Teligent Regains Compliance with Nasdaq Filing Requirements and Nasdaq Minimum Market Value Rule

BUENA, N.J., Jan. 22, 2021 (GLOBE NEWSWIRE) -- Teligent, Inc. (NASDAQ: TLGT) (“Teligent” or the “Company”), a New Jersey-based specialty generic pharmaceutical company, previously received notice from The Nasdaq Stock Market (“Nasdaq”) stating that the Company was not in compliance with Nasdaq Listing Rule 5250(c)(1) as a result of the Company not having timely filed its Quarterly Report on Form 10-Q for the three months ended September 30, 2020 (the “Form 10-Q”) with the Securities and Exchange Commission. Upon filing of the Form 10-Q on December 31, 2020, the Company regained compliance with Nasdaq Listing Rule 5250(c)(1) and this matter is now closed.

Excerpt from:
Teligent Regains Compliance with Nasdaq Filing Requirements and Nasdaq Minimum Market Value Rule

Bioasis Announces Stock Option Grant

GUILFORD, Conn., Jan. 22, 2021 (GLOBE NEWSWIRE) -- BIOASIS TECHNOLOGIES INC. (OTCQB:BIOAF; TSX.V:BTI), a pre-clinical, research-stage biopharmaceutical company developing its proprietary xB3™ platform technology for the delivery of therapeutics across the blood-brain barrier (“BBB”) and the treatment of central nervous system (“CNS”) disorders in areas of high unmet medical need, including brain cancers and neurodegenerative diseases, today announced that it has granted stock options to acquire a total of 510,000 common shares effective January 21, 2021 at a price of $0.50 per share to a newly appointed director of the company. The options expire five years from the date of the grant, are subject to vesting and are governed by the terms of the company’s stock option plan.

Read the original:
Bioasis Announces Stock Option Grant

Cambium Networks Corporation Announces Fourth Quarter and Full Year 2020 Reporting Date

ROLLING MEADOWS, Ill., Jan. 22, 2021 (GLOBE NEWSWIRE) -- Cambium Networks Corporation (“Cambium Networks”) (NASDAQ: CMBM), a leading provider of wireless networking infrastructure solutions, today announced that it plans to report financial results for the fourth quarter and full year 2020 ended December 31, 2020 on Thursday, February 18, 2021.

Continue reading here:
Cambium Networks Corporation Announces Fourth Quarter and Full Year 2020 Reporting Date

Revive Therapeutics Included in First Psychedelic Exchange Traded Fund

TORONTO, Jan. 22, 2021 (GLOBE NEWSWIRE) -- Revive Therapeutics Ltd. (“Revive” or the “Company”) (CSE: RVV, USA: RVVTF), a specialty life sciences company focused on the research and development of therapeutics for medical needs and rare disorders, is pleased to announce that it is one of the seventeen companies in the U.S. and Canada that will be included in the First Psychedelics Exchange Traded Fund, which is managed by Horizons ETF Management.

View post:
Revive Therapeutics Included in First Psychedelic Exchange Traded Fund

Pfizer and BioNTech Reach Agreement with COVAX for Advance Purchase of Vaccine to Help Combat COVID-19

NEW YORK CITY, NY and MAINZ, GERMANY, January 22, 2021 (GLOBE NEWSWIRE) — Pfizer and BioNTech SE today announced an advance purchase agreement with COVAX for up to 40 million doses of the Pfizer-BioNTech COVID-19 Vaccine. The doses will be delivered throughout 2021.

See the original post here:
Pfizer and BioNTech Reach Agreement with COVAX for Advance Purchase of Vaccine to Help Combat COVID-19

Regenerative Medicine Market Size Worth $23.57 Bn By 2027; High demand for 3D bioprinting of tissues and organs to better understand their mechanism…

January 18, 2021 08:51 ET | Source: Reports and Data

New York, Jan. 18, 2021 (GLOBE NEWSWIRE) -- Increased investment in advanced technologies for treatment of genetic and chronic diseases is driving growth of the regenerative medicine market.Market Size USD 7.34 Billion in 2019, Market Growth - CAGR of 15.6%, Market TrendsApplications in COVID-19 vaccine.

