Advanced Therapy Medicinal Products Market Size Worth $21.2 Billion By 2028: Grand View Research, Inc. – PRNewswire

SAN FRANCISCO, May 12, 2021 /PRNewswire/ -- The global advanced therapy medicinal products marketsize is expected to reach USD 21.2billion by 2028, according to a new report by Grand View Research, Inc. The market is expected to expand at a CAGR of 13.2% from 2021 to 2028.The ATMPs (Advanced Therapy Medicinal Products) exhibit the potential to cure diseases by addressing their root cause rather than symptomatic treatment. Thus, ATMPs help deliver transformative advantages which are not offered by conventional treatments. These factors are expected to drive the market over the forecast period.

Key suggestions from the report:

Read 225 page research report with ToC on "Advanced Therapy Medicinal Products Market Size, Share & Trends Analysis Report By Therapy Type (CAR-T, Gene, Cell, Stem Cell Therapy), By Region (North America, Europe, APAC, ROW), And Segment Forecasts, 2021 - 2028" at: https://www.grandviewresearch.com/industry-analysis/advanced-therapy-medicinal-products-market

The breakthrough approvals of Tecartus and Abecma post-approval of Zolgensma, Kymriah, and Yescarta have bolstered the exceptional advancements in this space. These approvals have spurred the investment flow in this arena thereby driving revenue growth. Key companies are adopting various operation models to accelerate the product manufacturing process.

Furthermore, the market witnessed several acquisitions by players that intended to enter or expand their existing business in this field. Acquisitions of Kite Pharma by Gilead Life Science, AveXis by Novartis, and Juno Therapeutics by Celgene are some major & recent examples. These acquisitions depict the increasing interest of well-established pharma companies in this market. Increasing competition for gene therapy buyouts can lead to hefty premiums.

On the other hand, with the growing consumer demands, the ATMP manufacturers are outsourcing their product manufacturing thereby creating lucrative opportunities for the contract manufacturing organizations. Thus, several CDMOs have expanded their facilities. For instance, in January 2021, FUJIFILM Diosynth Biotechnologies invested USD 40 million for the establishment of a new process development and manufacturing facility for advanced therapies and viral vectors.

Grand View Research has segmented the global advanced therapy medicinal products market on the basis of therapy type and region:

List of Key Players in Advanced Therapy Medicinal Products (ATMPs) Market

Find more research reports on Pharmaceuticals Industry, by Grand View Research:

Gain access to Grand View Compass,our BI enabled intuitive market research database of 10,000+ reports

About Grand View Research

Grand View Research, U.S.-based market research and consulting company, provides syndicated as well as customized research reports and consulting services. Registered in California and headquartered in San Francisco, the company comprises over 425 analysts and consultants, adding more than 1200 market research reports to its vast database each year. These reports offer in-depth analysis on 46 industries across 25 major countries worldwide. With the help of an interactive market intelligence platform, Grand View Research helps Fortune 500 companies and renowned academic institutes understand the global and regional business environment and gauge the opportunities that lie ahead.

Contact:

Sherry James Corporate Sales Specialist, USA Grand View Research, Inc. Phone: +1-415-349-0058 Toll Free: 1-888-202-9519 Email: [emailprotected] Web: https://www.grandviewresearch.com Follow Us: LinkedIn| Twitter

SOURCE Grand View Research, Inc.

Read the original post:
Advanced Therapy Medicinal Products Market Size Worth $21.2 Billion By 2028: Grand View Research, Inc. - PRNewswire

New connection between metabolism and red blood cell development – Harvard Gazette

Each tissue in the body has different requirements for metabolism, or how it uses energy to function for example, a muscle needs different molecules to fuel a contraction compared to a pancreas that produces insulin. But because metabolic pathways are the same across tissues, it is not fully understood how each tissue regulates which one to predominantly use for its own specific needs.

In a new study published in the journal Science, Harvard University researchers have identified a mechanism that controls the emergence of early precursors for red blood cells by regulating a metabolic program. By studying how red blood cells develop in zebrafish, the researchers found that a specific DNA-binding protein controls metabolism in the mitochondria. The pathway can be potentially targeted in diseases such as anemia to restore red blood cell production.

Metabolic programs are hardwired in every single tissue and the pathways are really similar to each other. But it turns out that because of the unique demands of the tissues, there are certain control mechanisms that each tissue uses to fine tune its metabolic pathways, said senior author Leonard Zon, who is a professor of stem cell and regenerative biology and the Grousbeck Professor of Pediatrics at Harvard. In this particular study, we uncovered a very important mechanism by which red blood cell precursors regulate their metabolism, by having a dedicated transcription factor to drive the production of the metabolite coenzyme Q.

The researchers started with a zebrafish model of anemia, which was defective in producing red blood cells because it lacked a transcription factor known as TIF1. TIF1 is a lineage transcription factor, meaning that it binds to DNA and acts as a master regulator for cells that develop into the red blood cell lineage. But its exact mechanism of control has not been clear, said Marlies Rossmann, postdoctoral fellow in the Zon laboratory and lead author of the study.

To investigate the TIF1-controlled mechanism, the researchers performed a chemical screen on bloodless zebrafish, which lack early precursors for making functional red blood cells. They searched for molecules that fixed the red blood cell defect, indicating involvement in the pathway. The screen identified an inhibitor of DHODH, an enzyme that synthesizes nucleotides.

This enzyme sits right inside mitochondria, leading us to speculate that in our case it actually has less to do with nucleotide biosynthesis than with mitochondrial functions. Thats what brought us to investigate mitochondrial metabolism, Rossmann said.

The researchers found that TIF1 directly controls many of the enzymes that are involved in the production of coenzyme Q, an important part of the energy-producing respiratory chain in mitochondria. The researchers confirmed that the zebrafish anemia model had low levels of coenzyme Q, and that adding back an analog of coenzyme Q rescued the blood production defect.

