QC Kinetix (San Antonio) Offers Non-Surgical Regeneration Therapy To Treat Aches, Pains, and Injuries In Individuals Around San Antonio – Press…

San Antonio, CA - QC Kinetix (San Antonio) offers a range of regenerative treatments to individuals living in San Antonio and surrounding areas to treat acute and chronic pain and sports injuries. Their regenerative therapies help treat knee pain, shoulder pain, Carpal Tunnel Syndrome, Arthritis, Plantar Fasciitis, Tendonitis, Elbow Pain, Sciatica, Finger and Toe Pain, Foot and Hand Pain, Wrist Pain, Ankle Pain, Low Back Pain, Nerve Pain, Hip Pain, Tendon, Ligament, and Muscle Pain, and Low Levels of Testosterone in individuals.

The clinic uses stem cell therapy with BMAC and other regenerative treatments like comprehensive regenerative cell therapy injections using amniotic membrane tissue, A2M therapy, and PRP therapy. The team ensures they diagnose the patients' condition and discuss the different treatment options before proceeding with treatment. If they feel any patient is not a candidate for therapy at their clinic, they advise him/her of other options.

The patients at QC Kinetix (San Antonio) range from young athletes to active senior citizens. The doctors and treatment providers have extensive therapy in pain treatment using regenerative medicine. They speak openly with patients about their symptoms and don't try to hide anything. They aim to ensure individuals can maximize their body's ability to repair and heal itself and function efficiently. This, in turn, helps improve the individuals' overall quality of life.

The talented and well-experienced treatment providers at QC Kinetix (San Antonio) know how frustrating it can get for patients with limited mobility. They know patients can get tired of taking addictive pain medications without any positive results. They realize all of these failed attempts at treating physical ailments can have a physical and emotional toll on them.

All treatment providers at QC Kinetix (San Antonio) are board-certified and have years of regenerative medicine experience. They keep themselves updated with the latest development and technology in this field and adapt depending on their condition and requirement.

All patients that visit QC Kinetix (San Antonio) are treated equally, irrespective of age and condition. Whether individuals have mild symptoms or unbearable pain, the team at QC Kinetix (San Antonio) will ensure the patient gets full attention and is treated with care. The team knows that many people get overwhelmed at the thought of surgery and will prefer another treatment option where surgery is not required. They do their best to help individuals get treated without surgery through regenerative medicine. This place is ideal for anyone looking for San Antonio stem cell treatment.

QC Kinetix (San Antonio) has successfully treated many patients from the time they have been established. All patients who get treated at this facility go back home happier and healthier than before.

QC Kinetix (San Antonio) is located at 18707 Hardy Oak Pavilion, Suite 445, San Antonio, TX, 78258. Individuals interested in knowing more about their treatments and therapies can visit their website or contact them on (210) 571-0318 to request an appointment.

Media Contact Company Name: QC Kinetix (San Antonio) Contact Person: Casey Sietsema Email: Send Email Phone: (210) 571-0318 Address:18707 Hardy Oak Blvd Suite 445 City: San Antonio State: TX Country: United States Website: https://qckinetix.com/san-antonio/

Link:
QC Kinetix (San Antonio) Offers Non-Surgical Regeneration Therapy To Treat Aches, Pains, and Injuries In Individuals Around San Antonio - Press...

Regenerative Medicine – Stem Cell Therapy Little Rock

When you have chronic or acute pain, eventually youre forced to seek treatment from a medical doctor. Unfortunately, your visit to a medical doctor usually results in long wait times, a short visit with the doctor, and two options: surgery and/or prescriptive drugs. Many people leave their visit feeling hopeless, not wanting to take on the risks of surgery or addictive prescription drugs. What if there was a safer option that provided a long term solution?

Clearstone Medical Center Regenerative Medicine

Do you feel like the medical system has failed you? Many people are desperate to try anything that might alleviate their pain and get them back to enjoying life. Most patients have never heard of regenerative medicine. Unlike traditional medicine that uses drugs to treat symptoms and mask the primary problem, regenerative medicine targets the underlying condition and promotes healing. Regenerative Medicine uses the latest innovations in medicine to give the body the potential to regenerate damaged tissue rather than break it down like traditional medicine. Clearstone Medical center provides regenerative products from labs that are safe and regulated by the FDA and American Association of Tissue Banks (AATB).

What is Regenerative Medicine?

Regenerative medicine is a rapidly emerging science that enables your body to heal itself, using naturally occurring cellular tissues and fluids. Clearstone Medical Center provides regenerative amniotic allografts and mesenchymal stem cells (MSC)for the purpose of repairing and healing damaged degenerated tissues. The allografts are composed of robust sources of hyaluronic acid, regenerative cells, and cytokines to help regenerate your bodys tissues. These powerful growth factors offer unique healing properties and are the fundamental components of regenerative medicine.

See the original post:
Regenerative Medicine - Stem Cell Therapy Little Rock

Center for Stem Cell Biology & Regenerative Medicine …

Center Overview

The Center for Stem Cell Biology and Regenerative Medicine opened in 2009 with the recruitment of Curt I. Civin MD as its founding director. Dr. Civin is recognized as a pioneer in cancer research for developing a way to isolate blood stem cells from mature blood cells. The mission of the Center is to discover new treatments and preventive approaches, based on stem cell technology, for important, currently intractable human maladies. The Center is driven by an imperative to work quickly from bench science to the actual use of discoveries to transform clinical medicine.

Stem cell research is transforming the future of medicine. Indeed, as we all begin life as a stem cell, it is through a highly complex series of events that those few stem cells, which are capable of self-renewal and differentiation, develop into all of the specialized cells found in our adult bodies. By studying these events we gain rare insights into how the human body is made. Stem cell research also holds amazing potential for restructuring the way we practice medicine: One day, stem cells may be used to replace or repair damaged tissues and organs and to dramatically alter how we treat diseases like cancer.

The Center provides a focal point of interaction, information, leadership, and facilitation of stem cell research and regenerative medicine applications at the University of Maryland, with links to Johns Hopkins, Federal labs, and corporate researchers across the State of Maryland. To fulfill its mission with specificity, the Center has established a set of four scientific Working Groups for focused research, educational and clinical interactions. The Center is also a founding member of the Maryland Stem Cell Consortium, which created a stem cell core facility to support and accelerate research in the field.

Give to this Center

Dr.Curt Civin

A major goal of our Center for Stem Cell Biology & Regenerative Medicine is to translate our fundamental discoveries into innovative and practical clinical applications that will enhance the understanding, diagnosis, treatment, and prevention of many human diseases.--Dr. Civin

Working Groups

Here is the original post:
Center for Stem Cell Biology & Regenerative Medicine ...

Dynamic Stem Cell Therapy Offers Regenerative Medicine – Las Vegas Review-Journal

Dynamic Stem Cell Therapy offers regenerative medicine

A serious car accident left Mike Licata with a debilitating injury to his left shoulder.

My injury was so severe, and the pain was unbelievably intense, Licata said. It interfered with every part of my life.

Looking for alternatives to invasive surgery, Licata discovered Dynamic Stem Cell Therapy.

Traditional surgery was going to be around $75,000, with three months in a cast, a year-plus of rehab, and probably $120,000 out of pocket, Licata said. I was in trouble, then a friend told me about stem cell therapy.

Dynamic Stem Cell Therapy specializes in regenerative medicine, using stem cells to initiate healing within the body.

Stem cells are the building blocks of the human body, Dynamic Co-founder and Chief Executive Officer Blake Youmans said. They act as a booster of healthy cells for the body to heal itself. When were giving this therapy, its to potentially reverse the trauma that has been sustained. Its basically to help give patients a better quality of life.

Licatas treatment involved a quick injection of his own stem cells into the injury site, harvested from his fat tissue through syringe aspirated mini liposuction. The entire procedure took approximately four hours from Licata entering the clinic.

They did their magic, Licata said. This was so easy. It doesnt compare to invasive surgery.

Within months of the stem cell therapy, Licatas shoulder was completely healed, and his quality of life was restored.

Now, its better than my other shoulder, Licata said. I cant tell you how much this has changed my life.

Licata is one of thousands of patients discovering regenerative medicine at Dynamic Stem Cell Therapy.

The revolutionary regenerative technique works for a variety of conditions and diseases.

We focus mainly on athletic trauma, Youmans said. And inflammatory diseases, such as arthritis and rheumatoid arthritis but it is a way to fix the entire body.

The minimally invasive procedure offers patients an alternative to surgery. Youmans noted his procedure is safe and effective with no reported side effects, and his patients notice a difference in as little as two weeks or up to only six months after injection.

Its really up to a patients own body to heal themselves, Youmans said. Its a great alternative to try before surgery.

The staff at Dynamic obtain stems cells from two different sources: in the office from a patients own fat cells through mini liposuction or from the donated umbilical cord of a newborn. Young mothers, between the ages of 18 and 35 are prescreened and provide authorization for the collection. A lab collects the umbilical cord after birth, and its stem cells are harvested and sold.

After age 65, our stem cell count goes way down, Youmans said. So, for older patients, I tell them it may be more effective to use zero-age stem cells for specific conditions.

Dynamic Stem Cell Therapy clinic has performed over 1,000 procedures over the last seven years. The success rate for patient outcomes averages from 75 to 100 percent.

Weve seen 98 percent success with knees, Youmans said. I feel good about what were doing helping patients get the results they want.

Regenerative medicine is successful in most patients, but the therapy has no guarantee of success. According to Youmans, all patients are thoroughly informed about that possibility before the therapy.

Ill bend over backward to make sure a patient gets a great result, Youmans said. But we cant guarantee anything or promise fast results.

The average cost of the treatment is $5,000 and is not covered by insurance. This price can still save patients thousands of dollars compared to surgery and follow-up rehabilitation.

Founded by Blake Youmans late mother, Simong Youmans, M.D. (an experienced Board- Certified Emergency Medicine Physician), Dynamic Stem Cell Therapy opened its doors in 2014.

Dr. Simong Youmans passion for helping people heal naturally, and, strengthening the bodys own defenses, led her to open several evidence-based alternative medicine businesses over the years. They include Elite Medical Services & Spa. Laser Body Sculpting Institute, Attitude Med Spa, Advanced Health, and, of course, Dynamic Stem Cell Therapy.

She thought there was a better way to help patients, Blake Youmans said. So, she found natural solutions to help them heal themselves.

Blake Youmans began working alongside his mother in 2004 and witnessed the benefits experienced through regenerative medicine. Following her passing in 2016, he chose to continue what his mother started at Dynamic Stem Cell Therapy.

I want to continue her legacy, he said. My mom really believed stem cell therapy was the best way to help people. Its been incredible.

The 2,500-square-foot clinic at 2551 North Green Valley Parkway in Henderson has a staff of six. It has grown significantly over the years strictly using reputation marketing.

Right now, I have almost 100 reviews on Google, Blake Youmans said. Out of those 100 reviews, theyre mostly five stars, so I take great pride in that because, at the end of the day, all I care about is good patient outcomes.

Dr. Dale Carrison, DO, FACEP, FACOEP is Dynamics medical director. He served at several of the valleys prestigious medical organizations, and most recently as director and chairman of the Department of Emergency Medicine at University Medical Center (UMC).

He has a great reputation in town, Blake Youmans said. I feel very blessed to have him as my medical director.

Carrison came on staff after experiencing regenerative stem cell therapy himself. His procedure performed at Dynamic involved having his own stem cells injected into his ankles.

He said it felt like he was walking on glass, Blake Youmans said about Carrisons injury. He got the procedure done and four months later his ankles felt great.

Now, he comes from a better place of empathy for patients, Blake Youmans continued. When hes doing consults, he can say how it went for him.

Blake Youmans plans to expand into other markets once things start opening back up from the pandemic.

My mothers vision was to help as many people as she could, he said. I can only do so much in Las Vegas, so I would like to go into other markets to help more people.

Members of the editorial and news staff of the Las Vegas Review-Journal were not involved in the creation of this content.

Originally posted here:
Dynamic Stem Cell Therapy Offers Regenerative Medicine - Las Vegas Review-Journal

Anti-EGFR VHH-armed death receptor ligandengineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers -…

INTRODUCTION

Breast cancer (BC) is the second most common cancer that can metastasize to the brain and, in fact, brain metastasis (BM) is a major cause of cancer-related deaths in patients with BC. Approximately 15 to 30% of patients with metastatic BC develop BM (1, 2). Along with the increase in the incidence of BC (3), the occurrence of BC-BM has also increased in recent years owing to improved extracranial disease control and poor central nervous system (CNS) penetration of drugs (4). Among the four main intrinsic subtypes of BC, basal-like breast cancer (BLBC) has a 70 to 80% overlap with triple-negative breast cancer (TNBC) and constitutes 12 to 15% of BC (5). BLBC has the poorest prognosis and the shortest survival among the BC subtypes (6), owing to the unavailability of specific therapeutic options including hormonal or molecular-targeted therapy. BLBC metastasizes to the brain more frequently than the other subtypes (7, 8), shortening patient survival (9).