The global regenerative medicine market is forecast to reach a market size of USD 23.57 Billion by 2027, and register a robustly incline revenue growth, according to a new report by Reports and Data. Primary factors driving demand for regenerative medicines are advancements in surgical technology and monitoring devices, and major increase in prevalence of complex and degenerative diseases. Upsurge in incidence of cancers has been resulting in increasing research into stem cell therapy. Growth in research and development activities in emerging countries and rising focus on stem cell research is resulting in significant growth in the global revenue of regenerative medicine market.

Stem cell technology is growing rapidly and continues to play a crucial role in regenerative medicine and the related field. This technology opens up the possibility of treating Parkinsons Disease, arthritis, and spinal cord injury. Increase in demand for stem cell technology is a major factor driving growth of the regenerative medicine market.

Request free sample of this research report at: https://www.reportsanddata.com/sample-enquiry-form/3735

Recent developments in regenerative medicine for 3D bioprinting, stem cell treatment for heart repair, and vision loss has created demand for additional investments in the R&D of the technology to help with other diseases.

The COVID-19 impact:

Demand for regenerative medicine has witnessed increased demand during the COVID-19 pandemic. Regenerative medicine helps in understanding a mechanism of infection and to develop ways to prevent the spread of the virus. It is also being used to create advanced treatments to treat persons infected by the COVID-19 virus. Private companies are also using it to develop an effective vaccine for COVID-19.

Regenerative Medicine Market Size, Share & Industry Demand By Product (Tissue-Engineered Products, Cell Therapies, Gene Therapies, Progenitor & Stem Cell Therapies), By Application (Musculoskeletal Disorders, Oncology, Wound Care, By Material), and Region, Segment Forecast to 2027, To identify the key trends in the industry, click on the link below: https://www.reportsanddata.com/report-detail/regenerative-medicine-market

Further key findings from the report suggest

List of Key Companies Identified in the Regenerative Medicine Market Report:

Order Now: https://www.reportsanddata.com/checkout-form/3735

For the purpose of this report, Reports and Data has segmented into the global regenerative medicine market on the basis of product, application, material, and region:

Browse similar research reports: Cell Therapy Market By Therapy Type (Allogeneic Stem Cell Therapy, Autologous Stem Cell Therapy), By Therapeutic Area (Malignancies, Autoimmune Disorders, Musculoskeletal Disorders), By Cell Type, And By End User, Forecasts To 2027

Tissue Engineering Market Size, Growth & Analysis, By Material, By Application (Cancer, Urology, Neurology, Dental, Cell Banking & Cord Blood, Gynecology, Integumentary/Skin, Spine, Musculoskeletal, & Orthopedics, Vascular & Cardiology), And Region, Segment Forecasts To 2027

Gene Expression Market By Product And Services (Equipment, Consumables, And Services), By Capacity (Low- To Mid- Plex Gene Expression Analysis And High-Plex Gene Expression Analysis), By Application (Diagnostic, Drug Discovery, Research), And Segment Forecasts To 2027

About Reports and Data

Reports and Data is a market research and consulting company that provides syndicated research reports, customized research reports, and consulting services. Our solutions purely focus on your purpose to locate, target and analyze consumer behavior shifts across demographics, across industries and help clients make a smarter business decision. We offer market intelligence studies ensuring relevant and fact-based research across a multiple industries including Healthcare, Technology, Chemicals, Power, and Energy. We consistently update our research offerings to ensure our clients are aware about the latest trends existent in the market. Reports and Data has a strong base of experienced analysts from varied areas of expertise.

Contact Us:

John W

Head of Business Development

Reports And Data | Web: http://www.reportsanddata.com

Direct Line: +1-800-819-3052

E-mail: sales@reportsanddata.com

Read full Press Release at:https://www.reportsanddata.com/press-release/global-regenerative-medicine-market

Here is the original post:
Regenerative Medicine Market Size Worth $23.57 Bn By 2027; High demand for 3D bioprinting of tissues and organs to better understand their mechanism...

BrainStorm Announces the Publication of Preclinical Data Highlighting the Potential of a NurOwn Derived Exosome-Based Treatment for COVID-19 ARDS -…

NEW YORK, Jan. 20, 2021 /PRNewswire/ --BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, announced today the peer-reviewed publication of a preclinical study in the journal Stem Cell and Research Therapy. The study, entitled "MSC-NTF (NurOwn) exosomes: a novel therapeutic modality in the mouse LPS-induced ARDS model," evaluated the use of NurOwn (MSC-NTF cell) derived exosomes in a mouse model of acute respiratory distress syndrome (ARDS).