Drilling down into the precise mechanism was important for determining a potential therapeutic application: For potentially treating anemia, the DHODH inhibitors likely are detrimental, because its not a good idea to remove nucleotides from cells. But giving more of a coenzyme Q analog could be a productive way to target the pathway to treat some forms of anemia, Rossmann said.

The study is further establishing zebrafish as an important model for metabolism. It shows the power of multidisplinary research, leveraging metabolic, genomic, and chemical screening, and drug development expertise.

This is the first time that a lineage transcription factor has been linked to a metabolic pathway in a tissue differentiation process during development, and I think this is the tip of the iceberg: in every tissue youll need to control certain metabolic pathways at a transcriptional level, said Zon, who is also the director of the Boston Childrens Hospital Stem Cell Program and a Howard Hughes Medical Institute Investigator. DHODH inhibitors are already in clinical trials to treat leukemia, and we previously had shown that they are also effective in melanoma. This work shows that DHODH inhibitors could thus lead to therapeutic benefits by releasing coenzyme Q in metabolically sensitive cancers to activate processes linked to cell differentiation.

This work was supported by the National Heart, Lung, and Blood Institute (4R01HL048801, 5P01HL032262, 5U01HL134812, and 1P01HL131477), the National Institute of Diabetes and Digestive and Kidney Diseases (1U54DK110805 and 3R24DK092760), Harvard Catalyst, the Canadian Institutes of Health Research, the National Cancer Institute (5R01CA213062), the National Institute of General Medical Sciences (R35GM127045), the National Human Genome Research Institute (U54-HG008097), the Cancer Research Institute, and the American Lebanese Syrian Associated Charities.

Continue reading here:
New connection between metabolism and red blood cell development - Harvard Gazette

Heart attack recovery aided by injecting heart muscle cells that overexpress cyclin D2 – The Mix

Researchers used a pig model of heart attacks, which more closely resembles the human heart in size and physiology, and thus has high clinical relevance to human disease.

Researchers used a pig model of heart attacks, which more closely resembles the human heart in size and physiology, and thus has high clinical relevance to human disease.In a large-animal study, researchers have shown that heart attack recovery is aided by injection of heart muscle cells derived from human induced pluripotent stem cell line, or hiPSCs, that overexpress cyclin D2. This research, published in the journal Circulation, used a pig model of heart attacks, which more closely resembles the human heart in size and physiology, and thus has higher clinical relevance to human disease, compared to studies in mice.

An enduring challenge for bioengineering researchers is the failure of the heart to regenerate muscle tissue after a heart attack has killed part of its muscle wall. That dead tissue can strain the surrounding muscle, leading to a lethal heart enlargement.

Heart experts thus have sought to create new tissue applying a patch of heart muscle cells or injecting heart cells to replace damaged muscle. Similarly, they have tried to stimulate division of existing heart muscle cells near the damaged area. This current study, led by researchers at the University of Alabama at Birmingham, shows progress in both goals.

After the experimental heart attack, heart tissue around the infarction site was injected with about 30 million bioengineered human cardiomyocytes that were differentiated from hiPSCs. These cells also overexpress cyclin D2, part of a family of proteins involved in cell division.

Compared to control human cardiomyocytes, the cyclin D2-cardiomyocytes showed enhanced potency to repair the heart. They proliferated after injection, and by four weeks, the hearts had less pathogenic enlargement, reduced size of dead muscle tissue and improved heart function.

Intriguingly, the cyclin D2-cardiomyocytes stimulated not only their own proliferation, but also proliferation of existing heart muscle cells around the infarction site of the pig heart, as well as showing angiogenesis, the development of new blood vessels.

These results suggest that the cyclin D2-cardiomyocyte transplantation may be a potential therapeutic strategy for the repair of infarcted hearts, said study leader Jianyi Jay Zhang, M.D., Ph.D., the chair of Biomedical Engineering, a joint department of the UAB School of Medicine and the UAB School of Engineering.

This ability of the graft cyclin D2-cardiomyocytes to stimulate the proliferation of nearby existing heart cells suggested paracrine signaling, a type of cellular communication where a cell produces a signal that induces changes in nearby cells.

Exosomes small blebs or tiny vesicles that are released by human or animal cells and contain proteins and RNA from the cells that release them are one common form of paracrine signaling.

Zhang and colleagues found that exosomes that they purified from the cyclin D2-cardiomyocyte growth media indeed promoted proliferation of cultured cardiomyocytes. In addition, the treated cardiomyocytes were more resistant to programmed cell death, called apoptosis, induced by low oxygen levels. The exosomes also induced proliferation of various other cell types, including human umbilical vein endothelial cells, human vascular smooth muscle cells and 7-day-old rat cardiomyocytes that have almost undetectable proliferation.

Part of the cargo that exosomes carry are microRNAs, or miRNAs. These short pieces of RNA have the ability to interact with messenger RNA in target cells, and they are robust players of gene regulation in cells. Humans have more than 2,000 miRNAs with different RNA sequences, and these are thought to regulate a third of the genes in the genome.

So, the researchers documented which microRNAs were present in exosomes from the cyclin D2-overexpressing cardiomyocytes and in exosomes from non-overexpressing cardiomyocytes. As expected, they found differences.

Jianyi Jay Zhang, M.D., Ph.D.Together, the exosomes from both types of cells contained 1,072 different miRNAs, and 651 were common to the two exosome groups. However, 332 miRNAs were found only in the cyclin D2-overexpressing cardiomyocytes, and 89 miRNAs were specific for the non-overexpressing cardiomyocytes. In preliminary work of characterizing the effects of specific miRNAs, one particular miRNA from the cyclin D2-overexpressing exosomes was shown to stimulate proliferation when delivered into rat cardiomyocytes.