BM continues to represent a formidable challenge in the clinical management of patients with cancer. Currently, stereotactic radiosurgery (SRS), surgical resection, and whole-brain irradiation are the most common treatment options for BM; however, these tumors are generally resistant to systemic chemotherapy because of the blood-brain barrier (BBB). For detectable tumors up to 3 cm, there is a favorable indication for SRS (10). However, residual invasive cancer cells following surgical resection of large tumors that were not eligible for SRS, undetectable dormant tumor cells in the perivascular niche (PVN), and leptomeningeal metastasis, also known as meningeal carcinomatosis, are challenging conditions and lack effective treatment options. Tumors in the eloquent areas of the brain are unresectable, and residual tumor cells after resection eventually cause recurrence. Because, compared to other cancers, BC is known to feature later recurrences (11), patients who have undergone treatment remain at a persistent risk even for decades (11, 12). Repeated chemotherapy is often unable to kill the PVN-dwelling cancer cells as they are known to establish a strict localization outside the vasculature (13, 14). Leptomeningeal metastasis is another devastating condition observed in 11 to 20% of patients with CNS metastasis of BC (15, 16). The lack of effective treatments leads to extremely short survival (median survival: 4 to 6 weeks) (17). Although intrathecal (IT) administration of anticancer agents is often attempted, there is no evidence for improvement in survival (18). Given the multistep and complex biological nature of BM, tumor models that recapitulate metastatic brain tumor features are limited. In this study, we first developed imageable mouse models for clinically challenging BLBC-BM conditions, including single intracranial metastasis resection, PVN micrometastasis, and leptomeningeal metastases, and used these models to investigate in detail the efficacy and mechanism of stem cellbased bifunctional BM treatments targeting overexpressed epidermal growth factor receptor (EGFR) and death receptors 4/5 (DR4/5).

EGFR is up-regulated in BLBC (19), and anti-EGFR therapies have been adopted (20). Given that EGFR is one of the most important mediators of BM in BC (21), and EGFR positive tumors are more frequent in BC-BM than primary tumors (22), targeting EGFR has the potential to be beneficial in BC-BM. However, in contrast to other EGFRup-regulated cancers, EGFR-targeting therapies have not been successful in BLBC (20). On the other hand, BLBC cell lines are sensitive to DR4/5-induced death signaling triggered by tumor necrosis factorrelated apoptosis-inducing ligand (TRAIL, herein as DRL) binding, which induces apoptosis selectively in cancer cells (23). However, DRL alone is not sufficient to treat BLBC (24), and even enhancing modifications of DRL have not translated into remarkable treatment benefits in patients (25). In a preliminary screen of BLBC-BM patient samples, EGFR and DR4/5 displayed a concurrent up-regulation in the tumor area. Therefore, it is of great interest to explore the strategy to simultaneously evaluate targeting EGFR and DR4/5 in BLBC-BM. A variable domain of camelid heavy-chain-only antibody (VHH), also known as nanobody is a small molecule, consisting solely of the antigen binding domain (26). We have previously engineered bivalent anti-EGFR VHH (EV) and shown their efficacy in mouse tumor models (27). We have recently developed a bi-functional molecule EV fused to DRL (EVDRL) that simultaneously targets EGFR and DR4/5, but its mechanism-based efficacy has not been fully understood.

Given the challenges related to systemic delivery of a majority of therapeutic agents across the BBB and short half-life and high hepatotoxicity of DRL (28), engineered stem cells offer an excellent platform to target CNS tumors. We and others have previously established use of neural stem cells (NSCs) and mesenchymal stem cells (MSCs) engineered to express tumor-specific biomolecules for treating primary brain neoplasms. Especially for tumors in the CNS, stem cell administration in the resection cavity has been shown to improve drug delivery (29). For micrometastasis at PVN, arterial delivery of therapeutic stem cells offers an advantage owing to the BBB penetration capability of stem cells (3032). For leptomeningeal metastasis, the primary reason for the failure of IT drug administration is the difficulty of infusing drugs continuously and the incessant turnover of cerebrospinal fluid (CSF) that clears the drug (17). IT delivery of therapeutic stem cells offers an advantage as stem cells can survive in the CSF space and continuously secrete therapeutic molecules; however, there are no reports on stem cell therapy for leptomeningeal metastasis as a secondary CNS tumor. In this study, we characterized in detail the anti-BLBC efficacy of EVDRL and assessed the therapeutic efficacy of stem celldelivered EVDRL in different mouse tumor models of breast to BM.

We analyzed the dataset from The Cancer Genome Atlas (TCGA) (33) and showed that BLBC [typically triple negative for estrogen receptor, progesterone receptor, and HER2 (TNBC); fig. S1A] has significantly higher expression of EGFR and DR4/5 mRNA compared to the other BC subtypes (Fig. 1A). In addition, a cohort of cell lines from TCGA (34) provided further evidence that BLBC cell lines have significantly higher expression of EGFR and DR5 mRNA compared to the non-BLBC subtypes (Fig. 1B). To confirm these results, we tested cellular and cell surface expression of EGFR and DR4/5 by Western blot and flow cytometry, respectively, in 15 human BC cell lines (HER2-enriched: SKBR3 and MDA-MB-453; luminal A: MCF7, HCC1500, ZR75-1, and HCC1428; luminal B: BT474, T47D, and MDA-MB-175VII; basal-like: BT549, Hs578T, SUM159, MDA-MB-231, MDA-MB-436, and MDA-MB-468) and three patient-derived BLBC-BM cell lines (BMET02, BMET05, and BMET15), which were confirmed by mRNA microarray (fig. S1B) (35). BLBC cell lines showed significantly higher expression of EGFR compared to the other BC subtypes (Fig. 1, C and D). Although higher expression of DR5 was observed in BLBC as compared to non-BLBC, the expression levels were not significant, most likely due to the insufficient number of cell lines tested (Fig. 1, C and D). In addition, immunohistochemistry of TNBC patient samples showed that BM tissue displayed a significantly higher expression of EGFR compared to the primary tumor (Fig. 1E and fig. S1C). Together, these data revealed that EGFR and DR4/5 are promising targets in BLBC-BM.

(A) Top: Heatmap of mRNA levels of EGFR, DR5, and DR4 in patient samples of four subtypes (BL, basal-like; HE, HER2-enriched; LA, luminal A; LB, luminal B) of BC from TCGA database (n = 526). Bottom: Comparison of EGFR, DR5, and DR4 mRNA levels between subtypes. (B) Top: Heatmap of mRNA levels of EGFR, DR5, and DR4 in cell lines of BLBC or non-BLBC from TCGA database (n = 52). Bottom: Comparison of EGFR, DR5, and DR4 mRNA levels between subtypes. (C) Top: Western blot (WB) of EGFR, DR5, and DR4 in 18 BC cell lines (PE, pleural effusion; RPT, repeat; loading controladjusted ratios are provided under blots). Bottom: Relative expression of EGFR, DR5, and DR4 in BLBC and non-BLBC. (D) Top: Cell surface protein levels of EGFR, DR5, and DR4 analyzed by flow cytometry in 18 BC cell lines. Bottom: Comparison of cell surface expression of EGFR, DR5, and DR4 in BLBC and non-BLBC. PE-A, phycoerythrin-area. (E) Left: Representative micrograph of immunohistochemistry of EGFR, DR5, and DR4 in primary tumors and BM of TNBC. Scale bars, 100 m. Right: Quantifications of immunohistochemical staining densities by ImageJ (primary, n = 57; BM, n = 13).

We developed mouse models representing three major clinically relevant forms of BM: macrometastasis, micrometastasis, and leptomeningeal metastasis (Fig. 2A). First, we generated a patient-derived, BMET02 line expressing a bimodal firefly luciferase (Fluc)mCherry (FmC) fusion protein (fig. S2A). We confirmed a direct correlation between Fluc signals and implanted BMET02-FmC cell numbers in vivo and show that BMET02-FmC has similar growth rate as parental BMET02 (fig. S2, B and C). Intracardiac injection, the most common method for development of experimental BM models, can lead to widespread tumor formation (36). Even standard intracarotid arterial (ICA) injection may reduce the rate of aberrant (nonbrain) metastasis, this route routinely requires the ligation of the external carotid artery,, thereby prohibiting repeated injections. Moreover, when using the standard ICA injection technique with ligation of the external carotid artery, we still observed extracranial metastasis, likely as a result of tumor cell distribution into small arterial feeder branches, such as the occipital artery (OA), pterygopalatine artery (PPA), and superior thyroid artery (STA) (fig. S3, A to C) (3739). Therefore, we established a modified ICA injection technique, in which we ligated these feeder arteries, thereby greatly reducing the formation of extracranial tumors (fig. S3A and movie S1). In addition, partial preservation of the external carotid artery enabled multiple ICA injections from the same side; this allows us to efficiently test cell-based therapies in this model (movie S1). We injected BMET02-FmC into mice using this modified ICA injection technique and monitored tumor development by bioluminescence imaging (BLI). BLI signals of day 0 demonstrated the successful ICA injection of viable BMET02-FmC cells in mouse; however, the BLI signals then quickly dropped to undetectable levels, most likely due to only a very small portion of tumor cells completing extravasation and surviving in the brain (Fig. 2B). Chronological brain samples from ICA-injected BMET02-bearing mice showed multiple tumors in the brain parenchyma (Fig. 2C). Immunohistochemistry of brain blood vessels revealed that BC cells extravasated in the early phase (day 7), stayed alongside the blood vessel for a while (day 13), and then started growing along the vessels (day 20) (Fig. 2D). Immunohistochemistry showed late phase BLBC-BM tumors were highly proliferative and hypervascularized and surrounded by astrocytes (fig. S3D).

(A) Schematic representation of three clinical scenarios of BM. (B) Left: Schematic of micrometastasis model. Right: BLI signal curves of each mouse after ICA injection of BMET02-FmC and representative pictures. (C) Top: Chronological representative bright-field (BF) and fluorescence photographs of brain samples from ICA-injected BMET02-FmCbearing mice. Scale bar, 10 mm. Bottom: Photomicrograph of coronal sections of the samples. Scale bar, 1 mm. (D) Chronological photomicrographs of immunohistochemistry of CD31 in brain sections that had ICA injection of BMET02-FmC. Scale bars, 100 m. Critical moment of extravasation of cancer cells was observed on day 2 (inset of d2). (E) Left: Schematic of leptomeningeal metastasis model. Right: BLI signal curve of IT-injected BMET02-FmCbearing mice (n = 2) and representative photographs. (F) Center: Representative photograph of brain and spine samples from mice 23 days after IT injection of BMET02-FmC. Scale bar, 10 mm. Surrounding: Representative microphotograph of fluorescence and hematoxylin and eosin (H&E) staining of the brain and spine samples. Scale bars, 100 m. (G) Schematic of macrometastasis resection model. (H) Left: Representative intraoperative BF and fluorescence photographs of brain of pre- and postresection of BMET02-FmC tumor. Scale bars, 1 mm. Right: Representative pictures of BLI. (I) Representative photomicrograph of brain sections of pre- and postresection of tumor. Scale bars, 1 mm. Photo credit: Yohei Kitamura, Brigham and Womens Hospital. DAPI, 4,6-diamidino-2-phenylindole.

To develop a leptomeningeal metastasis model, we IT injected BMET02-FmC into the cisterna magna (fig. S3E). BLI showed tumor growth around the CNS (Fig. 2E). Brain and spine samples showed widely disseminated tumors in various areas of CSF space across the CNS (Fig. 2F). The tumor resection model was developed as we previously reported (Fig. 2G) (40). In short, following establishment of a cranial window, tumor cells were directly injected into the superficial brain parenchyma followed by bioluminescent imaging of tumor growth and microscopically assisted tumor resection. To confirm that orthotopically injected BMET02-FmC leads to a similar pattern of metastatic tumor formation as we had previously observed with ICA-injected tumor cells, we performed ex vivo brain sectioning followed by immunohistochemical staining for vascularization and surrounding astrocytes (fig. S3F). Fluorescence images and BLI showed that resection substantially reduced tumor size (Fig. 2, H and I). Together, these data demonstrate the establishment of three clinically relevant mouse models of BLBC-BM, which have the potential to facilitate development and preclinical testing of the next generation of BM therapies.