ARDS is a type of respiratory failure that is frequently associated with COVID-19 and mediated by dysregulated cytokine production. While there are currently no effective therapies to prevent or reverse ARDS, mesenchymal stem cell (MSC)-derived exosomes have been suggested as a potential novel treatment option due to their ability to penetrate deep into tissues and efficiently deliver immunomodulatory molecules.

Results from the recently published study showed that intratracheal administration of NurOwn derived exosomes led to a statistically significant reduction in lung disease severity score (p < 0.05; based on criteria set forth by the American Thoracic Society Documents: Matute-Bello et al., Am J Respir Cell Mol Biol 44;725-738, 2011) and improvements in several additional clinically relevant lipopolysaccharide (LPS)-induced ARDS markers such as lung function, fibrin presence, neutrophil accumulation, cytokine expression, and blood oxygenation levels. Notably, these improvements were significantly superior to those observed following administration of nave MSC-derived exosomes.

"These exciting preclinical data suggest that NurOwn derived exosomes have the potential to treat COVID-19-induced ARDS or other severe respiratory complications, and that they are more effective than exosomes isolated from nave MSCs at combatting the various symptoms of the syndrome," said Dr. Revital Aricha, Vice President of Research & Development at BrainStorm. "This publication in a highly regarded journal provides important validation for the scientific advances and significance of BrainStorm's preclinical research programs, including on our exosome-based technology platform."

Chaim Lebovits, Brainstorm's Chief Executive Officer added, "While our primary focus is on advancing NurOwn towards regulatory approval in ALS, we continue to evaluate the potential of our exosome-based platform to address unmet medical needs. The publication of these proof-of-concept data highlights this potential, and we are now actively assessing next steps to determine how to best generate value. We are also actively discussing with possible partners several development opportunities for the exosome technology."

About NurOwn

The NurOwn technology platform (autologous MSC-NTF cells) represents a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors (NTFs). Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression.

About BrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm has completed a phase 3 pivotal trial in ALS (NCT03280056); this trial investigated the safety and efficacy of repeat-administration of autologous MSC-NTF cells and was supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). BrainStorm is in active discussions with the FDA to identify regulatory pathways that may support NurOwn's approval in ALS. BrainStorm is also conducting an FDA-approved phase 2 open-label multicenter trial in progressive multiple sclerosis (MS). The phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) completed dosing inDecember 2020, and topline results are expected by the end of the first quarter 2021.

For more information, visit the company's website atwww.brainstorm-cell.com.

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may," "should," "would," "could," "will," "expect,""likely," "believe," "plan," "estimate," "predict," "potential," and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

Logo - https://mma.prnewswire.com/media/1166536/BrainStorm_Logo.jpg

CONTACTS

Investor Relations: Corey Davis, Ph.D. LifeSci Advisors, LLC Phone: +1-646-465-1138 [emailprotected]

Media:Paul Tyahla SmithSolve Phone: +1-973-713-3768 [emailprotected]

SOURCE Brainstorm Cell Therapeutics Inc

Home

Go here to see the original:
BrainStorm Announces the Publication of Preclinical Data Highlighting the Potential of a NurOwn Derived Exosome-Based Treatment for COVID-19 ARDS -...

Regenerative medicine is advancing health care in diverse ways – Hometown Focus

Regenerative medicine contributed to patient care in 2020 more than ever before, bolstered by synergies in research, practice and education. Mayo Clinics Center for Regenerative Medicine is at the forefront of a biotherapy revolution in which health care advances from treating disease to restoring health.

The centrality of the body to regenerate itself is paving the way for new horizons in regenerative care. The triad of protecting against disease, preventing disease progression and promoting healing is at the core of the regenerative vision, says Andre Terzic, M.D., Ph.D., director of Mayo Clinics Center for Regenerative Medicine. To this end, the regenerative toolkit has grown more robust over the past year with new technologies now available to boost the bodys ability to repair and restore health of an organ and importantly of the patient as a whole.

The convergence of research, practice and education, empowered by strong innovation and advanced biomanufacturing, is creating an increased level of readiness for applying validated regenerative science to new areas of health care, Dr. Terzic says.

Practice advancement

A deeper understanding of the biology of health and disease is driving the ongoing regenerative medicine evolution.

The remarkable progress in science that is advancing our fundamental comprehension of both health and disease has guided the informed and responsible development of patient-ready curative strategies, says Dr. Terzic.