Thus, as the therapeutic potential of exosomes for improving cardiac function becomes more evident, combining an exosome-mediated delivery of proliferative miRNAs with transplantation of cyclin D2-overexpressing cardiomyocytes, or cell products, could become a new promising strategy for upregulating proliferation of the recipient cardiomyocytes and reducing cardiac fibrosis, Zhang said. Altogether, our data suggest that cardiac cell therapy, involving cardiomyocytes with enhanced proliferation capacity, may become an efficacious future strategy for myocardial repair and prevention of congestive heart failure in patients with acute myocardial infarctions.

UAB Department of Biomedical Engineering co-authors with Zhang, in the study Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction, are Meng Zhao, Yuji Nakada, Yuhua Wei, Weihua Bian, Anton V. Borovjagin, Yang Zhou and Gregory P. Walcott.

Additional co-authors are Yuxin Chu and Min Xie, Division of Cardiovascular Disease, UAB Department of Medicine; Wuqiang Zhu, Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale; Thanh Nguyen, UAB Informatics Institute; and Vahid Serpooshan, Emory University and Georgia Institute of Technology, Atlanta.

Support came from National Institutes of Health grants HL114120, HL131017, HL149137 and HL134764.

At UAB, Zhang holds the T. Michael and Gillian Goodrich Endowed Chair of Engineering Leadership.

View post:
Heart attack recovery aided by injecting heart muscle cells that overexpress cyclin D2 - The Mix

Vertex and CRISPR Therapeutics to Present New Clinical Data – GlobeNewswire

CAMBRIDGE, Mass. and ZUG, Switzerland and BOSTON, May 12, 2021 (GLOBE NEWSWIRE) -- Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) and CRISPR Therapeutics (Nasdaq: CRSP) today announced two abstracts detailing updated data from the ongoing CTX001 clinical trials have been accepted for presentation during the European Hematology Association (EHA) 2021 Virtual Congress.

Abstract #EP736 entitled CTX001 for Sickle Cell Disease: Safety and Efficacy Results from the Ongoing CLIMB SCD-121 Study of Autologous Crispr-Cas9-Modified CD34+ Hematopoietic Stem and Progenitor Cells, will be made available on the virtual platform as an e-poster Friday, June 11 at 9:00 CEST. The abstract posted online today includes data on patients with severe sickle cell disease with more than 3 months of follow-up, as of the interim data cut on January 28, 2021. Data will be updated and information on additional patients will be included for the congress.

Abstract #EP733 entitled CTX001 for Transfusion-Dependent -Thalassemia: Safety and Efficacy Results from the Ongoing CLIMB Thal-111 Study of Autologous Crispr-Cas9-Modified CD34+ Hematopoietic Stem and Progenitor Cells, will be made available on the virtual platform as an e-poster Friday, June 11 at 9:00 CEST. The abstract posted online today includes data on patients with transfusion-dependent beta thalassemia (TDT) with more than 3 months of follow-up, including patients with the most severe genotypes, as of the interim data cut on January 21, 2021. Data will be updated and information on additional patients will be included for the congress.

The accepted abstracts are now available online on the EHA website https://library.ehaweb.org/eha/#!*menu=6*browseby=8*sortby=2*media=3*ce_id=2035*label=21989*ot_id=25562*marker=1286.

CTX001 is being investigated in two ongoing clinical trials as a potential one-time curative therapy for patients suffering from TDT and severe SCD.

About CTX001 CTX001 is an investigational, autologous, ex vivo CRISPR/Cas9 gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD, in which a patients hematopoietic stem cells are edited to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for patients with TDT and reduce painful and debilitating sickle crises for patients with SCD. Earlier results from these ongoing trials were published as a Brief Report in The New England Journal of Medicine in January of 2021.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT), Fast Track, Orphan Drug, and Rare Pediatric Disease designations from the U.S. Food and Drug Administration (FDA) for both TDT and SCD. CTX001 has also been granted Orphan Drug Designation from the European Commission, as well as Priority Medicines (PRIME) designation from the European Medicines Agency (EMA), for both TDT and SCD.

Among gene-editing approaches being investigated/evaluated for TDT and SCD, CTX001 is the furthest advanced in clinical development.

About CLIMB-111 The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121 The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 12 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-131 This is a long-term, open-label trial to evaluate the safety and efficacy of CTX001 in patients who received CTX001 in CLIMB-111 or CLIMB-121. The trial is designed to follow participants for up to 15 years after CTX001 infusion.

About the Gene-Editing Process in These Trials Patients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the Vertex-CRISPR Collaboration Vertex and CRISPR Therapeutics entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first potential treatment to emerge from the joint research program. Under a recently amended collaboration agreement, Vertex will lead global development, manufacturing and commercialization of CTX001 and split program costs and profits worldwide 60/40 with CRISPR Therapeutics. This amendment is subject to customary closing conditions and clearances, including clearance under the Hart-Scott Rodino Antitrust Improvements Act.

About Vertex Vertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of cell and genetic therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 11 consecutive years on Science magazine's Top Employers list and a best place to work for LGBTQ equality by the Human Rights Campaign. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking Statements This press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, our plans and expectations to present clinical data from the ongoing CTX001 clinical trials during the EHA Virtual Congress, expectations regarding the abstracts that will be made available on the virtual platform, the expectation that data will be updated for the conference, the potential benefits of CTX001, our plans and expectations for our clinical trials and pipeline products, the status of our clinical trials of our product candidates under development by us and our collaborators, including activities at the clinical trial sites and patient enrollment, and our expectations regarding the transaction contemplated by the amended collaboration agreement with CRISPR, including satisfaction of closing conditions and antitrust clearances, and the future activities of the parties pursuant to the amended collaboration agreement. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from a limited number of patients may not be indicative of final clinical trial results, that data from the company's development programs, including its programs with its collaborators, may not support registration or further development of its compounds due to safety and/or efficacy, or other reasons, that the COVID-19 pandemic may impact the status or progress of our clinical trials and clinical trial sites and the clinical trials and clinical trial sites of our collaborators, including patient enrollment, or other reasons, and other risks listed under the heading Risk Factors in Vertex's most recent annual report filed with the Securities and Exchange Commission at http://www.sec.gov and available through the company's website at http://www.vrtx.com. You should not place undue reliance on these statements or the scientific data presented. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