Clinical tissue obtained from patients with TNBC-BM and tumor tissues from ICA-injected patient-derived BMET02-FmCbearing mice expressed both of EGFR and DR4/5 as revealed by immunofluorescence (Fig. 3A and fig. S4A). In addition, our flow cytometry analysis showed that each single tumor cell has both of EGFR and DR5 using a BLBC cell line (fig. S4B). To simultaneously target cell surface EGFR and DR4/5, we used two bi-functional proteins encoded by cDNAs for anti-EGFR VHH (EV) or anti-EGFR ScFv (ES) fused to DRL (EVDRL and ESDRL, respectively) (Fig. 3B and fig. S4C) and tested their efficacy in patient-derived BLBC-BM lines. Cell viability and protein assays showed that EVDRL induced significant cytotoxicity and caspase-mediated apoptosis compared to ESDRL (Fig. 3, C and D). We further assessed the antitumor effects of EVDRL in 18 BC cell lines. Most BLBC cell lines responded to DRL and EVDRL but not to EV. EVDRL consistently mediated more potent antitumor effects than DRL (Fig. 3E and fig. S4D). A correlation between the expression levels of DR5 (see Fig. 1D) and the efficacy of DRL was observed (Fig. 3F), and therapeutic effects of EVDRL relative to those of DRL were correlated with EGFR expression levels in BLBC cells (Figs. 1, C and D, and 3G and fig. S4E). These results suggest that the therapeutic sensitivity to EVDRL of BC cell is mainly determined by the expression levels of DR5 and EGFR (Fig. 3H).

(A) Representative microphotograph of low and high (the insets) magnifications of H&E and immunohistochemistry of EGFR and DR4/5 in patient samples of TNBC- BM. Scale bars, 100 m (main images) and 10 m (insets). (B) Schematic showing the construction of anti-EGFR VHH-DRL (EVDRL) and anti-EGFR scFv-DRL (ESDRL) proteins. (C) Cell viability of BLBC-BM lines after 72-hour treatment with control media (Ctrl), ESDRL, or EVDRL. (n = 3, technical replicates). (D) WB showing cleavage of caspases and poly(ADP-ribose) polymerase (PARP) in BLBC-BM lines after 8-hour treatment with Ctrl, ESDRL, or EVDRL (n = 3, technical replicates). (Loading controladjusted ratios are provided under blots; only cleaved part was quantified). (E) Cell viability of 18 BC cell lines after 72-hour treatment with different concentrations of Ctrl, EV, DRL, or EVDRL (n = 3, technical replicates). (F) Correlation between cell surface DR4/5 expression and growth inhibition effect of DRL at the time point of 24 hours. (G) Correlation between cell surface EGFR expression and growth inhibition ratio between DRL and EVDRL at the time point of 24 hours. (H) Correlation between cell surface DR5 and EGFR expression and the growth inhibition efficacy of EVDRL. (I) WB showing phosphorylation of EGFR and its downstream elements in BLBC-BM lines with EGF treatment after pretreatment with various concentrations of EVDRL (n = 3, technical replicates). (J) WB showing cleavage of caspases and PARP in BLBC-BM lines after 8-, 16-, and 24-hour treatment with Ctrl or EVDRL (n = 3, technical replicates). (K) Caspase-Glo 3/7 assay of BLBC-BM lines after 8-hour treatment with Ctrl or EVDRL (n = 3, technical replicates).

To explore candidate factors besides EGFR and DRs that might influence BLBCs sensitivity to EVDRL, we first analyzed the difference in apoptosis-related genes among the subtypes based on the data from TCGA (fig. S5A). Among them, down-regulation of BCL2 and Bcl-xL (anti-apoptotic Bcl genes) and up-regulation of BID and BAX (pro-apoptotic Bcl gene) were found in BLBC (fig. S5A). Western blot analysis on different BLBC cell lines revealed differential expression of BCL2, Bcl-xL, and BID. However, no significant correlation between the protein expression of BCL-2, Bcl-xL, BID, and efficacy of DRL was observed (fig. S5B). Decoy death receptors, DcR1 and DcR2, are known to influence the sensitivity of cells to DRL (41). TCGA revealed down-regulation of DcR1 and up-regulation of DcR2 in BLBC (fig. S5A), and Western blot analysis of BLBC lines showed low expression of DcR1 and varying expression levels of DcR2 (fig. S5C). Furthermore, MYC, which is known to be related to both of apoptosis pathway and EGFR signaling pathway (42, 43), was down-regulated in BLBC cell lines (fig. S5A). Western blot analysis showed a negative correlation between protein expression of Myc and efficacy of EVDRL in the cell lines tested (fig. S5D). These results suggest that sensitivity of BLBC cells to EVDRL is mainly determined by EGFR and DR expression; however, other factors, such as apoptosis-related factors, might also influence their sensitivity to EVDRL.

As expected, we observed that EVDRL inhibited EGFR signaling (Fig. 3I) and induced caspase-mediated apoptosis in BLBC-BM tumor cells (Fig. 3, J and K). We also confirmed that EV alone and ESDRL also inhibited EGFR signaling (fig. S5, E and F). These data showed that EVDRL simultaneously targets EGFR and DR4/5 and consistently induces apoptosis in a cohort of BLBC lines.

We initially hypothesized that the main function of EV domain of EVDRL would be to block EGFR signaling. However, EV alone showed marginal effects on the cell viability of BLBC tumor cells expressing high levels of EGFR (Fig. 3E), and the differences in efficacy between DRL and EVDRL were apparent very early ~24 hours after treatment (fig. S4D). This did not support our initial hypothesis and suggested that the EV domain has another mechanism beyond blocking EGFR signaling to enhance therapeutic efficacy of EVDRL. To identify the mechanism, we tested whether EV could sensitize tumor cells to DRL by modulating interactions between apoptosis pathways and EGFR downstream elements. However, we did not observe any changes when the cells were treated with EV (fig. S6A). Next, we combined EV and DRL to test whether this recapitulated the effects of EVDRL in BLBC-BM lines. Treatment with EV + DRL had a lower efficacy compared to EVDRL (Fig. 4, A and B), suggesting that fusing EV with DRL is necessary to enhance efficacy. Next, we tested the efficacy of EVDRL on another BLBC cell line, MDA-MB231-FmC, which has relatively low EGFR and high DR4/5. We observed similar findings in this line as well (fig. S6, B and C). Next, we assessed the proximity between EGFR and DR5 before and after treatment with EVDRL using real-time Frster resonance energy transfer (FRET) imaging on BMET02 and NIH-3T3 cells expressing recombinant EGFRyellow fluorescent protein (YFP) and DR5cyan fluorescent protein (CFP) (Fig. 4C). Both receptors were localized to the cell surface, and typical trace showed that treatment with EVDRL correlated with an increase in detectable FRET in the cells (Fig. 4D). These data suggest that EGFR and DR5 are in close proximity on the cell surface, and EVDRL binding further increases their association.

(A and B) Cell viability of BLBC-BM lines after 72-hour treatment (A) and WB of cleavage of caspases and PARP in BLBC-BM lines after 8-hour treatment (B) with control media (Ctrl), EV, DRL, EV + DRL, and EVDRL (n = 3, technical replicates). (C) Confocal images of unstimulated BMET02 cells stably expressing EGFR-YFP and transiently transfected with DR5-CFP. (D) Real-time FRET (sensitized emission) imaging in NIH-3T3 cells coexpressing DR5-CFP and EGFR-YFP. Ratio images depicting the bottom focal plane of the cell show FRET before (left image) and 30 min after treatment EVDRL (right image). (E) Schematic of EGFR inhibitors used for blocking experiments of EVDRL. (F and G) Cell viability (F) and WB showing cleavage of caspases and PARP (G) of BLBC-BM lines after 24-hour treatments with DRL and EVDRL after pretreatment with various concentrations of cetuximab (n = 3, technical replicates). (H) Coimmunoprecipitation (Co-IP) and WB analyses showing EGFR-EVDRL-DR4/5 complex formation in the presence of EVDRL and the attenuation of the complex by cetuximab in BMET02 (n = 2, technical replicates). (I) Cell viability of BLBC-BM lines treated by EVDRL for 24 hours with or without pretreatment by 1 M erlotinib (n = 3, technical replicates). ns, not significant. (J) Flow cytometry showing reduction of cell surface expression of DR4/5 in BMET02 lines with CRISPR-Cas9 knockout (KO) of DR4, DR5, and DR4/5. (K) Cell viability of BMET02-DR4/5 KO lines after 72-hour treatment with DRL and EVDRL (n = 3, technical replicates). (L) Left: Co-IP and WB analyses showing levels of DRL bound to DR4/5 in BLBC-BM lines after 8-hour treatment with separated EV plus DRL (S) or combined EVDRL (C). Right: Quantification of levels of DRL bound to DR4/5 (n = 3). (M) Schematic showing functional difference between DRL (left) and EVDRL (right).

To confirm that EVDRL binding to EGFR and DR4/5 at the cell surface results in internalization of these receptors, we assessed the colocalization of EGFR with early, Rab5, and late, Rab7, regulators of endocytosis, posttreatment of cells with EVDRL. EGFR colocalized with early endosomal protein, Rab5, within 5 min and with late endosomal protein, Rab7, at 15-min time after EVDRL treatment as compared to control treated or in EGFR-negative cells, implying that EGFR was endocytosed into the cell cytoplasm (fig. S6D). Because this phenomenon did not take place when cells were treated with control media or when the treated cells had very low levels of EGFR, these findings imply that EGFR-bound EVDRL was endocytosed into the cell.

Next, we used cetuximab and erlotinib to block EGFR. Cetuximab, an anti-EGFR monoclonal antibody, blocks EVDRL-EGFR binding, extracellularly; and erlotinib, a receptor tyrosine kinase inhibitor, inhibits phosphorylation of EGFR, intracellularly (Fig. 4E). Consistent with previous reports (44), cetuximab and erlotinib alone had no effects on BLBC-BM cell proliferation (fig. S6E). As TNBC cell resistance to EGFR inhibitors could simply arise from relatively lower EGFR expression in TNBC than the other EGFR inhibitorsensitive cancers, we compared EGFR expression of patients TNBC-BM samples with BM of nonsmall cell lung carcinoma (NSCLC), which is an EGFR inhibitorsensitive cancer type. Similar levels of EGFR expression were seen in both TNBC-BM and NSCLC-BM (fig. S6F). In addition, a cell line cohort from TGCA database (34) showed that TNBC cell lines have the same or even higher EGFR mRNA level compared to NSCLC, pancreatic cancer, and colorectal cancer, which are all considered EGFR inhibitorsensitive cancers (fig. S6G). Cetuximab significantly blocked EVDRL-mediated reduction of cell viability and induction of apoptosis in BLBC-BM lines but did not affect the effect of DRL (Fig. 4, F and G, and fig. S6H). Coimmunoprecipitation (Co-IP) studies showed that cetuximab interfered with formation of an EGFR-EVDRL-DR4/5 complex (Fig. 4H). After confirming that erlotinib sufficiently inhibits EGFR phosphorylation (fig. S6I), we treated erlotinib-pretreated BLBC-BM cells with EVDRL. Erlotinib pretreatment did not affect the efficacy of EVDRL (Fig. 4I). These results suggest that EGFR binding is critical for EVDRL therapeutic effects, but its efficacy is not mainly via blocking EGFR signaling.

To validate DR4/5 as the targets of EVDRL treatment, we generated DR4, DR5, and DR4/5 knockout (KO) BMET02 lines using CRISPR-Cas9 gene editing and treated them with DRL or EVDRL (Fig. 4J). We confirmed that the growth rate of BMET02-DR4/5KO is similar to its parental BMET02 cell line (fig. S2B). Both BMET02-DR4KO and BMET02-DR5KO lines were significantly less sensitive to DRL and EVDRL than the control line. KO of both DR4 and DR5 induced almost complete resistance to DRL and EVDRL (Fig. 4K and fig. S6J). These results suggested that DR4/5 expression is essential for EVDRL activity, which is enhanced by the interaction between EV domain and EGFR.

We tested whether DRL binding to DR4/5 differed when cells were exposed to EVDRL and EV + DRL. Co-IP assays showed 1.3- to 1.5- and 1.7- to 2.0-fold higher binding of EVDRL to DR4 and DR5, respectively, compared to DRL (Fig. 4L). These results indicated that the EV domain of EVDRL enhances the apoptosis-inducing function by increasing its binding to DR4/5 (Fig. 4M). ESDRL has lesser binding to DR5 compared to EVDRL resulting in its reduced apoptosis-inducing effect (fig. S6K).

