RoosterBio Partners with Sartorius to Advance Cell and Gene Therapy Manufacturing – GlobeNewswire

January 14, 2021 10:00 ET | Source: RoosterBio

FREDERICK, Md., Jan. 14, 2021 (GLOBE NEWSWIRE) -- RoosterBio Inc., a leading supplier of human mesenchymal stem/stromal cell (hMSC) working cell banks, highly engineered media and hMSC bioprocess systems, today announces the signing of a strategic collaboration with Sartorius, a leading international partner of life science research and the biopharmaceutical industry. The collaboration aims to advance the scale-up of hMSC manufacturing for regenerative medicine by leveraging the best-in-class solutions of both companies to significantly reduce process development efforts, industrialize the supply chain and accelerate the development and commercialization of groundbreaking cell-based regenerative cures.

RoosterBio and Sartorius will create a set of GMP-compatible, customer-centric protocols using RoosterBios hMSC and media systems, alongside Sartoriuss single use manufacturing technologies, process control software and cell analysis tools of hMSC final product manufacturing. Cell expansion will be rapidly optimized using Sartoriuss benchtop Ambr system and MODDE design of experiment software allowing the technical team to compare cultures in identically sized, multi-parallel bioreactors to gain process information and optimized conditions in a short timeline. Sartoriuss scalable Biostat STR production bioreactors will then be used to scale up to 50L as part of this collaboration, with the system benefitting from scalability to 2000L. Sartorius equipment will also be leveraged to develop post-harvest processing methods with the kSep system as well as process and quality analytics. This joint effort will simplify multiple steps in therapeutic development by providing robust, streamlined, end-to-end platform technologies and protocols that can be implemented for rapid scale up of manufacturing processes, allowing product developers to significantly speed up their development timelines.

Taking hMSC manufacturing to the thousand-liter scale is critical in meeting product dose requirements in commercial manufacturing, said RoosterBio CEO Margot Connor. For truly robust and standardized production in the field, a highly controlled manufacturing strategy is needed, with the implementation of automation, process monitoring and control to increase batch scale, consistency and efficiency. This collaboration is well-positioned to accomplish the clinical scale requirements of regenerative medicine product developers while laying foundation for true commercial scale manufacturing.

With the combination of technologies and tools of RoosterBio and Sartorius we support our customers to develop stem cell and therapies faster, better and more cost-efficient. Scalability is key in commercial manufacturing and this cooperation will help to meet the requirements of our customers even better, said Hugo de Wit, Head of Advanced Therapies at Sartorius.

Both companies aim to use the data from this collaboration to provide co-learning and development opportunities to support the growing cell and gene therapy industry.

About RoosterBio

RoosterBio, Inc. is a privately held cell manufacturing platform technology company focused on accelerating the development of a sustainable Regenerative Medicine industry, one customer at a time. RoosterBio's products are high-volume, affordable, and well-characterized adult human mesenchymal stem/stromal cells (hMSCs) paired with highly engineered media systems. RoosterBio has simplified and standardized how living cells are purchased, expanded, and used in development, leading to marked time and costs savings for customers. RoosterBio's innovative products are ushering in a new era of productivity and standardization into the field. Visit http://www.roosterbio.com.

About Sartorius The Sartorius Group is a leading international partner of life science research and the biopharmaceutical industry. With innovative laboratory instruments and consumables, the Groups Lab Products & Services Division concentrates on serving the needs of laboratories performing research and quality control at pharma and biopharma companies and those of academic research institutes. The Bioprocess Solutions Division with its broad product portfolio focusing on single-use solutions helps customers to manufacture biotech medications and vaccines safely and efficiently. The Group has been annually growing by double digits on average and has been regularly expanding its portfolio by acquisitions of complementary technologies. In fiscal 2019, the company earned sales revenue of some 1.83 billion euros. At the end of 2019, more than 9,000 people were employed at the Groups approximately 60 manufacturing and sales sites, serving customers around the globe.