About CRISPR Therapeutics CRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking Statement This press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the safety, efficacy and clinical progress of CRISPR Therapeutics various clinical programs, including CTX001, including expectations regarding the abstracts that will be made available on the virtual platform and the clinical data that are being presented from the ongoing CTX001 clinical trials during the EHA Virtual Congress; (ii) the timing of the potential closing of the transaction contemplated by the amended collaboration agreement, future activities of the parties pursuant to the collaboration and the potential benefits of CRISPR Therapeutics collaboration withVertex; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, existing and prospective investors are cautioned that forward-looking statements are inherently uncertain, are neither promises nor guarantees and not to place undue reliance on such statements, which speak only as of the date they are made. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final or future trial results; the potential that CTX001 clinical trial results may not be favorable or may not support registration or further development; that future competitive or other market factors may adversely affect the commercial potential for CTX001; the transaction contemplated by the amended collaboration agreement is subject to certain closing conditions, including the expiration of the waiting period under the Hart-Scott-Rodino Antitrust Improvements Act; CRISPR Therapeutics may not realize the potential benefits of the collaboration with Vertex; potential impacts due to the coronavirus pandemic, such as to the timing and progress of clinical trials; the potential that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties; and those risks and uncertainties described under the heading Risk Factors in CRISPR Therapeutics most recent annual report on Form 10-K, quarterly report on Form 10-Q, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

CRISPR THERAPEUTICS word mark and design logo and CTX001 are trademarks and registered trademarks of CRISPR Therapeutics AG. All other trademarks and registered trademarks are the property of their respective owners.

Vertex Pharmaceuticals Incorporated Investors: Michael Partridge, +1 617-341-6108 or Brenda Eustace, +1 617-341-6187 Or Manisha Pai, +1 617-429-6891

Media: mediainfo@vrtx.com or U.S.: +1 617-341-6992 or Heather Nichols: +1 617-839-3607 or International: +44 20 3204 5275

CRISPR Therapeutics Investors: Susan Kim, +1 617-307-7503 susan.kim@crisprtx.com

Media: Rachel Eides, +1-617-315-4493 Rachel.Eides@crisprtx.com

Continue reading here:
Vertex and CRISPR Therapeutics to Present New Clinical Data - GlobeNewswire

Rocket Pharmaceuticals Presents Positive Clinical Data from Fanconi Anemia, Leukocyte Adhesion Deficiency-I, and Pyruvate Kinase Deficiency Programs…

CRANBURY, N.J.--(BUSINESS WIRE)--Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT), a clinical-stage company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders, today announces positive clinical data from its Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), and Pyruvate Kinase Deficiency (PKD) gene therapy programs presented at the 24th American Society of Gene and Cell Therapy (ASGCT) Annual Meeting.

We are very excited to report positive clinical results from three of our lentiviral-based gene therapy programs at this years ASGCT, which show the great potential of these therapies to successfully treat FA, LAD-I and PKD. In the case of RP-L102 for FA and RP-L201 for LAD-I, the new data advance us closer to regulatory submissions, said Gaurav Shah, M.D., Chief Executive Officer of Rocket. At least six out of nine patients in our FA Phase 1 and 2 trials now show evidence of engraftment, further supporting the potential of RP-L102 to serve as a hematologic treatment option for FA in the absence of cytotoxic conditioning. Although preliminary, four out of the five patients anticipated necessary for a positive trial outcome have initially met the minimum 10% MMC resistance threshold in the bone marrow on at least one occasion, including two patients at 6-months post-treatment.

Dr. Shah continued, In our Phase 1/2 trial for LAD-I, all four patients with follow-up ranging from 3 to 18 months had CD18 expression that substantially exceeded the 4-10% threshold associated with survival into adulthood and consistent peripheral blood vector copy number, further demonstrating the potential of RP-L201 to yield durable clinical benefit. All of these patients have been free of serious infections since hospital discharge following RP-L201 therapy. Lastly, data from our Phase 1 trial of RP-L301 for PKD show that both patients hemoglobin levels have safely normalized, with neither patient requiring red blood cell transfusions after hematopoietic reconstitution while demonstrating improving hemolysis markers. We are proud of the progress we have made across all three programs and look forward to further advancing our investigational gene therapies to offer curative treatments to patients with these devastating diseases.

Gene Therapy for Fanconi Anemia [Group A]: Preliminary Results of Ongoing RP-L102 Clinical Trials

The data described in the presentation are from nine pediatric patients treated with RP-L102, Rockets ex vivo lentiviral gene therapy candidate for FA.

Presentation Details: Session: Hematologic and Immunologic Diseases Presenter: Agnieszka Czechowicz, M.D., Ph.D., Assistant Professor of Pediatrics, Division of Stem Cell Transplantation, Stanford University School of Medicine Date: Tuesday, May 11, 2021 Time: 8:00-10:00 a.m. EDT

A Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Interim Results

The data presented in the oral presentation are from four pediatric patients with severe LAD-I, as defined by CD18 expression of less than 2%, who were treated with RP-L201, Rockets ex-vivo lentiviral gene therapy candidate. The safety profile of RP-L201 appears favorable with all infusions well tolerated and no drug product-related serious adverse events (SAEs) .

Preliminary efficacy was evident in all four patients, including two patients with at least 9-months of follow-up. All four patients demonstrated CD18 expression consistent with the reversal of severe LAD-I phenotype.