We generated human MSC (hMSC) expressing EVDRL and confirmed continuous secretion of EVDRL for 120 hours (Fig. 5A). hMSC expressed substantial levels of DR4/5 and high levels of DcR2 expression (fig. S5C). Coculture with BMET02-FmC showed that hMSC-EVDRL had more potent tumor-killing ability than hMSC-DRL (Fig. 5B and movie S2). In parallel, we also generated DRL- and EVDRL-secreting mouse NSC (mNSC), mouse MSC (mMSC), and induced pluripotent stem cell (iPSC)derived NSCs (iPSC-NSC). All the EVDRL-secreting stem cells tested had significantly higher tumor cell killing activity compared with those secreting only DRL (Fig. 5C and fig. S7). Next, we encapsulated EVDRL-secreting stem cells in synthetic extracellular matrix (sECM) that enabled us to prevent wash out of therapeutic stem cells and retain them within the tumor resection cavity based on our previous work with glioblastoma resection model (40) and showed that they have efficient tumor killing abilities of BMET02-FmC cells in vitro (Fig. 5D and fig. S8A). We also confirmed that hMSC are viable in the mouse brain for at least 2 weeks after implantation (fig. S8B). In addition, we confirmed that hMSC-EVDRL treatment did not induce any significant toxicity, as indicated by stable body weight of treated mice as well as unremarkable histology of CNS and major organs (fig. S8, C to E).

(A) Left: Photomicrograph of EVDRL-secreting hMSC. Scale bar, 100 m. Right: Concentration of EVDRL in culture media of hMSC-EVDRL quantified by enzyme-linked immunosorbent assay (ELISA) (n = 2, technical replicates). (B) Top: Photomicrographs of BMET02-FmC cocultured with hMSC-GFP/DRL/EVDRL for 72 hours. Scale bars, 100 m. Bottom: Cell viability of BMET02-FmC after 72-hour coculture with increasing percentages of hMSC-GFP, hMSC-DRL, or hMSC-EVDRL (n = 3, technical replicates). (C) Photomicrographs of different engineered stem cells (left) (scale bars, 100 m) and cell viability of BMET02FmC cocultured with increasing percentages (0 to 100) of the stem cells (right) (n = 3, technical replicates). (D) Left: Photomicrograph of BMET02-FmC cocultured with sECM-encapsulated hMSC-GFP, hMSC-DRL, or hMSC-EVDRL. Scale bar, 1 mm. Right: Relative number of BMET02-FmC cells 72-hour following coculture with sECM-encapsulated hMSC-GFP, hMSC-DRL, or hMSC-EVDRL (n = 3, technical replicates). (E) Left: Experimental outline for testing efficacy of sECM-encapsulated hMSC-EVDRL in BMET02-FmCbearing mice. Right: BLI signals before and after resection (n = 20). (F) Intraoperative photographs of light and fluorescence of mice implanted sECM-hMSC into the resection cavity of BMET02-FmC tumor. Scale bars, 1 mm. (G) Representative photomicrographs of brain section from mice 2 and 4 days after resection of BMET02-FmC tumor and implantation of sECM-hMSC. Scale bars, 100 m. (H) Estimate of relative tumor volume after resection in treatment groups based on Fluc signal intensity of BMET02-FmC (hMSC-GFP, n = 6; hMSC-DRL, n = 7; hMSC-EVDRL, n = 7). (I) Kaplan-Meier survival curves of the mice with median survival (days) indicated in the legend. (J) Immunohistochemistry of cleaved caspase-3 of brain sections from treated and control mice. Scale bars, 100 m. Photo credit: Yohei Kitamura, Brigham and Womens Hospital

To explore the effect of EVDRL-secreting hMSC in vivo, we first used a macrometastasis mouse model. Nine days after stereotactic implantation of BMET02-FmC in the brain, the tumor was resected partially, and hMSCs expressing green fluorescent protein (GFP), DRL, or EVDRL were encapsulated in sECM and implanted in the resection cavity (Fig. 5, E and F). Brain histology showed that implanted sECM-encapsulated hMSCs migrated toward the tumor (Fig. 5G). BLI and histology of tissues revealed a significant decrease in tumor volumes in hMSC-EVDRLtreated mice as compared to the control group (Fig. 5H and fig. S8F). Also, the hMSC-EVDRLtreated group showed significantly longer survival time than hMSC-GFP and hMSC-DRLtreated groups (Fig. 5I). Immunofluorescence showed that hMSC-EVDRL induced increased caspase-3 cleavage in tumor cells compared to hMSC-GFR or hMSC-DRL (Fig. 5J). These data reveal that stem cells engineered to simultaneously target EGFR and DR4/5 have potent efficacy in mouse tumor models of BM resection.

To explore the therapeutic potential of stem cell delivery of EVDRL across BBB to micrometastatic cells within PVN, we used ICA injection of EVDRL-secreting stem cells. Since there is limited literature on the fate of ICA-injected stem cells, we first investigated the fate of five different types of stem cells (hMSC, hNSC, mNSC, mMSC, and iPSC-NSC) after ICA injection either in the presence or absence of tumors. Among the different stem cells tested, mNSCs survived in the brain for the longest period (fig. S9A). Since an extended survival of stem cells may increase their potential of tumor formation, we engineered mNSCs to coexpress EVDRL and a kill switch, prodrug-converting enzyme HSV-TK (TK) and confirmed that mNSC-TK and mNSC-EVDRL-TK cells were eradicated by ganciclovir (GCV) treatment (fig. S9B). Coculture with BMET02-FmC did not show additional therapeutic benefit of TK in mNSC-EVDRL-TK presumably because the highly efficient tumor killing by EVDRL masked other effects, but when cocultured with BT549-FmC, a relatively less sensitive BLBC line, an enhanced tumor killing effect was observed with mNSC-EVDRL-TK (fig. S9C). Next, we used BMET02-FmC micrometastatic models and ICA-injected mNSC-GFP or mNSC-EVDRL-TK and the BLI signal and monitored animal survival (Fig. 6A). Histology showed the presence of widely distributed stem cells along the brain vasculature that colocalized with BMET-02-FmC tumor cells (Fig. 6B). mNSC-EVDRL-TK treatment significantly extended both macrometastasis-free survival (Fig. 6, C and D) and overall survival (Fig. 6E) compared to mNSC-GFP. Further, GCV administration in mNSC-EVDRL-TKtreated mice resulted in similar therapeutic benefit compared with mNSC-EVDRL-TK alone, indicating enough safety of such therapeutic stem cells in a preclinical BM model, as well as little benefit of TK to mNSC-EVDRL in this cohort. Together, these studies reveal that ICA injection of EVDRL-secreting stem cells has therapeutic efficacy in mouse models of BC brain micrometastases.

(A) Experimental outline for testing efficacy of ICA injection of mNSC-EVDRL-TK in mice that had ICA injection of BMET02-FmC 7 days before. (B) Top: Representative photomicrograph of whole brain section from ICA-injected BMET02-FmCbearing mice 2 days after ICA injection of mNSC. Scale bar, 1 mm. Bottom: Representative photomicrograph of immunohistochemistry of CD31 of the brain section. Scale bars, 100 m. (C) BLI signal curves and photographs of mice treated with mNSC-GFP/EVDRL-TK +/GCV (mNSC-GFP, n = 6; mNSC-EVDRL-TK GCV, n = 7; mNSC-EVDRL-TK +GCV, n = 7). (D) Kaplan-Meier curves of macrometastasis-free survival. The presence of macrometastasis was judged from the substantial BLI signal around 1 104 photons/min. Median macrometastasis-free survivals (days) are indicated in the legend. (E) Kaplan-Meier curves of overall survival of mice with median overall survival (days) indicated in the legend.

To explore the efficacy of stem cell delivery of EVDRL for leptomeningeal metastasis, we tested IT injection of hMSC secreting EVDRL. First, we confirmed that hMSCs survived in the CSF space for at least 2 weeks after IT injection in nave mice and were gradually cleared out (Fig. 7A). In addition, we confirmed that IT injection of stem cells did not affect mice body weight (fig. S10A). Next, we showed that IT-injected hMSC homed to the tumors of IT-injected BMET02-FmC that were growing in the CSF space of different CNS regions (Fig. 7B). hMSC-EVDRL secreted a substantial amount of EVDRL into the CSF (Fig. 7C). hMSCs engineered to express GFP and renilla luciferase (Rluc) (hMSC-GRl) or hMSC-EVDRL were IT-injected twice to BMET02-FmCbearing mice and evaluated by BLI and survival monitoring (Fig. 7D). Rluc imaging detected accumulation of hMSC-GRl after two implantations, and Fluc imaging of tumor cells and harvested brain and spinal cord samples showed that hMSC-EVDRL significantly suppressed tumor growth (Fig. 7, E to G, and fig. S10B). Compared to the control, treatment with hMSC-EVDRL resulted in significant improvement in survival of tumor-bearing mice (Fig. 7H). We also tested the efficacy of hMSC-EVDRL on the tumors generated from another BLBC cell line, MDA231-BrM2-FmC (fig. S10C) (21). Mice bearing MDA231-BrM2-FmC tumors treated with IT-injected hMSC-EVDRL demonstrated a significant survival benefit (Fig. 7, I and J). Immunofluorescence of cleaved caspase-3 showed apoptosis induction in hMSC-EVDRLtreated tumors (Fig. 7K). These results clearly demonstrated the therapeutic efficacy of IT-injected hMSC-EVDRL in mouse models of BC leptomeningeal metastases.

(A) BLI signal and photographs of IT-injected hMSC-GFP-Fluc (GFl)bearing mice (n = 3). (B) Top: Representative photograph of whole-brain sample of an IT-established, BMET02-FmC leptomeningeal metastasisbearing mice, 2 days after IT injection of hMSC. Scale bar, 10 mm. Bottom: Representative photomicrographs of brain and spine sections from the mice. Scale bars, 100 m. (C) Concentration of EVDRL in CSF from mice before and 2 days after IT injection of hMSC-EVDRL quantified by ELISA (n = 3). (D) Experimental outline for testing efficacy of IT injections of hMSC-EVDRL in mice that had IT injection of BMET02-FmC 7 days before. (E) Representative BLI pictures of IT-injected BMET02-FmCbearing mice treated with hMSC-GRl or hMSC-EVDRL. (F) Fluc signal curves of BMET02-FmC treated with hMSC-GRl or hMSC-EVDRL and Rluc signals of injected hMSC-GRl (hMSC-GRl, n = 7; hMSC-EVDRL, n = 10). (G) Representative photographs of whole-brain sample of IT-injected BMET02-FmCbearing mice treated with hMSC-GRl or hMSC-EVDRL for 7 days. Scale bars, 10 mm. (H) Kaplan-Meier curves of overall survival of mice. Median survivals (days) are indicated in the legend. (I) Fluc signal curves and representative BLI images of mice bearing MDA231-BrM2-FmC tumors treated with hMSC-GRl or hMSC-EVDRL (hMSC-GRl, n = 6; hMSC-EVDRL, n = 5). (J) Kaplan-Meier curves of overall survival of mice with median survival (days) indicated in the legend. (K) Immunohistochemistry of cleaved caspase-3 in brain sections from IT-injected BMET02-FmCbearing mice treated with hMSC-GRl or hMSC-EVDRL. Scale bars, 100 m.

In this study, we developed different imageable mouse models of BLBC-BM and explored the versatility of stem cellmediated bi-functional EGFR and DR4/5 therapeutics in these models. Our results show that the EV domain of EVDRL enhances DRL-induced apoptosis in a broad spectrum BLBC lines, and the stem cellsecreted EVDRL targets PVN micrometastasis and leptomeningeal metastasis, thus offering a promising therapeutic strategy for BLBC-BM.

Clinically relevant metastatic BM models are usually developed by intracardiac administration of cancer cells; however, this leads to widespread extracranial tumor formation (36, 45, 46). Standard ICA injections also cause extracranial tumors in the face (3739). When using sagittal imaging as we show in fig. S3 (A to C), we observed extracranial tumor formation in about 80% of cases following standard ICA injections. Nevertheless, a number of previous studies have disregarded these findings. In these models, signal emitted from extracranial (often facial) tumors substantially confounds BLI evaluation of brain tumor progression and treatment benefits. In this study, we refined the technique of ICA injection, and our modified approach reduced the rate of extracranial tumor formation to less than 20% of cases, enabling accurate BLI monitoring of intracranial tumors and evaluation of treatment efficacy. Although creating our model requires advanced technical skills and is time consuming, we believe that creating and optimizing mouse tumor models of metastasis confer multiple advantages in advancing BM preclinical research.

Although promising, there may be some potential limitations in the models we developed and used in this study. Since BM is clinically developed by the cells via arterial extravasation, arterial injection is regarded as an optimal way to develop BM models (47). As ICA injection does not reproducibly induce resectable intracranial tumor formation (single large tumor at surgically accessible location), we had to use orthotopic BM cell line injections for developing BM resection model. Although not optimal, this model has some advantages, e.g., easier to develop models uniform in size and timing, especially for testing some therapeutic efficacy in limited living materials. Although we observed similar microenvironmental findings to arterially injected models, there is no doubt that arterial injection is the preferred way to create BM models for study when tumor resection is not considered.