Visit http://www.sartorius.com

Contact:

RoosterBio: Carrie Zhang, Director of Marketing czhang@roosterbio.com

Sartorius:Andre Hofmann, Head of Public Relations andre.hofmann@sartorius.com

Frederick, Maryland, UNITED STATES

Home

Formats available:

Formats available:

Here is the original post:
RoosterBio Partners with Sartorius to Advance Cell and Gene Therapy Manufacturing - GlobeNewswire

Reversing The Aging Clock With Epigenetic Reprogramming – Bio-IT World

By Deborah Borfitz

January 13, 2021 | As aging researchers are aware, birthday candles are not a good guide to either human health or longevity. But there is an abundance of clues in the genome and, as suggested by studies in animals, some of age-related damage is reversible by removing or reprogramming problematic cells or blocking the activity of key proteins.

As it turns out, DNA methylationa frequently-used biomarker of biological ageis not just marking time like a clock on the wall but actually controlling time within cells, according to David Sinclair, an expert on aging at Harvard Medical School and cofounder of 4-year-old Life Biosciences. The revelation emerged from a study recently published in Nature (DOI: 10.1038/s41586-020-2975-4) where Harvard researchers showed, for the first time, that the pattern of DNA methylation in the genome can be safely reset to a younger age.

It was in fact a prerequisite to restoring youthful function and vision in old mice, says Sinclair, who has spent most of his adult life studying the epigenetic changes associated with aging. Up until a few years ago, he thought the process was unidirectional and that cells ultimately lost their identity and malfunctioned or became cancerous.

It seemed crazy to try to get proteins to return to the place they were in young cells, Sinclair says. Proteins move around in response to age-associated DNA damage and end up in the wrong places on the genome, causing the wrong genes to be turned on, but scientists did not know if proteins could go back, where the instructions were stored, or if they were being stored at all.

As covered in his 2019 bestseller Lifespan, Sinclair now believes that aging is the result of the so-called epigenetic changes scrambling how the body reads genetic code. Were essentially looking for the polish to get the cell to read the genome correctly again, he says, a process he likens to recovering music on a scratched CD.

Yamanaka Factors

Sinclair and his research associates have been focusing on the eye, in part because retinal tissues start aging soon after birth, he explains. While a damaged optic nerve can heal in a newborn, the injury is irreversible in a 1-year-old.

Yuancheng Lu, a former student of Sinclairs, was also interested in the eye because his family has a vision-correction business and recognized sight loss as a huge unmet need, he continues. We thought if we could take the age of those retinal cells back far enough, but not so far that they lose their identity, we might be able to see regrowth of the optic nerve if it was damaged.

Among the foundational work was a 2016 study in Cell (DOI: 10.1016/j.cell.2016.11.052) by Life Biosciences cofounder Juan Carlos Izpisua Belmonte (Salk Institute for Biological Studies) who partially erased cellular markers of aging in mice that aged prematurely, as well as in human cells, by turning on Yamanaka factors Oct4, Sox2, Klf4, and c-Myc (OSKM) highly expressed in embryonic stem cells. Short-term induction of OSKM ameliorated hallmarks of aging and modestly extended lifespan in the short-lived mice.

The lifespan gain was widely dismissed as an artifact of shocking a mouse, says Sinclair, since the mice died if the treatment continued for more than two days. Although the human health implications appeared unlikely, his Harvard team decided to try the approach using an adeno-associated virus as a vehicle to deliver the youth-restoring OSKM genes into the retinas of aging mice.

The technology kept killing the mice or causing them to get cancer until Lu decided to drop the c-Myc genean oncogenein his experiments using human skin cells. He looked at [damaged] cells that had been expressing OSK for three weeks and the nerves were growing back toward the brain to an unprecedented degree. Moreover, the cells got older by the damage and younger by the treatment.

As the broader team went on to show in the Nature paper, the trio of Yamanaka factors effectively made cells younger without causing them to lose their identity (i.e., turning back into induced pluripotent stem cells) or fueling tumor growth even after a year of continuous treatment of the entire body of a mouse. If anything, the mice had fewer tumors over the course of the study, says Sinclair.

