger with SPAC that took DraftKings public

Former Google CEO Schmidt says AI will have its

Former Google CEO Schmidt says AI will have its biggest impact in health care

Read more here:
Reawakened immune cells attack cells tied to diseases of aging - STAT - STAT

Seattle Cancer Care Alliance is an Authorized Treatment Center for Ide-cel CAR T-Cell Therapy – StreetInsider.com

News and research before you hear about it on CNBC and others. Claim your 1-week free trial to StreetInsider Premium here.

Cancer center among the first in the nation to offer the first approved CAR T-cell therapy for adults with multiple myeloma

SEATTLE--(BUSINESS WIRE)-- Seattle Cancer Care Alliance (SCCA), the only National Comprehensive Cancer Network designated cancer center in Washington State, today announced that it is an authorized treatment center for the new B-cell maturation antigen (BCMA) targeted chimeric antigen receptor (CAR) T-cell therapy, idecabtagene vicleucel, also known as ide-cel.

Ide-cel was approved by the U.S. Food and Drug Administration (FDA) on March 26, 2021, and is indicated for the treatment of adult patients with relapsed refractory multiple myeloma after four or more prior lines of therapy including a proteasome inhibitor, an immunomodulatory therapy and an anti-CD38 antibody. It is the first cell-based gene therapy approved by the FDA for the treatment of multiple myeloma and is being marketed under the brand name Abecma.

We are pleased to offer this new advanced therapy to patients who are suffering from relapsed or refractory multiple myeloma, said Nancy Davidson, MD, president and executive director of Seattle Cancer Care Alliance. We are committed to delivering personalized care to our patients and improving patient outcomes and excited to be among the first cancer centers in the nation to offer this treatment to adult patients with multiple myeloma.

Multiple myeloma is a cancer of plasma cells in which abnormal plasma cells build up in bone marrow and limit the bodys ability to make enough healthy blood cells, thus resulting in low blood counts. Multiple myeloma is also associated with bone and kidney damage as well as a weakened immune system. There are over 140,000 people in the United States living with this cancer and according the American Cancer Society approximately 34,920 new cases will be diagnosed in 2021, and 12,410 deaths among those with multiple myeloma will occur.

Ide-cel is a one-time therapy that is created from a patients own white blood cells, which have been modified to recognize and attack myeloma cells. As an anti-BCMA CAR T-cell therapy, ide-cel recognizes and binds to BCMA, a protein that is nearly universally expressed on cancer cells in multiple myeloma, leading to the death of BCMA-expressing cells.

In the clinical study that supported its approval, ide-cel was shown to be safe and effective. Approximately 72% of patients partially or completely responded to the treatment with 28% of patients showing complete response. An estimated 65% of this group remained in complete response to ide-cel for at least 12 months.

The FDA approval of this novel therapy is a significant milestone in the advancement of new, innovative therapies for multiple myeloma, said David Maloney, MD, PhD, medical director for cellular immunotherapy at the Bezos Family Immunotherapy Clinic at Seattle Cancer Care Alliance. We are excited about the continued expansion of CAR T-cell treatment options available to our patients, and the potential ide-cel offers to extend the lives of those who have multiple myeloma.

Our clinical trials at the SCCA have provided us with extensive experience using BCMA CAR T-cells for multiple myeloma. The new FDA approval allows our to leverage this knowledge and safely bring a promising therapy to a wider population of adult patients with multiple myeloma, said Damian Green, MD, Seattle Cancer Care Alliance and Associate Professor, and who leads translational myeloma research programs at Seattle Cancer Care Alliance and the Fred Hutchinson Cancer Research Center.

SCCA is home to several of the worlds leading immunotherapy experts whose research has contributed to the foundation of many immunotherapies currently used to treat cancer. SCCAs Bezos Family Immunotherapy Clinic, which opened in 2016, is a state-of-the-art center dedicated to offering the newest cellular immunotherapy clinical trials and FDA approved treatments.

About Seattle Cancer Care Alliance

Seattle Cancer Care Alliance brings together the leading research teams and cancer specialists from Fred Hutch, Seattle Childrens and UW Medicine one extraordinary group whose sole purpose is the pursuit of better, longer, richer lives for our patients. Based in Seattles South Lake Union neighborhood, Seattle Cancer Care Alliance has nine clinical care sites in the region, including a medical oncology clinic at EvergreenHealth in Kirkland; hematology/medical oncology and infusion services at Overlake Medical Center in Bellevue, medical and radiation oncology clinics at UW Medical Center - Northwest Seattle and medical oncology services at SCCA Issaquah, as well as Network affiliations with hospitals in five states. For more information about SCCA, visit seattlecca.org.

View source version on businesswire.com: https://www.businesswire.com/news/home/20210513005357/en/

Karina San Juan, ksanjuangu@seattlecca.org or (206) 606-1926 Heather Platisha, hplatisha@seattlecca.org or (206) 606-7239

Source: Seattle Cancer Care Alliance

See the original post here:
Seattle Cancer Care Alliance is an Authorized Treatment Center for Ide-cel CAR T-Cell Therapy - StreetInsider.com

Discovery of a new genetic cause of hearing loss illuminates how inner ear works – India Education Diary

A gene calledGAS2plays a key role in normal hearing, and its absence causes severe hearing loss, according to a study led by researchers in the Perelman School of Medicine at the University of Pennsylvania.