DRL is a well-investigated molecule, which induces cancer-specific apoptosis. It is also known that BLBC is sensitive to DRL (23); however, the underlying mechanism has been unclear. We showed that the increased DRL sensitivity of BLBC is closely associated with up-regulated DR4/5 expression. However, DR-targeted therapies have shown poor efficacy (24, 25). Enhancement of the efficacy of DRL has been attempted by many researchers via approaches such as molecular modifications (to stabilize it or prolong its longevity), combination with other molecules, and sensitizing the target site to DRL (25, 48). Here, since our initial aim of fusing the EV domain to DRL was to block EGFR signaling, it was an unexpected discovery that the EV domain augmented DRL-DR4/5 binding and thereby enhanced the efficacy of EVDRL.

Because EGFR is up-regulated in BLBC (19) and is a marker of poor prognosis (49), it is a promising target for BLBC. However, EGFR-targeting therapy has failed to show any survival benefits (20). Consistently, BLBC cell lines were resistant to two EGFR inhibitors herein. However, we showed that the EV domain of EVDRL significantly improved the efficacy of DRL, suggesting that EGFR can be used as an anchor to increase therapeutic targeting of other cell surface molecules in BLBC and other EGFR-expressing cancers. We also showed that EGFR and DR5 expression levels are significantly related to the efficacy of EVDRL. These results imply that analysis of resected tumor tissue from patients could allow a prediction of efficacy of this treatment and thus offer personalized treatments. We show that VHH of anti-EGFR was more effective than scFv when fused to the N terminus of DRL. VHH composes of a single domain and is more stable and robust than scFv, which has a linker connecting two domains requiring a supramolecular assembly. Also, VHH has a unique epitope that is longer and contains a more flexible complementary determining region, which increases the affinity to corresponding receptors (50). These differences between VHH and scFv might contribute to the higher efficacy of EVDRL.

Our findings indicate that BLBCs sensitivity to EVDRL is mainly determined by the expressions of EGFR and DRs. Although there are likely other apoptosis-related factors involved in BLBCs sensitivity to EVDRL, e.g., Myc, our studies did not demonstrate how these factors could influence the sensitivity to EVDRL. Further investigations are needed to completely understand the influence of these factors on BLBCs sensitivity to EVDRL. In this study, we have not compared the difference in efficacy between stem celldelivered EVDRL therapy and systemic venous injection of EVDRL; however, given the short half-life of DRL and the inability of a majority of drugs to cross BBB, we anticipate that stem celldelivered EVDRL will be a more effective treatment paradigm for BM.

BC often presents metastasis years or even decades after treatment and apparent good disease control (11, 12). This suggests that disseminated tumor cells of BC stays dormant within the PVN in the distant organs for a long period; these cancer cells outside the vasculature are difficult to target with systemically administered drugs (13, 14). We successfully developed cancer models with BC cells residing in the brain PVN and used stem cells to deliver therapeutic molecules. However, the treatment for dormant cancer cells in PVN is difficult due to the inability to detect such scattered cells in patients and drug delivery beyond BBB. Given the ability of engineered stem cells to migrate to cancer cells and penetrate BBB (3032), our stem cellbased treatment has the potential to overcome that. Our results indicate that clinical trials of this therapy using selective arterial administration by neuroendovascular devices for patients with BC who had initial radical treatment are a feasible option to erase dormant cancer cells before growth, prevent future macrometastasis in the brain, and should be considered. Recent studies reported the existence of micrometastatic cancer cells in other organs, such as the lung, bone, and liver, and recurrence in these organs long periods after initial therapy is a considerable challenge (12). Our approach of stem cell delivery of potent therapeutics offers an immense potential of killing cancer cells dormant at the PVN in these organs.

We also showed that stem cell delivery is a promising approach for treating leptomeningeal metastasis, which is considered a terminal condition without any effective therapeutic strategies. We showed that IT-injected stem cells could stay alive in the niche for weeks and secrete therapeutic molecules into CSF without affecting the general health of the mouse. Clinical trials of this therapy should be considered for patients with BLBC leptomeningeal metastasis in the future. IT stem cell therapy has already been established as a safe treatment and tested in patients of trauma (51), stroke (52), epilepsy (53), and neurodegenerative diseases (54, 55). Two animal studies have reported IT stem cell therapies for disseminated primary brain tumorglioma and medulloblastoma (56, 57). However, to our knowledge, there is no previous report showing efficacy of stem cell therapy for leptomeningeal metastasis, a secondary CNS tumor. The same strategy might be effective for leptomeningeal disease originating from other types of primary and metastatic cancers.

In conclusion, we demonstrate the efficacy of a stem celldelivered therapeutics against EGFR and DR4/5 in mouse models representing three clinically challenging BM conditions. Our findings provide a scientific rationale that supports clinical trials of this strategy in patients with BLBC-BM.

The following antibodies and reagents were used in this study. Antibodies against -actin (#4970), phospho-AKT (Ser473, #4060), AKT (#9272), caspase-7 (#9492), caspase-8 (#9746), caspase-9 (#9508), cleaved caspase-3 (#9661), EGFR (#2646 and #4267), phospho-EGFR (Tyr1068, #3777), cleaved poly(ADP-ribose) polymerase (PARP; #9541), phospho-p44/42 mitogen-activated protein kinase (MAPK) (ERK1/2) (Thr202/Tyr204, #9101), p-44/42 MAPK (ERK1/2) (#9102), Fas-associated death domain protein (#2782), Bcl-2 (#2872), Bcl-xL (#2764), XIAP (#2042), cIAP2 (#3130), phosphosignal transducers and activators of transcription 3 (STAT3) (Tyr705, #9145), STAT3 (#4904), HER2 (#2242), horseradish peroxidase (HRP) anti-rabbit (#7074), Rab5 (#46449), Rab7 (#95746) (Cell Signaling Technology), antinuclear factor B (#ab16502), anti-TRAIL (#ab9959), anti-CD31 (#ab28364), HRP anti-mouse (#ab205719) (Abcam), anti-tubulin (#T5168), anti-Vinculin (#V4505), NeuN (#MAB377), glial fibrillary acidic protein (GFAP) (#MAB3402) (Sigma-Aldrich), Alexa Fluor 488 anti-EGFR antibody (#352908), anti-DR4 (#1139), anti-DR5 (#2019) (ProSci), anti-DR4 (#sc-32255), anti-DR5 (#sc-166624), anti-cIAP1 (#sc-271419), normal mouse IgG (#sc-2025) (Santa Cruz), anti-Ki-67 (#180191Z), anti-GFAP (#180063), Alexa Fluor anti-rabbit 405 (#A-31556), Alexa Fluor anti-rabbit 488 (#A-11008), Alexa Fluor anti-mouse 555 (#A-21422), Alexa Flour anti-rabbit 647 (#A-21244), Phycoerythrin (PE) anti-DR4 (#12-6644-42), PE anti-DR5 (#12-9908-42), PE mouse IgG isotype (#12-4714-42) (Invitrogen), Cetuximab (ImClone Systems), Erlotinib (#SYN-1039, Selleck Chemicals), human recombinant EGF (R&D Systems), PE anti-EGFR (#352903, BioLegend), and IBA1 (#019-19741, FUJIFILM).

TNBC patient tissue samples were obtained from Massachusetts General Hospital as approved by institutional review board (IRB) at Harvard Medical School, Keio University Hospital as approved by IRB of Keio University School of Medicine, and US Biomax Inc. (#BR1901). Immunohistochemical analyses of patient samples were performed by Servicebio Inc. and iHisto Inc., using antibodies for EGFR (#GB13804), estrogen receptor (#GB11205), progesterone receptor (#GB11262) from Servicebio Inc. and the antibodies listed above.

Patient-derived BLBC-BM cell lines (BMET02, BMET05, BMET15) were obtained by dissociation of brain tumor samples from patients with metastatic breast carcinoma diagnosis and cultivated as described below. Brain tumor samples were obtained as approved by IRB at Harvard Medical School. Established BC cell lines MDA-MB-453, MCF7, HCC1500, HCC1428, ZR75-1, BT474, T47D, MDA-MB-175VII, and SUM159 were provided by A. Tilston-Lunel, Bob Varelas laboratory, Boston University. SKBR3 was provided by N. Wang, Massachusetts General Hospital. MDA-MB-231, MDA-MB-231-BrM2, MDA-MB-436, and MDA-MB-468 were provided by J. Massagu, Memorial Sloan Kettering Cancer Center. BT549, Hs578T, and NIH-3T3 were purchased from American Type Culture Collection. The immortalized hMSC line, hASC-TS, was a gift from L. Balducci (58). Immortalized mNSC line, C17.2, was provided by E. Y. Snyder (59). Bone marrowderived mMSC line was obtained from D. Prockop, University of Texas. Immortalized human fetal NSC (hNSC) line, hNSC100, was provided by A. Martnez-Serrano, Autonomous University of Madrid. Mouse iPSC-NSC was generated from mouse embryonic fibroblasts as previously described (60).

BMET02, BMET05 BMET15, MDA-MB-453, MCF7, MDA-MB-175VII, MDA-MB-231, MDA-MB-231-BrM2, MDA-MB-436, and MDA-MB-468 were grown in Dulbeccos modified Eagles medium (DMEM) supplemented with 10% (vol/vol) fetal bovine serum (FBS) and 1% (vol/vol) penicillin/streptomycin. Hs578T was grown in DMEM supplemented with 10% (vol/vol) FBS, insulin (0.01 mg/ml), and 1% (vol/vol) penicillin/streptomycin. SKBR3 was grown in McCoys 5a medium with 10% (vol/vol) FBS and 1% (vol/vol) penicillin/streptomycin. HCC1500, HCC1428, ZR75-1, BT474, and BT549 were grown in RPMI 1640 with 10% (vol/vol) FBS and 1% (vol/vol) penicillin/streptomycin. T47D was grown in RPMI 1640 with 10% (vol/vol) FBS, 1% (vol/vol) penicillin/streptomycin, and insulin (0.2 U/ml). SUM159 was grown in Hams F-12 with 5% (vol/vol) FBS, insulin (0.005 mg/ml), hydrocortisone (1 g/ml), and 1% (vol/vol) penicillin/streptomycin. NIH-3T3 were cultured in DMEM supplemented with 10% NCS, penicillin (100 U/ml), and streptomycin (100 g/ml). hMSC was grown in DMEM/F-12 supplemented with 10% (vol/vol) FBS, 1% (vol/vol) l-glutamine, 1% (vol/vol) penicillin/streptomycin, and recombinant human fibroblast growth factor (FGF) (40 ng/ml; R&D Systems, Minneapolis, MN). mNSC was grown in DMEM supplemented with 10% (vol/vol) FBS, 1% (vol/vol) l-glutamine, and 1% (vol/vol) penicillin/streptomycin. mMSC was grown in low-glucose DMEM supplemented with 15% (vol/vol) FBS, 1% (vol/vol) l-glutamine, 1% (vol/vol) nonessential amino acid solution, and 1% (vol/vol) penicillin/streptomycin. hNSC was cultured in 4:1 culturing medium [DMEM/F-12 (Invitrogen), 0.6% d-glucose (Sigma-Aldrich), 0.5% albumax (Invitrogen), 0.5% glutamine (Invitrogen), recombinant human FGF (40 ng/ml; R&D Systems), recombinant human EGF (40 ng/ml; R&D Systems), N2 supplements (Invitrogen), and 1% nonessential amino acid solution (Cellgro; Mediatech)] and growth medium [DMEM with 5% FBS, 1 mM sodium pyruvate (Cellgro; Mediatech), and 26 mM sodium bicarbonate]. iPSC-NSC was grown in NeuroCult basal medium (Stem Cell Technologies) supplemented with EGF (20 ng/ml; R&D Systems), FGF2 (20 ng/ml; R&D Systems), N2 supplement, Heparin, and 1% (vol/vol) penicillin/streptomycin on Geltrex (Fisher Scientific)precoated flask.

Tumor cells were plated in 96-well plates and treated with different doses of anti-EGFR VHH (EV), DR ligand (DRL), EVDRL, or anti-EGFR scFv-TRAIL (ESDRL) and control media for 24, 48, and 72 hours. To obtain conditioned media containing these proteins, lentiviral plasmid vectors coding for EV, DRL, EVDRL, and ESDRL were transfected into 293T cells. Medium was changed the next day, collected 40 hours after transfection, concentrated using centrifugal filter (#UFC901024, MilliporeSigma), and stored at 80C until future use. Their concentrations were quantified by enzyme-linked immunosorbent assay (ELISA). Control media were made from GFP controltransduced cells transduced in parallel with EV, DRL, EVDRL, and ESDRL. Cell viability was measured using an adenosine triphosphatedependent luminescent reagent (CellTiter-Glo, #G755A, Promega; Glomax, Promega) according to the manufacturers instructions for non-Flucexpressing cells or with d-luciferin (#122799, PerkinElmer) and coelenterazine h (#760506, PerkinElmer) for Fluc- and Rluc-expressing cells, respectively. Caspase-3/7 activity was determined using a DEVD-aminoluciferin assay (Caspase-Glo 3/7, #G8091, Promega) according to the manufacturers instructions. All experiments were performed in triplicates.