Most importantly, each of these patients were able to leave the hospital in the weeks following RP-L201 therapy, and all have been at home without any serious or severe infections following hospital discharge.

Presentation Details: Session: Genetic Blood and Immune Disorders Presenter: Donald Kohn, M.D., Professor of Microbiology, Immunology and Molecular Genetics, Pediatrics (Hematology/Oncology), Molecular and Medical Pharmacology, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, Los Angeles Date: Tuesday, May 11, 2021 Time: 6:15-6:30 p.m. EDT

Lentiviral Mediated Gene Therapy for Pyruvate Kinase Deficiency: Updated Results of a Global Phase 1 Study for Adult and Pediatric Patients

The data presented in the oral presentation are from two adult patients with significant anemia and transfusion requirements. The patients were treated with RP-L301, Rockets ex vivo lentiviral gene therapy candidate for PKD. RP-L301 continued to be well tolerated, with no serious safety issues or infusion-related complications observed up to 9-months post-treatment.

Preliminary efficacy was evident in both patients during the initial 9-months and 3-months post-treatment, respectively.

Presentation Details: Session: Gene Therapies for Hemoglobinopathies Presenter: Jos Luis Lpez Lorenzo, M.D., Hospital Universitario Fundacin Jimnez Daz, Madrid, Spain Date: Wednesday, May 12, 2021 Time: 6:45-7:00 p.m. EDT

In addition, the following presentations at this years conference also detail results from Rocket Pharma clinical studies:

Title: Gene Therapy in Fanconi Anemia: Follow-Up of a Phase I/II Gene Therapy Trial in Patients with Fanconi Anemia, Subtype A Session: Genetic Blood and Immune Disorders Presenter: Juan A. Bueren, Ph.D., Head of the Hematopoietic Innovative Therapies Division at the Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas (CIEMAT) in Spain / CIBER-Rare Diseases / IIS-Fundacin Jimnez Daz Date: Tuesday, May 11, 2021 Time: 5:30-5:45 a.m. EDT

Select results from Dr. Buerens presentation will also be highlighted by Paula Rio, Ph.D. Details for this Invited Presentation are as follows:

Title: Gene Therapy in Fanconi Anemia: Current Strategies to Enable the Correction of HSCs Session: International Focus on Stem Cell Gene Therapy Presenter: Paula Ro, Ph.D., Senior Researcher, Hematopoietic Innovative Therapies Division at CIEMAT in Spain / CIBER-Rare Diseases / IIS-Fundacin Jimnez Daz Date: Thursday May 13, 2021 Time: 10:00-11:45 a.m. EDT

Title: LV-Mediated Gene Therapy of Pyruvate Kinase Deficiency Session: Cutting Edge Gene and Cell Therapy Research in Europe (Organized by ESGCT) Presenter: Jose-Carlos Segovia, Head of the Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division at CIEMAT in Spain / CIBER-Rare Diseases / IIS-Fundacin Jimnez Daz Date: Wednesday May 12, 2021 Time: 10:52-11:18 a.m. EDT

About Fanconi Anemia Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutation in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.

About Leukocyte Adhesion Deficiency-I Severe Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.

Rockets LAD-I research is made possible by a grant from the California Institute for Regenerative Medicine (Grant Number CLIN2-11480). The contents of this press release are solely the responsibility of Rocket and do not necessarily represent the official views of CIRM or any other agency of the State of California.

About Pyruvate Kinase Deficiency Pyruvate kinase deficiency (PKD) is a rare, monogenic red blood cell disorder resulting from a mutation in the PKLR gene encoding for the pyruvate kinase enzyme, a key component of the red blood cell glycolytic pathway. Mutations in the PKLR gene result in increased red cell destruction and the disorder ranges from mild to life-threatening anemia. PKD has an estimated prevalence of 3,000 to 8,000 patients in the United States and the European Union. Children are the most commonly and severely affected subgroup of patients. Currently available treatments include splenectomy and red blood cell transfusions, which are associated with immune defects and chronic iron overload.

RP-L301 was in-licensed from the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS-FJD).

About Rocket Pharmaceuticals, Inc. Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) is advancing an integrated and sustainable pipeline of genetic therapies that correct the root cause of complex and rare childhood disorders. The Companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, Pyruvate Kinase Deficiency (PKD), a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia, and Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit http://www.rocketpharma.com.

Rocket Cautionary Statement Regarding Forward-Looking Statements Various statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding its guidance for 2021 in light of COVID-19, the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rockets ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Annual Report on Form 10-K for the year ended December 31, 2020, filed March 1, 2021 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Read more:
Rocket Pharmaceuticals Presents Positive Clinical Data from Fanconi Anemia, Leukocyte Adhesion Deficiency-I, and Pyruvate Kinase Deficiency Programs...

Global Stem Cell Therapy Market Analysis and Forecast (2019-2024) The Courier – The Courier

During the projected period, the world stem cell therapy market is projected to rise to a CAGR of 10.6 percent and by 2024, its market size will reach 214.5 million USD. The global demand for stem cell treatment is driven mainly by increasing awareness of the therapeutic power of stem cells and the growth of stem cell banking and processing infrastructure. Due to the easy production scale process and the growing commercialization of allogeneic treatments, the industry has experienced strong demand for allogeneic therapies in the past couple of years. Two kinds of stem cell therapy are available, allogeneic and autologous. Both are larger in the allogeneic segment, and in the coming years, are expected to expand rapidly on the market due to their comprehensive therapies, increased marketing of allogeneic products, easy processing, and the increasing number of clinical trials relating to allogeneic therapies.

For Free Sample Report-https://www.vynzresearch.com/healthcare/stem-cell-therapy-market/request-sample

The market was segmented based on therapeutic application into gastrointestinal disease, musculoskeletal disorders, cardiovascular disease, and injury. Musculoskeletal problems have led to the highest revenues in the market because musculoskeletal disorders and bone and joint diseases are on the increase and because stem cell products are available for treating musculoskeletal disease and because patients are increasingly favored for effective and early-treatment strategies.