The researchers, whose findings arepublished online today inDevelopmental Cell, discovered that the protein encoded byGAS2is crucial for maintaining the structural stiffness of support cells in the inner ear that normally help amplify incoming sound waves. They showed that inner ear support cells lacking functionalGAS2lose their amplifier abilities, causing severe hearing impairment in mice. The researchers also identified people who haveGAS2mutations and severe hearing loss.

Anatomists 150 years ago took pains to draw these support cells with the details of their unique internal structures, but its only now, with this discovery aboutGAS2, that we understand the importance of those structures for normal hearing, said study senior authorDouglas J. Epstein, PhD, professor of genetics at Penn Medicine.

Two to three of every 1,000 children in the United States are born with hearing loss in one or both ears. About half of these cases are genetic. Although hearing aids and cochlear implants often can help, these devices seldom restore hearing to normal.

One of the main focuses of the Epstein laboratory at Penn Medicine is the study of genes that control the development and function of the inner eargenes that are often implicated in congenital hearing loss. The inner ear contains a complex, snail-shaped structure, the cochlea, that amplifies the vibrations from sound waves, transduces them into nerve signals, and sends those signals toward the auditory cortex of the brain.

Unraveling the role ofGas2in hearing

A few years ago, Epsteins team discovered thatGas2, the mouse version of humanGAS2, is switched on in embryos by another gene known to be critical for inner ear development. To determineGas2s role in that development, the team developed a line of mice in which the gene had been knocked out of the genome and called themGas2-knockout mice.

Alex Rohacek, PhD, a former graduate student in the Epstein lab, was puzzled to observe that theGas2-knockout mice had inner ears with cells and structures that seemed quite normal. However, the animals, when tested, turned out to be severely hearing-impaired, with deficits at high sound frequencies of up to 50 decibelsequivalent to a loss of 99.999 percent of the normal acoustic energy.

Tingfang Chen, PhD, a postdoctoral fellow and co-first author on the study, determined thatGas2is normally active within inner-ear support cells called pillar cells and Deiters cells. In these cells, the protein encoded by the gene binds to flexible, tube-like structures called microtubules in a way that bundles and stabilizes them, effectively stiffening the cells.

With help from the collaborating team ofBenjamin L. Prosser, PhD, assistant professor of Physiology at Penn Medicine and an expert on microtubules, the researchers discovered that when pillar cells and Deiters cells lackGas2, their microtubule bundles tend to come apart, dramatically reducing the stiffness of the cells.

That turns out to have dire implications for hearing. Within the inner ear, pillar cells and Dieters cells help form the basic structure of the cochlea and serve as physical supports for cells called outer hair cells. The outer hair cells move in response to incoming acoustical vibrationsessentially to provide a crucial amplification of that sound energy. The experiments revealed that the pillar and Deiters cells loss of stiffness, due to the absence ofGas2, severely degrades the sound-amplifying properties of the outer hair cells they support.

We observed that some of Deiters cells in theGas2-knockout mice even buckled under the tension of the rapid movements of the outer hair cells, Epstein said.

The experiments included sophisticated imaging of propagating sound waves in the inner ears of liveGas2-knockout and normal mice, conducted by collaboratorJohn Oghalai, MD, chair and professor of otolaryngology-head and neck surgery at the Keck School of Medicine of USC, and his team.

GAS2also causes human hearing loss

Curiously, the researchers could find no reports ofGAS2-associated congenital hearing loss in the medical literature. Even when they canvassed colleagues around the world who run hearing-loss clinics, they came up empty-handed.

Then one day,Hannie Kremer, PhD, professor and chair of molecular otogenetics at Radboud University Medical Center in the Netherlands, emailed Epstein. She and her team had been studying a Somalian family in which four of the siblings had severe hearing loss from early life. The affected family members had no mutations in known hearing-loss genesbut each carried two mutant copies ofGAS2.

The study therefore establishesGAS2as a very probable new hearing loss gene in humansthe first one known to affect the mechanical properties of inner ear support cells.

The prevalence of hearing loss in people due toGAS2mutations remains to be determined, but Epstein noted that this type of congenital hearing loss is nevertheless an attractive target for a future gene therapy.

In many genetic hearing loss conditions, the affected cells are permanently damaged or die, but in this one, the affected cells are intact and conceivably could be restored to normal or near-normal by restoringGAS2function, he said.

He added that such a gene therapy might be useful not only in more obvious cases of hearing loss in early childhood, but also in casesperhaps more numerousin which inherited mutations lead to a slower development of hearing loss in adulthood.

Funding was provided by the National Institutes of Health (R01 DC006254, R01 DC014450, R01 DC013774, R01 DC017741, R01 HL133080), the Boucai Innovation Fund in Auditory Genomics, the National Science Foundation (15-48571), and the Heinsius Houbolt Foundation.

See more here:
Discovery of a new genetic cause of hearing loss illuminates how inner ear works - India Education Diary