After treatment, cells were washed with cold phosphate-buffered saline (PBS) and then lysed with cold NP-40 lysis buffer (#BP-119, Boston BioProducts) supplemented with protease inhibitor (#A32965, Thermo Fisher Scientific) and phosphatase inhibitors (#P5726 and #P0044, Phosphatase Inhibitor Cocktail 2,3 from Sigma-Aldrich). Cells were scraped into tubes and centrifuged at 4C at 13,000g for 10 min. Supernatant protein concentrations were determined using the Bio-Rad DC Protein Assay Kit (#500-0113, #500-0114, and #500-0115). The 6 SDS sample buffer (#BP-111R, Boston BioProducts) was added to the samples, which were then boiled for 5 min. Ten to forty micrograms of protein was loaded on SDSpolyacrylamide gel electrophoresis gel (#456-1086 and #456-1093, Bio-Rad), transferred to polyvinylidene difluoride membrane (#IPVH00010, Merck Millipore), and probed with primary antibodies overnight. After wash, the membrane was probed with secondary antibodies and developed with enhanced chemiluminescence (#1863096, #1863097, and #34095, Thermo Fisher Scientific).

Cells were trypsinized, washed, and resuspended in stain buffer (#554657, BD Biosciences). Cells were stained with PE-conjugated anti-human EGFR, DR4, or DR5 antibodies in solution at 4C for 30 min. For the double staining, PE-conjugated anti-DR5 antibody and Alexa Fluor 488conjugated anti-EGFR antibody were used. Rinses were performed with stain buffer at 4C. PE-conjugated isotype-specific IgG was used as a control. Flow cytometry was performed using FACSAria II (BD) cell sorter, and data were analyzed using FlowJo (BD).

After treatment, cells were washed with PBS twice and then lysed with radioimmunoprecipitation assay (RIPA) buffer (#BP-115, Boston BioProducts) supplemented with protease inhibitor (#A32965, Thermo Fisher Scientific). Cells were scraped into tubes and centrifuged at 4C at 13,000g for 20 min. Supernatant protein concentrations were determined using the Bio-Rad DC Protein Assay Kit. A mixture of 1 mg of protein, 20 l of anti-human DR4/5 antibodies, and 30 l of Protein A/G agarose (#sc-2003, Santa Cruz) was incubated overnight at 4C. After washing with RIPA buffer, samples were boiled with 6 SDS sample buffer (#BP-111R, Boston BioProducts) for 8 min. Samples were then centrifuged at 4C at 13,000g for 2 min, and the supernatant was used for Western blot.

Lentiviral vector of EVDRL was constructed by inserting cDNA encoding extracellular domain of DRL into LV-anti EGFR VHH (EV). Lentiviral vector of ESDRL was constructed by replacing EV domain of EVDRL with cDNA encoding anti EGFR scFv (Es). We used previously described lentiviral vectors of GFP, EV, and DRL (27, 61). Lentiviral packaging was performed by transfection of 293T cells as previously described (62), and cells were transduced with lentiviral vectors at multiplicity of infection of 2 in medium containing protamine sulfate (2 g/ml). For BLI, cells were transduced with LV-Pico2-Fluc-mCherry, LV-Pico2-Rluc-mCherry, LV-Pico2-Fluc-GFP, or LV-Pico2-Rluc-GFP. They are selected by fluorescence-activated cell sorting (FACS) using a BD FACSAria Fusion cell sorter or by puromycin selection (1 g/ml) in culture. GFP or mCherry expression was visualized by fluorescence microscopy.

BMET02-FmC cells (2 103 cells per well) were cocultured with different numbers of therapeutic stem cells in 96-well plates. After 72 hours, the relative number of BMET02-FmC cells was determined by Fluc luminescence (Glomax, Promega). For coculture experiments with encapsulated stem cells, 5 104 of hMSC-GFP/DRL/EVDRL cells were encapsulated with 10-l sECM (HyStem-C Hydrogels, #GS313, BioTime) and added at the center of the well of a 24-well plate. After 30 min, BMET02-FmC was seeded around the gel. After 72 hours, the relative number of BMET02-FmC cells was counted by Fluc luminescence (IVIS Lumina, PerkinElmer). For in vitro GCV treatment, cells were treated with GCV (5 g/ml) for 96 hours, and the relative cell number of them was quantified by CellTiter-Glo (Promega).

CRISPR KO of DR4 and DR5 was conducted as previously described (61, 63). To establish KO lines, cells were transduced with lentiviral Cas9 expression vectors coding for either tetracycline-inducible or constitutively expressed Cas9 protein as previously described (64, 65). Confirmed Cas9 lines were engineered with lentiviral single guide RNA (sgRNA) expression vector pLKO.DEST.hygro containing the sgRNA target sequences described above for DR4 or DR5, followed by selection with hygromycin (200 to 500 g/ml). For generating the double KO lines, confirmed Cas9 lines were coengineered with pLKO.DEST.hygro and pLKO.DEST.egfp lentiviral expression vectors to express both DR4 and DR5 targeting sgRNAs followed by selection with hygromycin and FACS sorting for GFP.

Concentrations of DRL released from therapeutic stem cell lines in culture medium or in CSF of mice that had IT injection of stem cells were quantified using a human-specific TRAIL antigen capture ELISA kit (#ab46074, Abcam).

Genomic RNA from cell lines was extracted using the RNeasy Mini Kit (#74104, Qiagen). mRNA array was performed using a PAM50 plate (NanoString), and the results were analyzed by the company (35). Subtypes were decided on the basis of the algorithm from the company.

Confocal images were acquired with a Leica TCS SP8 Falcon system equipped with a 440-nm pulsed SMD diode laser and a tunable white light laser (WLL). YFP constructs were imaged with 512-nm WLL excitation, and emissions were collected over the range of 533 to 565 nm. CFP constructs were imaged with a 440-nm excitation laser and an emission of 465 to 495. For sensitized emission FRET experiments, BMET02 or NIH-3T3 cells were plated on 22 50 mm glass coverslips and cotransfected with LV-EGFR-YFP and LV-DR5-CFP using Lipofectamine LTX transfection reagent. Coverslips were mounted onto a JG-23W HP flow-through perfusion chamber (Warner Instruments), and cells were maintained in Ringers solution containing 125 mM NaCl, 25 mM Hepes, 10 mM glucose, 5 mM K2HPO4, 1 mM MgSO4, and 1 mM CaCl2 (pH 7.40). Real-time FRET imaging experiments were performed using fluorescence ratio imaging systems built around a Nikon Eclipse TE2000-U inverted epifluorescence microscope equipped with an Andor Ultra 888 EM-CCD camera and a 60 Plan Apo TIRF (total internal reflection fluorescence) (numerical aperture, 1.45) oil immersion objective. Filter wheels (Sutter Instruments) were placed in the excitation and emission path, and image acquisition parameters were controlled by Metafluor software (Molecular Devices). FRET emission ratios (480 nm/535 nm; 440-nm excitation) were acquired every 10 s. After establishing baseline FRET levels for 3 to 10 min, EVDRL (2 M) in Hepes-buffered Ringers solution was added manually to the chamber with a pipette, and FRET changes were followed for 30 to 40 min.

BMET02 cells were treated with control media or EVDRL (2 M) after 4-hour starvation and fixed on the plates 5 and 15 min after treatment. Cells were stained with primary antibodies (EGFR and Rab5/Rab7) and counter-stained with secondary antibodies (Alexa Fluor anti-rabbit 488 and Alexa Fluor anti-mouse 555, respectively).

All in vivo procedures were approved by the Subcommittee on Research Animal Care at Brigham and Womens Hospital. Mice that died or were euthanized for ethical reasons before defined experimental end points were excluded. Animals were randomly allocated to cages and experimental groups.

Female nude mice (6 to 8 weeks of age, 20 to 25 g, Envigo) were immobilized on a stereotactic frame 9 days before tumor implantation. Using a stereomicroscope (SZX10, Olympus), a small circular portion of the skull covering the right cerebral hemisphere (3 mm by 5 mm) was removed to create a cranial window for subsequent tumor cell implantation and tumor debulking. Nine days later, the mice were again immobilized on a stereotactic frame, the previously established cranial window was exposed, and BMET02-FmC (5 104 cells per mouse) in 4 l of PBS was superficially implanted into the right frontal cerebral cortex (2-mm lateral from bregma, 0.5-mm deep) using a microsyringe (Hamilton). Nine days after the implantation of tumor cells, the mice underwent fluorescence-guided tumor resection followed by implantation of hMSC into the resection cavity as previously described. hMSC (5 105 cells per mouse) was encapsulated in 10 l of HyStem-C Hydrogels (#GS313, BioTime) 20 min before implantation to allow gel formation. Mice were then followed up for survival and sacrificed when neurological symptoms became apparent. Mice whose BLI signal disappeared completely after resection were excluded from this study.

The detailed technique of ICA injection of tumor/stem cells is demonstrated in movie S1. Female nude mice (6 to 8 weeks of age) were anesthetized with ketamine-xylazine and fixed on the stage of a stereomicroscope (SZX10, Olympus). Midline skin incision was made to expose the right carotid arteries. Using 8-0 sutures, right OA, PPA, STA, and external carotid artery were ligated to prevent cells from going to extracranial parts. Internal and common carotid arteries were then ligated, and a catheter (#18000-10, Fine Science Tools) connected to a 1-ml syringe (Henke-Sass Wolf) was inserted into the external carotid artery. After releasing blood flow of common and internal carotid arteries, BMET02-FmC (5 104 cells per mouse) suspended in 100 l of PBS was slowly injected through the catheter. After injection, external carotid artery was permanently ligated. Mice with apparent extracranial tumors that could disturb the evaluation were excluded from the study. Seven days after tumor injection, stem cells were injected into the same artery using the same technique as above without ligations of OA, PPA, and STA. mNSC (4 105 cells per mouse) in 100 l of PBS was slowly injected.

IT injection of tumor was performed on the basis of previous literature (66) with slight modifications. Female nude mice (6 to 8 weeks of age) were immobilized on a surgical platform after anesthesia with ketamine-xylazine. Midline skin incision was made behind the neck, and occipital muscles were dissected. The dura mater between skull and atlas vertebra was exposed. Under observation of cerebellum and brainstem through the dura mater, a catheter connected to microsyringe (Hamilton) was inserted into cisterna magna. BMET02-FmC (2.5 104 cells per mouse) or MDA231-BrM2-FmC (5 104 cells per mouse) in 4 l was injected slowly through the catheter. The hole in the dura mater was closed with a small muscle piece immediately after removing catheter. hMSC (5 105 cells per mouse) was injected in a similar manner via the same hole from the previous injection.

For testing the fate of stem cells, and for creating tumor-bearing mice for screening of ICA-injected stem cells, orthotopic injection into brain was performed. Mice were immobilized on a stereotactic frame, BMET02-RmC cells (1 105 cells per mouse) or hMSC (5 105 cells per mouse) in 4 l of PBS were implanted into the right frontal cerebrum (2-mm lateral and 1-mm anterior from bregma, 2.5-mm deep) using stereotactic frame.

BLI was used to follow in vivo growth of Fluc- or Rluc-engineered implanted tumor cells over time using a PerkinElmer IVIS Lumina system. For Fluc imaging, mice were imaged 7 min after intraperitoneal injection of d-luciferin (#122799, PerkinElmer). For Rluc imaging, mice were imaged 1 min after intravenous injection of coelenterazine h (#760506, PerkinElmer).

For in vivo experiments involving mNSC elimination via the inducible suicide system HSV-TK, mice were treated daily with intraperitoneal injection of GCV (10 mg/kg) for 2 weeks starting 7 days after mNSC injection.

Tumor-bearing mice were perfused with PBS and subsequently with 4% paraformaldehyde. Brains and spines were harvested, followed by sectioning for histological analyses. Brain and spine sections on slides were washed in PBS and mounted with aqueous mounting medium (#H1000 and #H1200, Vector Laboratories) to be visualized with confocal microscopy (Axio Observer.Z1, Zeiss). For fluorescence immunohistochemistry, sections were incubated with primary antibodies overnight at 4C. After wash, secondary antibodies were probed and detected by confocal microscope. For hematoxylin and eosin (H&E) staining, sections were incubated with H&E Y dye (1% alcohol), dehydrated with 70, 95, and 100% ethanol, and mounted in xylene-based mounting medium.

Data were analyzed by Students t test for comparison between two groups and by Pearsons test for correlation. Data were plotted as means with SD for all in vitro data except Fig. 3E and fig. S4D, and with SEM for all in vivo data, Fig. 3E and fig. S4D. Survival curves were compared using the log-rank test. Analyses were done using Prism 7.0a and 8.3.1 (GraphPad). *P 0.05, **P 0.01, ***P 0.001, ****P 0.0001.