Adipose originating from tissue-derived mesenchymal stem cells, cord blood cells, and bone marrow-derived mesenchymal stem cells were also categorized into a global stem cell therapy market by cell source. Of all categories, mesenchymal stem cells originating from bone marrow are used more and more for therapeutic purposes. The primary drivers of growth in stem cell therapy are increased awareness about the therapeutic potential of stem cell systems, development of stem cell banking and processing facilities, development of advanced cell analysis techniques based on genome, and the increase of private-government investment in stem cell therapy development. Globally, more than 50,000 transplants are carried out annually and they expand each year, according to the World Health Organization (WHO). The growth of the market also fosters a growing prevalence of chronic diseases, regulatory support across developing countries, and technical innovation in health care, cell therapy, and the discovery of new stem cell lines. Any of the diseases that can be treated by stem cell treatment may include osteoarthritis, multiple sclerosis, heart failure, hearing loss, and cerebral palsy. For example, the WHO predicts that by 2050 there will be a disabling hearing loss for an estimated 900 million people. In addition, the preventable cause of 60 percent childhood hearing loss.

Furthermore, the growth of the stem cell treatment market is stimulated by restrictions to traditional organ transplants such as organ donor dependence, risk of infection, immunosuppression rejection and threats and increasing pipelines for new applications and the development of medicinal products. North America is the the biggest market in stem cell therapy and the fastest growth in the market is seen. Factors that contribute to growth in the US stem cell therapeutics market include the an increasing number of trials to determine products therapeutic potential, increased chronic disease prevalence, a growing patient base for target diseases, increased public awareness of the therapeutics potential of therapy, and increased public-private grants for research and funding. Europe is expected to see substantial growth in stem cell therapy in the coming years.

The production of technologically innovative and advanced products is capitalized by major players in the industry, which is strengthened in the stem cell therapy market. Prestige Lyotechnology, a storage system for living cells and tissues, was introduced by Osiris Therapeutics in March 2017. In addition, MEDIPOST announced that in February 2018, the FDA has approved its drug NEUROSTEM for clinical trials for its stem cell-based Alzheimers disease drug. Some of the major players providing services are Osiris Therapeutics, Ing, RTI Surgical, Inc., MEDIPOST Co., Ltd, Nuvasive, Inc., Pharmicell, Ltd, Holostem Terapie Avanzate Srl, JCR Pharmaceuticals Co., Ltd., Anterogen Co., Ltd., and Allosaurus.

Update :

20 years old, a life-saving stem cell transplant was carried out in an anonymous donor in Germany to fight rare blood cancer. Swindons Luke Hope lost his sight in the right eye and got a 30% chance of acute lymphoblastic leukemia survival (ALL). In October, after a match was made with a man from Germany, he received a transplant at Churchill Hospital, Oxford. The UK stem cell transplantation waiting list currently has 2,000 participants.

In some private clinics patients with the healing power of stem cells charge thousands of pounds for unproven and non-regulated treatments. And some of these therapies can cause serious damage to experts. Stem cells can be used to heal damaged tissue and can transform several forms of body cells, from muscle to brain. However, only certain blood disorders, skin grafts, and repair of damaged corneas have been authorized.

For Customization Request https://www.vynzresearch.com/healthcare/stem-cell-therapy-market/customize-report

Contact Person- Kundan Kumar Email ID kundan@vynzresearch.com Source: VynZ Research https://www.vynzresearch.com/

Read more:
Global Stem Cell Therapy Market Analysis and Forecast (2019-2024) The Courier - The Courier

Stem cell therapy for COPD: Cost, effectiveness, and more – Medical News Today

Currently, the Food and Drug Administration (FDA) has not approved the use of stem cell therapy for the treatment of lung conditions, such as chronic obstructive pulmonary disease (COPD).

The American Lung Association says that this lack of approval is due to the fact that these treatments have high costs, unproven benefits, and the potential to cause harm.

COPD is a progressive, incurable disease that affects at least 16 million people in the United States. As current treatments cannot cure COPD, many people with this condition seek alternative therapies, such as stem cell therapy.

Keep reading to learn more about the potential for using stem cells to treat COPD, including cost, clinical trials, and more.

Stem cells are cells from either embryos or adults that can divide and renew. Although they are not specialized, they can become specialized and ultimately function as cells in various body parts.

Due to their regenerative power and ability to function as different types of cells, stem cells can help repair or replace damaged tissue. Scientists are interested in using stem cell therapy in the treatment of several chronic diseases.

However, most researchers and organizations state that there is not yet enough evidence of the effectiveness of stem cell therapy and knowledge about the long-term risks.

A recent summary of research showed that most human studies have indicated that there is little benefit to the therapy. The author notes that researchers need to understand more about many aspects of stem cell therapy, including:

In other words, more large scale studies must take place to prove or disprove stem cell therapys safety and effectiveness for the majority of people.

The American Lung Association joined many other organizations in signing a statement recommending against stem cell therapy for COPD. The concerns of these groups include:

However, stem cell therapy has shown some potential as a treatment option. According to the American Thoracic Society (ATS), the therapy has shown promise in animal studies. The ATS also notes that sufficient human studies are still lacking, so a person should avoid the therapy unless they are participating in a clinical trial.

The National Emphysema Foundation points out that people who have used unproven stem cell therapies are often willing to get further infusions, suggesting a positive experience.

Finally, the Regeneration Center of Thailand offers and supports the use of stem cell therapy to treat COPD and other lung diseases. However, to receive treatment, a person would need to travel to Thailand, adding to the costs of an already potentially expensive procedure.

As the FDA has not approved stem cell therapy for the treatment of COPD, a person will need to cover all of the costs on their own. They will also need to accept all of the risks associated with using an experimental treatment.