New discoveries at Mayo Clinic that may shape future practice include:

Validating safety and efficacy of

stem cell therapy for heart failure. The largest regenerative medicine clinical trial to date for heart failure, spanning 39 medical centers and 315 patients from 10 countries, validated the long-term safety of stem cell therapy. The late-stage research found stem cell therapy shows particular benefit for patients with advanced left ventricular enlargement. This Mayo Clinic-led study offers guidance on which patients are most likely

to respond to stem cell therapy for heart failure.

Uncovering stem cell activation of healing. Mayo Clinic researchers uncovered stem cell-activated molecular mechanisms of healing after a heart attack. Stem cells restored the makeup of failing cardiac muscle back to its condition before the heart attack, providing an intimate blueprint of how they may work to heal diseased tissue. This research offers utility to delineate and interpret complex regenerative outcomes.

Discovering a molecular light switch. Mayo Clinic research discovered a molecular switch that turns on a substance that repairs neurological damage. This early research could bolster a therapy approved by the Food and Drug Administration, and that could lead to new strategies for treating diseases of the central nervous system such as multiple sclerosis.

The federal regulatory environment is making it possible to more seamlessly integrate new discoveries into the practice. The 21st Century Cures Act, for example, seeks to create an accelerated path to market for safe, validated procedures that could provide new therapies for patients with serious conditions.

To read the rest of this article on the Center for Regenerative Medicine blog, visit http://www.regenerativemedicineblog.mayoclinic.org.

Read the original post:
Regenerative medicine is advancing health care in diverse ways - Hometown Focus

Gene Pathway Linked to Development of Schizophrenia – Psychiatric Times

In an award-winning study, researchers from The University of Texas Health Science Center at Houston (UTHealth) discovered a gene signaling pathway linked to a higher risk for developing schizophrenia by observing human-induced pluripotent stem cells created from blood samples of a single family. The pathway, phosphoinositide 3-kinase/glycogen synthase kinase 3 (PI3K/GSK3), contains differentially expressed genes, including serum-glucocorticoid kinase 1 (SGK1). This is an inhibitor of GSK3 beta and has been associated with schizophrenia.1

We believe this has direct implications for the treatment of patients, senior author Consuelo Walss-Bass, PhD, MD, said to the press. There is a new antipsychotic that just received approval from the Food and Drug Administration that directly targets the pathway we identified as dysregulated in neurons from the patients, and several other antipsychotics also target this pathway. This could help pinpoint who may respond better to treatments.2

Walss-Bass, the first author, and postdoctoral research fellow Laura Stertz, PhD, took blood samples from members of a large Costa Rican family with multiple individuals with schizophrenia. The blood cells were changed into stem cells using human-induced pluripotent stem cell (hiPSC) technology. These cells were then redirected to become brain neurons. This allowed them to be studied in a virtual biopsy and compared to neurons from family members who did not have schizophrenia.

In the biopsies, researchers saw 5 schizophrenia candidate genes previously identified by genome association studies. Alterations caused by gene SGK1, which inhibits GSK3 activity, are linked to whether a person has a higher risk of schizophrenia.

Walss-Bass had this to say on the discovery: Mental health research has lagged behind because we don't know what is happening biologically. We are diagnosing people based on what they are telling us. Even postmortem, the brain tissue in mental health disorders looks perfectly fine. In Alzheimer disease, you can see a difference compared to controls. But not in psychiatric disorders. Now by studying virtual brain biopsies, we can tell what is happening biologically.2

Walss-Bass also said that identifying patients with specific biological pathway markers could identify them as the best candidates for medications. This pre-emptive, personal pharmacology may be what is needed to best treat psychiatric disorders.

We were able to find significant, meaningful differences with a small control group, Walss-Bass said. Neurons of patients with schizophrenia had alterations in the signaling pathway. This research may help to understand how or why some antipsychotics targeting GSK3 work and also to develop other target-specific medications.2

References

1. Stertz L, Di Re J, Pei G, Fries G, et al. Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacol. 2020;46:673682.

2. University of Texas Health Science Center at Houston. Gene pathway linked to schizophrenia identified through stem cell engineering. News release. Science Daily. December 21, 2020. https://www.sciencedaily.com/releases/2020/12/201221134136.htm

See the article here:
Gene Pathway Linked to Development of Schizophrenia - Psychiatric Times