Acknowledgments: We thank A. Tilston-Lunel and B. Varelas (Boston University), N. Wang (MGH), L. Balducci (Consorzio CARSO, Italy), E. Snyder (UCSD), J. Massagu (Memorial Sloan Kettering Cancer Center), D. Prockop (University of Texas), and A. Martnez-Serrano (Autonomous University of Madrid) for providing us cell lines. We thank D. Bhere (BWH) for helping with generation of iPSC-NSC, J. K. Khalsa (BWH) for helping with RNA extraction, and H. Wakimoto (MGH) for critical reading of the manuscript. Funding: This work was supported by NIH grants R01-CA201148 (to K.S.) and R01-NS107857 (to K.S.), Overseas Research Fellowships from Uehara Memorial Foundation, and Kanzawa Medical Research Foundation (Y.K.). Author contributions: Y.K.: Conception and design, provision of study material, collection and assembly of data, data analysis and interpretation, manuscript writing, and final approval of manuscript. N.K.: Collection and assembly of data, data analysis and interpretation, and final approval of manuscript. S.M.: Provision of study material, collection and assembly of data, data analysis and interpretation, and final approval of manuscript. W.D.: Conception and design, provision of study material, collection and assembly of data, and final approval of manuscript. C.R.: Provision of study material, collection and assembly of data, data analysis and interpretation, manuscript writing, and final approval of manuscript. N.A., E.R.L., and A.F.: Collection and assembly of data and final approval of manuscript. A.B., H.S., J.L.M., and P.K.B.: Provision of study material and final approval of manuscript. J.L.F., and A.M.H.: Provision of study material, collection and assembly of data, data analysis and interpretation, and final approval of manuscript. K.S.: Conception and design, provision of study material, data analysis and interpretation, manuscript writing, and final approval of manuscript. Competing interests: K.S. owns equity in and is a member of the Board of Directors of AMASA Therapeutics, a company developing stem cellbased therapies for cancer. K.S.s interests were reviewed and are managed by Brigham and Womens Hospital and Partners HealthCare in accordance with conflict of interest policies. P.K.B. has received grant/research support (to Massachusetts General Hospital) from Merck, BMS, and Lilly and honoraria from Merck, Genentech-Roche, and Lilly. The other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

View post:
Anti-EGFR VHH-armed death receptor ligandengineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers -...

Research Antibodies Market Size to Reach USD 5325.8 Million by 2027 | Increasing R&D Activities in the Fields of Oncology, Neurobiology, and Stem…

March 04, 2021 17:00 ET | Source: Emergen Research

Vancouver, British Columbia, March 04, 2021 (GLOBE NEWSWIRE) -- The global research antibodies market is projected to acquire up to USD 5,325.8 Million by 2027, registering a CAGR of 5.9% over the forecast period. The surging incidences of infectious diseases globally and the increasing applications of research antibodies in neurobiology, oncology, immunology, and stem cells are the pivotal factors fueling the growth of the global research antibodies market. A significant spike in pharmaceutical and biotechnological research activities, substantial government funds and grants for academic & research institutes, and the rising research collaborations between prestigious universities and healthcare giants have stimulated the market growth significantly over recent years.

Antibodies are protein molecules comprising B cells and play an integral role in safeguarding the bodys immune system. One of the most vital functions of antibodies is to identify foreign substances like antigens and aid in fighting infections. Antibodies are considered ideal probes in cell research due to their unique ability to bind to specific molecules. Moreover, they have emerged as an essential tool in the study of cell protein functions.

Claim Your FREE Sample Copy with Table of content@ https://www.emergenresearch.com/request-sample/192

The constant growth of the global research antibodies market can be further attributed to the technological advancements in antibody development, the growing prevalence of neurodegenerative diseases, such as Multiple Sclerosis (MS), Parkinsons disease, and Huntingtons disease, and the rising need for effective therapies for such severe health conditions. The growing geriatric population and the exponentially rising number of cancer patients worldwide have further boosted the market growth. The deepening focus on drug development and hefty investments by the government in genomic and proteomic research programs create more opportunities for global market growth in the near future.

The ongoing COVID-19 pandemic has positively impacted the global research antibodies market, as pharmaceutical companies are increasingly focusing on developing monoclonal antibodies for COVID-19 treatment. Monoclonal antibodies are antibodies developed by the cloning of a white blood cell. They emulate the functions of natural antibodies in response to various infections and find significant usage in cancer treatment. In 2020, pharmaceutical giant AstraZeneca commenced the early-stage trial of AZD7442, its antibody-based therapeutics for COVID-19treatment. The leading healthcare companies, Regeneron and Roche, also collaborated on clinical trials of the monoclonal antibody, called REGN-COV2, which they developed for COVID-19 prevention and treatment.

Key Highlights of the Report:

Check Our Prices@ https://www.emergenresearch.com/select-license/192 For the purpose of this report, the global research antibodies market is segmented on the basis of antibody type, product type, application, technology, end-user, and region: By Antibody Type (Revenue, USD Million; 2017-2027)

By Product Type (Revenue, USD Million; 2017-2027)

By Application (Revenue, USD Million; 2017-2027)

By Technology (Revenue, USD Million; 2017-2027)

By End-user (Revenue, USD Million; 2017-2027)

Click to access the Report Study, Read key highlights of the Report and Look at Projected Trends: https://www.emergenresearch.com/industry-report/research-antibodies-market By Region (Revenue, USD Billion; 2017-2027)

North America

U.S.

Canada

Europe

Germany

U.K.

France

BENELUX

Rest of Europe

Asia Pacific

China

Japan

South Korea

Rest of Asia Pacific

Latin America

Brazil

Rest of Latin America

Middle East & Africa

Saudi Arabia

U.A.E.

Rest of Middle East & Africa

Take a Look at our Related Reports:

Topical Drug Delivery Market By Product Form (Semi-Solid, Solid Formulations, Transdermal Products, and Liquid Formulations), By Route (Dermal, Ophthalmic, Nasal, Others), By End-Use (Hospitals, Home Healthcare, Clinics, Diagnostic Centers, Burn Center), and By Regions

Medical Smart Textiles Market By Technology (Textile Sensors, Wearable Technology), By Application (Surgery, Bio-Monitoring, Therapy, and Wellness), By End-use (Hospitals and Clinics, Medical Academic and Research Center), and By Region

Operating Room Management Solutions Market By Solution Type (Data management and communication solutions, Operating room supply management solutions, Anesthesia information management solutions, Operating room scheduling solutions, Performance management solutions), By Mode of Deployment (Ob-premises, Cloud-based), By End-Use (Hospitals, Ambulatory surgical centers), and By Region

Patient Registry Software Market By Delivery, By Database, By Registry Type, By Function, By Software Type (Integrated, Standalone), By End-use (Government & Third-Party Administrators, Pharmaceutical Companies, Hospitals, Research Centers, Others), and By Region, Forecast to 2027

Ambulatory EHR Market By Deployment (Cloud-based, On-premises), By Practice Size (Solo Practices, Large Practices, Small-medium-sized Practices), By Application, By End-use (Independent Centers, Hospital-owned Ambulatory Centers, Others), and By Region, Forecasts to 2027

About Emergen Research

Emergen Research is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target, and analyze consumer behavior shifts across demographics, across industries, and help clients make smarter business decisions. We offer market intelligence studies ensuring relevant and fact-based research across multiple industries, including Healthcare, Touch Points, Chemicals, Types, and Energy. We consistently update our research offerings to ensure our clients are aware of the latest trends existent in the market. Emergen Research has a strong base of experienced analysts from varied areas of expertise. Our industry experience and ability to develop a concrete solution to any research problems provides our clients with the ability to secure an edge over their respective competitors.

Contact Us:

Eric Lee

Corporate Sales Specialist

Emergen Research | Web: http://www.emergenresearch.com

Direct Line: +1 (604) 757-9756

E-mail: sales@emergenresearch.com

Facebook | LinkedIn | Twitter | Blogs

Read Full Press Release: https://www.emergenresearch.com/press-release/global-research-antibodies-market

See the article here:
Research Antibodies Market Size to Reach USD 5325.8 Million by 2027 | Increasing R&D Activities in the Fields of Oncology, Neurobiology, and Stem...

Microwave Processing Isolates Red Ginseng Compounds That Suppress Lung Cancer Metastasis – Genetic Engineering & Biotechnology News

Most deaths associated with lung cancer are due to the migration of cancer cells to other organsa process called metastasis. Although cancer therapies have advanced, treatments for lung cancer metastasis continue to lag.

The root of red ginseng (Panax ginseng) has been used as food and herbal medicine for thousands of years globally and especially in Korea and China, owing to its medicinal properties. However, the composition and activities of red ginseng vary depending on the processing method. Recent studies have shown the efficacy of red ginseng against lung cancer metastasis.

A new study conducted by scientists at the Korea Institute of Science and Technology (KIST) reports the successful use of a microwave processing method for ginseng that increases trace amounts of Rk1 and Rg5 ginsenosidesa class of natural steroid sugars found almost exclusively in plants of the genus Panaxthat effectively inhibit the metastasis of lung cancer.

These findings are published in the article, Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-b1-induced epithelial mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem like features in lung cancer in the Journal of Ginseng Research and are the result of a collaborative study conducted by research groups led by Jungyeob Ham, PhD, from the Natural Product Research Center at the KIST Gangneung Institute of Natural Products and Hyeonseok Ko, PhD, at the Seoul Asan Medical Center.

Although components of red ginseng previously have been shown to kill cancer cells, this study proved that these components of red ginseng have other anti-cancer effects and can inhibit lung cancer metastasis. This provides scientific evidence that may lead to the future development of anti-cancer drugs derived from natural products, says Ham.

Cancer metastasis is a multistep process starting with stationary cells becoming motile and invasive. This change, technically termed the epithelial to mesenchymal transition or EMT, is accompanied by changes in the shape of cancer cells and a decrease in their adhesiveness to cells around them. The expression of adhesive proteins such as E-cadherin, decreases in cancer cells and the invading cells override the protective programming of cell death in the event of cellular aberrations.

Transforming growth factor-beta1 (TGF-b1)a secreted cytokine signaling proteinthat suppresses cell growth, differentiation, and death, is particularly important in EMT.

The new microwave processing method for red ginseng is based on the same principle as a microwave oven. Compared to existing ginseng processing methods such as repetitive steaming and drying, microwave processing increases the concentration of the three main active components, Rg3, Rk1, and Rg5, more than 20 times, the authors demonstrate.

The team has shown in earlier studies that red ginseng produced by this microwave processing method, which they call KMxG, is effective against prostate, cervical, and skin cancers, and protects against drug-induced kidney damage.

Because we can control the active ingredient contents of red ginseng by using microwave processing methods like the one that produced KMxG, it may be possible to develop customized functional materials for various diseases, says Ham.

The researchers treated lung cancer cells with Rk1 and Rg5, the main components of KMxG red ginseng extract, and showed that both components effectively inhibited various processes related to cancer metastasis induced by TGF-b1.

Specifically, the authors show treatment with Rk1 and Rg5 suppressed EMT induced by TGF- b1 in A549 lung cancer cell lines and the expression of stem cell markers, in a dose-dependent manner. The authors also show that Rk1 and Rg5 markedly suppressed TGF-b1-induced metalloproteinase-activity that can degrade the matrix of connective tissue around cells, promoting the invasiveness of cancer cells.

The microwave processing technology developed by the team was transferred to Ponin Bio Co., Ltd. in 2020 for a technology fee of KRW 800 million and is currently being developed for commercialization.

More:
Microwave Processing Isolates Red Ginseng Compounds That Suppress Lung Cancer Metastasis - Genetic Engineering & Biotechnology News

Longeveron Expands Enrollment Criteria for its Phase 1 RECOVER Trial Evaluating Lomecel-B Infusion to Treat Acute Respiratory Distress Syndrome due to…

March 05, 2021 08:30 ET | Source: Longeveron

MIAMI, March 05, 2021 (GLOBE NEWSWIRE) -- Longeveron Inc. (NASDAQ: LGVN) ("Longeveron" or "Company"), a clinical stage biotechnology company developing cellular therapies for chronic aging-related and life-threatening conditions, announced today that enrollment criteria for its Phase 1 Acute Respiratory Distress Syndrome (ARDS) RECOVER trial has been expanded to include mild ARDS, in addition to moderate and severe ARDS. Previously, only ARDS patients intubated with an endotracheal tube for positive pressure ventilation were eligible. The protocol amendment allows for the inclusion of milder cases of ARDS patients who present with the need for supplemental oxygen via high flow nasal cannula, partial or nonrebreathing mask, or non-invasive positive pressure mask.