Medicare and private insurance companies will not help cover the costs. A person may not be able to use any healthcare savings account money for the procedure either.

Prices are likely to vary among clinics, very few of which, if any, list the treatment costs upfront. A company called DVC Stem offers stem cell therapy in the Cayman Islands and states that the average cost of treatment is between $10,000 and $35,000. It advises people interested in receiving stem cell therapy to join a clinical trial.

Clinical trials are controlled experiments in which researchers test a new treatment in a group of volunteers. The tests help researchers determine how well the treatment works, the possible side effects, and the ideal dosage, among other factors.

Clinical trials take place in phases, with each phase representing a level of confidence in the treatment. Clinical trials typically go through four phases:

A person interested in joining a stem cell therapy clinical trial should talk with their doctor first. The doctor can help determine whether they will be a good fit for a particular study and may be able to recommend a study based on their condition and health.

ClinicalTrials.gov offers people a way to search for clinical trials related to COPD and stem cell therapy. The listed trials are all approved and regulated for safety. The website lists information about the phase of the trial, who is eligible to participate, and other relevant information.

There is limited knowledge about the short- and long-term side effects of stem cell therapy. In other words, more studies are necessary for researchers to understand precisely how stem cell therapy may affect a person living with COPD.

Alternative or complementary therapies are treatments that fall outside the scope of conventional practice in U.S. medicine. People typically receive these therapies alongside conventional treatment to help support mental health, reduce side effects, and improve quality of life.

The American Thoracic Society states that people can try several alternative or complementary therapies for COPD. These include:

Stem cell therapy for COPD is currently not well-understood. Many researchers and organizations, including the American Lung Association, are concerned about the effectiveness and safety of the therapy.

A person can seek stem cell therapy from unapproved clinics, but the treatment often has high costs with no insurance coverage.

As a result, a better approach is to talk with a doctor about joining a registered clinical trial.

View original post here:
Stem cell therapy for COPD: Cost, effectiveness, and more - Medical News Today

Stem Cell Therapy Global Market Report 2021: COVID-19 Growth And Change To 2030 – Yahoo Finance

Major players in the stem cell therapy market are Anterogen, JCR Pharmaceuticals, Medipost, Osiris Therapeutics, Pharmicell, Astellas Pharma, Cellectis, Celyad, Novadip Biosciences, and Gamida Cell.

New York, April 27, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Stem Cell Therapy Global Market Report 2021: COVID-19 Growth And Change To 2030" - https://www.reportlinker.com/p06064499/?utm_source=GNW

The global stem cell therapy market is expected to grow from $8.62 billion in 2020 to $10.2 billion in 2021 at a compound annual growth rate (CAGR) of 18.3%. The growth is mainly due to the companies resuming their operations and adapting to the new normal while recovering from the COVID-19 impact, which had earlier led to restrictive containment measures involving social distancing, remote working, and the closure of commercial activities that resulted in operational challenges. The market is expected to reach $20.87 billion in 2025 at a CAGR of 20%.

The stem cell therapy market consists of the sales of stem cell therapy and related services by entities (organizations, sole traders, and partnerships) that provide stem cell therapy.Stem cell therapy, also known as regenerative medicine, promotes the repair response of diseased patient, dysfunctional or injured tissue using stem cells or their derivatives.

Only goods and services traded between entities or sold to end consumers are included.

The stem cell therapy market covered in this report is segmented by type into allogeneic stem cell therapy, autologous stem cell therapy. It is also segmented by cell source into adult stem cells, induced pluripotent stem cells, embryonic stem cells, by application into musculoskeletal disorders, wounds and injuries, cancer, autoimmune disorders, others, and by end-user into hospitals, clinics.

The regions covered in this report are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East and Africa.

The high cost of stem cell therapy is expected to limit the growth of the stem cell therapy market.The pressure to contain costs and demonstrate value is widespread.

Political uncertainty and persistent economic stress in numerous countries are calling into question the sustainability of public health care funding.In less wealthy countries, the lack of cost-effective therapies for chronic diseases has impacted the health conditions of the population and has led to a low average life expectancy.

According to the DVCSTEM, the average cost of stem cell therapy in the USA is between $20,000 to $25,000, in Mexico, it is $33,000, in Central America, it is $30,000, and in Asia, it is $50,000, thus restraining the growth of the market.

In September 2019, Vertex Pharmaceuticals Inc, a US-based biopharmaceutical company, announced its decision to acquire Semma Therapeutics, a private biotechnology company, for $950 million.The acquisition is expected to align with Vertexs strategy of investing in scientific innovation that creates transformative medicine for patients with serious diseases.

Semma Therapeutics is a US-based company that is involved in using stem cell therapy for diabetes treatment.

The rising prevalence of chronic diseases contributed to the growth of the stem cell therapy market.Long working hours, limited physical activity, and unhealthy eating and drinking habits contribute to the prevalence of chronic diseases among people, thus driving the need for stem cell therapy.

According to a United Nations article, by 2030, the proportion of global deaths due to chronic diseases is expected to increase to 70% of total deaths.The global burden of chronic diseases is expected to reach about 60%.

The rising prevalence of chronic diseases is expected to drive the stem cell therapy market.

The companies in the stem cell therapy market are increasingly investing in strategic partnerships.The strategic partnership is a mutually beneficial agreement between two companies that do not compete directly with each other.

For instance, in September 2018, CRISPR Therapeutics, a biotechnology company that develops transformative medicine using the gene-editing platform for serious diseases, and ViaCyte, a California-based regenerative medicine company, collaborated for the development and commercialization of allogeneic stem cell therapies for diabetes treatment.