The RECOVER Trial is a double-blind, randomized, placebo-controlled study designed to evaluate the safety and efficacy of up to 3 intravenous administrations of either Lomecel-B (allogeneic bone marrow-derived medicinal signaling cells) or placebo in COVID-19 or Influenza-infected ARDS patients. The primary measures of efficacy are functional lung recovery, recovery from infection, inflammatory status, immune status, and lung imaging.

The goal here is to reduce the inflammatory response and to either prevent the need for mechanical support, or to allow these individuals to come off of the ventilator and leave the ICU, stated Joe G. N. "Skip" Garcia, MD, a world-renowned pulmonologist and professor of medicine at the University of Arizona College of Medicine. ARDS resulting from COVID-19 or Influenza is driven by severe inflammation, called a cytokine storm. This can lead to accumulation of fluid in the lungs and severe tissue damage, and ultimately decreased ability to oxygenate the blood. The most severe cases lead to respiratory failure and the high mortality rate from COVID-19. Longeverons Lomecel-B has the potential to reduce the cytokine storm involved in ARDS and thus the possibility to improve clinical outcomes in COVID-19 patients.

The RECOVER Trial received a prestigious TEDCO award from the Maryland Stem Cell Research Fund (MSCRF) to help support the Phase 1 study. This is Longeverons third TEDCO Award since 2017.

Participating clinical centers currently include the Miami VA Health System, University of Maryland Medical Center, and Wake Forest University Hospital. The Company is in the process of expanding the number of participating clinical sites. Any clinical sites or investigators interested in learning more about participating in the phase 1 trial should contact: Kevin Ramdas, MD, MPH, Associate Director, Medical Affairs; kramdas@longeveron.com.

About Longeveron Inc.

Longeveron is a clinical stage biotechnology company developing cellular therapies for specific aging-related and life-threatening conditions. The Companys lead investigational product is the LOMECEL-B cell-based therapy product (Lomecel-B), which is derived from culture-expanded medicinal signaling cells (MSCs) that are sourced from bone marrow of young, healthy adult donors. Longeveron believes that by using the same cells that promote tissue repair, organ maintenance, and immune system function, it can develop safe and effective therapies for some of the most difficult disorders associated with the aging process and other medical disorders. Longeveron is currently sponsoring Phase 1 and 2 clinical trials in the following indications: Aging Frailty, Alzheimers disease, the Metabolic Syndrome, Acute Respiratory Distress Syndrome (ARDS), and hypoplastic left heart syndrome (HLHS). The Companys mission is to advance Lomecel-B and other cell-based product candidates into pivotal Phase 3 trials, with the goal of achieving regulatory approvals, subsequent commercialization and broad use by the healthcare community. Additional information about the Company is available at http://www.longeveron.com.

Forward-Looking Statements

Certain statements in this press release that are not historical facts are forward-looking statements that reflect management's current expectations, assumptions, and estimates of future performance and economic conditions, and involve risks and uncertainties that could cause actual results to differ materially from those anticipated by the statements made herein. Forward-looking statements are generally identifiable by the use of forward-looking terminology such as "believe," "expects," "may," "looks to," "will," "should," "plan," "intend," "on condition," "target," "see," "potential," "estimates," "preliminary," or "anticipates" or the negative thereof or comparable terminology, or by discussion of strategy or goals or other future events, circumstances, or effects. Moreover, forward-looking statements in this release include, but are not limited to, statements about the ability of our clinical trials to demonstrate safety and efficacy of our product candidates, and other positive results; the timing and focus of our ongoing and future preclinical studies and clinical trials; the size of the market opportunity for our product candidates, the beneficial characteristics, safety, efficacy and therapeutic effects of our product candidates; our ability to obtain and maintain regulatory approval of our product candidates, our plans and ability to obtain or protect intellectual property rights, including extensions of existing patent terms where available and our ability to avoid infringing the intellectual property rights of others. Further information relating to factors that may impact the Company's results and forward-looking statements are disclosed in the Company's filings with the SEC. The forward-looking statements contained in this press release are made as of the date of this press release, and the Company disclaims any intention or obligation, other than imposed by law, to update or revise any forward-looking statements, whether as a result of new information, future events, or otherwise.

Contact: Crescendo Communications, LLC Tel: 212-671-1020 Email: lgvn@crescendo-ir.com

View original post here:
Longeveron Expands Enrollment Criteria for its Phase 1 RECOVER Trial Evaluating Lomecel-B Infusion to Treat Acute Respiratory Distress Syndrome due to...

Be The Match BioTherapies Announces Expansion of Multi-Year Strategic Alliance with Orchard Therapeutics to Support European Commercial Launch of…

MINNEAPOLIS--(BUSINESS WIRE)--Be The Match BioTherapies, an organization offering solutions for companies developing and commercializing cell and gene therapies, today announced an expansion of their multi-year partnership with Orchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, to include supply chain services in support of the upcoming commercial launch of Libmeldy (autologous CD34+ cells encoding the ARSA gene), Orchards gene therapy recently approved in Europe for the treatment of early-onset metachromatic leukodystrophy (MLD).

Through the expanded partnership, Be The Match BioTherapies will provide comprehensive support across the commercial supply chain for Libmeldy, including support of the onboarding and training of apheresis centers, oversight of the autologous cell collection process and delivery of both harvested cells to the manufacturing site and gene-corrected cells back to the qualified treatment center.

Orchards mission to transform the lives of people living with devastating genetic diseases like MLD is one that closely aligns with our mission at Be The Match, which is to save lives through cellular therapy, said Chris McClain, Senior Vice President, Sales and New Business Development at Be The Match BioTherapies. Leveraging our decades of experience and our far-reaching capabilities across the cell therapy supply chain, including our international network, we are well-positioned to support the commercial launch of this important new gene therapy in Europe.

Be The Match BioTherapies previously supported cell collection for Orchards clinical trials, and, through the expanded partnership, will continue to enable streamlined logistical support across each step of Libmeldys commercial development.

HSC gene therapies are personalized medicines that require precision to harvest a patients cells, transfer the cells to a lab for genetic modification and then return the gene-corrected cells back to a qualified treatment center to infuse into the patient, said Braden Parker, chief commercial officer of Orchard. As we move into the launch phase for Libmeldy in Europe, we are pleased to continue our collaboration with Be The Match BioTherapies to help enable us to maintain the efficient, high-quality supply chain necessary to deliver Libmeldy to MLD patients in need.

About Be The Match BioTherapies

Be The Match BioTherapies is the only cell and gene therapy solutions provider with customizable services to support the end-to-end cell therapy supply chain. Backed by the industry-leading experience of the National Marrow Donor Program (NMDP)/Be The Match, and a research partnership with the CIBMTR (Center for International Blood and Marrow Transplant Research), the organization designs solutions that advance the development of cell and gene therapies across the globe.

Be The Match BioTherapies is dedicated to accelerating patient access to life-saving cell and gene therapies by providing high-quality cellular source material from the Be The Match Registry, the worlds largest and most diverse registry of more than 22 million potential blood stem cell donors. Through established relationships with apheresis, marrow collection and transplant centers worldwide, the organization develops, onboards, trains and manages expansive collection networks to advance cell therapies. Be The Match BioTherapies uses proven infrastructure consisting of regulatory compliance and managed logistics experts, as well as cell therapy supply chain case managers to successfully transport and deliver regulatory compliant life-saving therapies across the globe. Through the CIBMTR, Be The Match BioTherapies extends services beyond the cell therapy supply chain to include long-term follow-up tracking for the first two FDA-approved CAR-T therapies.

For more information, visit http://www.BeTheMatchBioTherapies.com or follow Be The Match BioTherapies on LinkedIn or Twitter at @BTMBioTherapies.

About MLD and Libmeldy/OTL-200

MLD is a rare and life-threatening inherited disease of the bodys metabolic system occurring in approximately one in every 100,000 live births. MLD is caused by a mutation in the arylsulfatase-A (ARSA) gene that results in the accumulation of sulfatides in the brain and other areas of the body, including the liver, gallbladder, kidneys, and/or spleen. Over time, the nervous system is damaged, leading to neurological problems such as motor, behavioral and cognitive regression, severe spasticity and seizures. Patients with MLD gradually lose the ability to move, talk, swallow, eat and see. In its late infantile form, mortality at five years from onset is estimated at 50% and 44% at 10 years for juvenile patients.1

Libmeldy (autologous CD34+ cell enriched population that contains hematopoietic stem and progenitor cells (HSPC) transduced ex vivo using a lentiviral vector encoding the human ARSA gene), also known as OTL-200, has been approved by the European Commission for the treatment of MLD in eligible early-onset patients characterized by biallelic mutations in the ARSA gene leading to a reduction of the ARSA enzymatic activity in children with i) late infantile or early juvenile forms, without clinical manifestations of the disease, or ii) the early juvenile form, with early clinical manifestations of the disease, who still have the ability to walk independently and before the onset of cognitive decline. Libmeldy is the first therapy approved for eligible patients with early-onset MLD.

The most common adverse reaction attributed to treatment with Libmeldy was the occurrence of anti-ARSA antibodies. In addition to the risks associated with the gene therapy, treatment with Libmeldy is preceded by other medical interventions, namely bone marrow harvest or peripheral blood mobilization and apheresis, followed by myeloablative conditioning, which carry their own risks. During the clinical studies, the safety profiles of these interventions were consistent with their known safety and tolerability.

For more information about Libmeldy, please see the Summary of Product Characteristics (SmPC) available on the European Medicines Agency (EMA) website.

Libmeldy is not approved outside of the European Union, UK, Iceland, Liechtenstein, and Norway. OTL-200 is an investigational therapy in the U.S.

Libmeldy was developed in partnership with the San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) in Milan, Italy.

About Orchard

Orchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and the San Raffaele Telethon Institute for Gene Therapy in Milan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.

Orchard has its global headquarters in London and U.S. headquarters in Boston. For more information, visit http://www.orchard-tx.com, or follow Orchard on Twitter and LinkedIn.

Forward-Looking Statements

This press release contains certain forward-looking statements which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Such forward-looking statements may be identified by words such as anticipates, believes, expects, intends, projects, anticipates, and future or similar expressions that are intended to identify forward-looking statements. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, including its plans and expectations for the commercialization of Libmeldy (OTL-200) in Europe, the therapeutic potential of Libmeldy and Orchards product candidates, and the expected benefits from Orchards partnership with Be The Match BioTherapies. These statements are neither promises nor guarantees, but are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. These risks and uncertainties include, without limitation: risks relating to the Companys inability, or the inability of Be The Match BioTherapies, to support a successful commercial launch of Libmeldy. Orchard undertakes no obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards annual report on Form 10-K for the year ended December 31, 2020, as filed with the U.S. Securities and Exchange Commission (SEC), as well as subsequent filings and reports filed with the SEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.

1Mahmood et al. Metachromatic Leukodystrophy: A Case of Triplets with the Late Infantile Variant and a Systematic Review of the Literature. Journal of Child Neurology 2010, DOI: http://doi.org/10.1177/0883073809341669

Read more from the original source:
Be The Match BioTherapies Announces Expansion of Multi-Year Strategic Alliance with Orchard Therapeutics to Support European Commercial Launch of...

Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2021: Focuses at the key worldwide companies to Define, Describe and Analyses the sales…

Brandessence Market Research has published a detailed report on the Autologous Stem Cell and Non-Stem Cell Based Therapies market. This market research report was prepared after considering the COVID-19 impacts and monitoring the market for a minimum of five years. The report provides you with growing market opportunities, revenue drivers, challenges, pricing trends & factors, and future market assessments. Our research team has implemented a robust research methodology that includes SWOT analysis, Porters 5 Force analysis, and real-time analysis. Furthermore, they have conducted interviews with the industry experts to offer a report that helps the clients to formulate strategies accordingly.

Insightful Highlights in Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report are:

Download Free Exclusive Sample Report on Cell Therapy Market is available at: https://brandessenceresearch.biz/Request/Sample?ResearchPostId=148458&RequestType=Sample

Top Players Listed in the Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report are:

Autologous Stem Cell and Non-Stem Cell Based Therapies Market Segmentation:

By Type

By Application

Market by Regional Analysis

Request For Methodology: https://brandessenceresearch.biz/Request/Sample?ResearchPostId=148458&RequestType=Methodology

Insightful Highlights in Global Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report are:

KEY REASONS TO PURCHASE Autologous Stem Cell and Non-Stem Cell Based Therapies Market Report:

TOC of Autologous Stem Cell and Non-Stem Cell Based Therapies Report:

Quantitative analysis of Autologous Stem Cell and Non-Stem Cell Based Therapies Market

Request for Customization of Autologous Stem Cell and Non-Stem Cell Based Therapies Report: https://brandessenceresearch.biz/Request/Sample?ResearchPostId=148458&RequestType=Customization

See the article here:
Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2021: Focuses at the key worldwide companies to Define, Describe and Analyses the sales...