The countries covered in the market report are Australia, Brazil, China, France, Germany, India, Indonesia, Japan, Russia, South Korea, UK, USA. Read the full report: https://www.reportlinker.com/p06064499/?utm_source=GNW

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Story continues

Read the original here:
Stem Cell Therapy Global Market Report 2021: COVID-19 Growth And Change To 2030 - Yahoo Finance

Thomas Smeenk on Hemostemix’s autologous stem cell therapy technology and why some call it ‘the fountain of youth’ – InvestorIntel

In a recent InvestorIntel interview, Tracy Weslosky spoke with Thomas Smeenk, Co-Founder, President and CEO of Hemostemix Inc. (TSXV: HEM | OTC: HMTXF), about Hemostemixs autologous stem cell therapy and why he calls the technology the fountain of youth.

In this InvestorIntel interview, which may also be viewed on YouTube (click here to subscribe to the InvestorIntel Channel), Thomas went on to say that Hemostemixs lead product ACP-01 works by treating ischemia (lack of blood circulation) in a patients body. The technology has already been used to treat around 500 patients suffering from ischemia in the heart, arteries, and limb. He added that using the technology many patients were able to save their limbs from otherwise certain amputations. Hemostemix has 91 patents including a patent on the automation of production which enables the company to scale the business exponentially as over a million patients lose their limbs to amputation in North America alone. The technology is now in Phase 2 clinical trial.

To watch the full interview,click here

About Hemostemix Inc.

Hemostemix is a publicly traded autologous stem cell therapy company. A winner of the World Economic Forum Technology Pioneer Award, the Company developed and is commercializing its lead product ACP-01 for the treatment of CLI, PAD, Angina, Ischemic Cardiomyopathy, Dilated Cardiomyopathy and other conditions of ischemia. ACP-01 has been used to treat over 300 patients, and it is the subject of a randomized, placebo-controlled, double blind trial of its safety and efficacy in patients with advanced critical limb ischemia who have exhausted all other options to save their limb from amputation.

On October 21, 2019, the Company announced the results from its Phase II CLI trial abstract entitled Autologous Stem Cell Treatment for CLI Patients with No Revascularization Options: An Update of the Hemostemix ACP-01 Trial With 4.5 Year Followup which noted healing of ulcers and resolution of ischemic rest pain occurred in 83% of patients, with outcomes maintained for up to 4.5 years.

The Company owns 91 patents across five patent families titled: Regulating Stem Cells, In Vitro Techniques for use with Stem Cells, Production from Blood of Cells of Neural Lineage, and Automated Cell Therapy.

To know more about Hemostemix Inc.,click here

Disclaimer:Hemostemix Inc. is an advertorial member of InvestorIntel Corp.

Thisinterview, which was produced by InvestorIntel Corp. (IIC)does not contain, nor does it purport to contain, a summary of all the material information concerning theCompany being interviewed. IIC offers no representations or warranties that any of the information contained in this interview is accurate or complete.

This presentationmay containforward-looking statements within the meaning ofapplicable Canadian securities legislation.Forward-looking statements are based on the opinions and assumptions of managementof the Companyas of the date made. Theyare inherently susceptible to uncertainty and other factors that could cause actual events/results to differ materially from these forward-looking statements.Additional risks and uncertainties, including those that the Company does not know about now or that it currently deems immaterial, may also adversely affect the Companys business or any investment therein.

Anyprojectionsgivenare principally intended for use as objectives and are not intended, and should not be taken, as assurances that the projected results will be obtained by the Company.The assumptions used may not prove to be accurateanda potential decline in the Companys financial condition or results of operations may negatively impact the value of its securities. Prospectiveinvestors are urged to review the Companys profile onwww.Sedar.comand to carry out independent investigations in order to determine their interest in investing in the Company.

If you have any questions surrounding the content of this interview, please emailinfo@investorintel.com.

Read the original:
Thomas Smeenk on Hemostemix's autologous stem cell therapy technology and why some call it 'the fountain of youth' - InvestorIntel

Mesoblast says its stem cell treatment saved lives of severely ill COVID patients – Stockhead

Mesoblast (ASX:MSB) has released more data from its halted COVID-19 trial, saying its stem cell treatment apparently significantly reduced mortality in severely ill younger patients but the controversial biotech isnt sure it will seek an emergency use authorisation for it.

Mesoblasts remestemcel-L infusion reduced death by 46 per cent in ventilator-dependent patients under age 65, but not in patients 65 and older, the study indicated. When remestemcel-L was combined with the anti-inflammatory medication dexamethasone, it appeared to cut mortality by 75 per cent, compared to when dexamethasone was used alone.

An independent committee stopped the US trial in December after 222 patients had been enrolled, rather than the 300 planned, because the data monitoring board judged the study was unlikely to meet its primary endpoint of a 43 per cent reduction in death at 30 days.

Mesoblast shares plunged by more than a third on the news, and have declined further in the past few months, yesterday closing at a one-year low of $1.83.

At 10.18am this morning, Mesoblast shares were up 10.9 per cent to $2.03, still down significantly from over $5 in September.

On a conference call with analysts this morning, Mesoblast chief executive Dr Silviu Itescu called reduction in mortality exciting and very important and said that perhaps a different dosing regimen might be more effective in older patients, whom he noted have more comorbidities (health problems).

Itescu and chief medical officer Dr Fred Grossman said the company was still in discussions with the FDA about using remestemcel-L to treat graft-versus-host disease in children, a complication of bone marrow transplants.

But Itescu said it was too early to say whether Mesoblast would seek an emergency use authorisation with the FDA for using remestemcel-L as a COVID-19 treatment.

As noted, this study was stopped before its completion, and the signal detection work that weve done has been something thats very very important, and significant enough to warrant these discussions with the FDA for suitable paths forward, Dr Grossman said.

Theres no COVID-19 treatment that substantially reduces mortality, he said.

Get the latest Stockhead news delivered free to your inbox.

It's free. Unsubscribe whenever you want.

See the original post here:
Mesoblast says its stem cell treatment saved lives of severely ill COVID patients - Stockhead