Although the mice needed to be autopsied to definitively measure tumor burden, Sinclair says the study will be repeated to learn if the epigenetic reprogramming technique can increase lifespan.

Findings have implications beyond the treatment of age-related diseases specific to the eye, says Sinclair. Aging researchers have published studies showing other types of tissues, including muscle and kidney cells, can also be rejuvenated.

Clocked Results

In the latest study using mice, epigenetic reprogramming was found to have three beneficial effects on the eye: promotion of optic nerve regeneration, reversal of vision loss with a condition mimicking human glaucoma, and reversal of vision loss in aging animals without glaucoma. The latter finding, from Sinclairs vantage point, is the most important one. This is ultimately a story about finding a repository of youthful information in old cells that can reverse aging.

Results of all three experiments are noteworthy and have commonly thought to be three separate processes, says Sinclair. That is only because the fields of aging and acute and chronic disease are distinct disciplines that rarely talk to each other.

The Harvard team is pioneering a new way to tackle diseases of aging by addressing the underlying cause. This is the first time, as far as Sinclair is aware, where nerve damage was studied in old rather than young animals. In the case of glaucoma and most diseases, aging is considered largely irrelevant, when of course we know glaucoma is a disease of aging.

A variety of aging clocks, including some the research team built themselves, have been deployed for studies because they are considered the most accurate predictor of biological age and future health, says Sinclair. As embryos, cells lay down different patterns of methylation to ensure they remember their purpose over the next 80 to 100 years.

For unknown reasons, methyl groups get predictably added and subtracted from DNA bases across cell and tissue types and even species, Sinclair says. In 2013, UCLAs Steve Horvath (another Life Biosciences cofounder) showed that machine learning could be used to pick out the hot spots and predict individual lifespan depending on how far above or below the DNA methylation line they sit (Genome Biology, DOI: 10.1186/gb-2013-14-10-r115).

A multitude of aging clocks have since been developed. Eventually, we will need some standardization in the field, but there is nothing super-mysterious about aging clocks, says Sinclair. One of my grad students could probably get you one by the end of the day.

Booming Field

Aging research is a rapidly accelerating field and epigenetic reprogramming is poised to become a particularly active area of inquiry. In terms of numbers, there are still only a dozen or so labs intensely working on this, but there are probably a hundred others I am aware of who are getting into it, says Sinclair.

Life Biosciences began with four labs, but new ones are now joining on an almost weekly basis, he adds. Collaborators have expanded work to the ear and other areas of the body beyond the eye, he adds.

Were also reducing the cost of the DNA clock test by orders of magnitude so [biological age prediction] can be done on millions of people, he continues. In the future, aging clocks are expected to be a routine test in physicians arsenal to guide patient care as well as to monitor response to cancer treatment.

Harvard University has already licensed two patents related to the technology used by the aging researchers to Life Biosciences, Sinclair says. The company has built a scientific team with a group of world-class advisors who developed gene therapy for the eye, which will be tested first for the treatment of glaucoma.

The role of chaperone-mediated autophagy in aging and age-related diseases is another promising area of research being pursued by Life Biosciences Ana Maria Cuervo, M.D, Ph.D., professor, and co-director of the Institute of Aging Studies at the Albert Einstein College of Medicine. Cuervo recently reported at a meeting that fasting-induced autophagy, the cells natural mechanism for removes unnecessary or dysfunctional components, can greatly extend the lifespan of mice. She believes the triggering of this process might one day help treat diseases such as macular degeneration and Alzheimers.

The specialty of Manuel Serrano, Ph.D., the fourth company cofounder, is cellular senescence and reprogramming and how they relate to degenerative diseases of the lung, kidney, and heart. He isan internationally recognized scientist who has made significant contributions to cancer and aging research and works in the Institute for Research Biomedicine in Barcelona.

Go here to read the rest:
Reversing The Aging Clock With Epigenetic Reprogramming - Bio-IT World

Seattle researchers find clues for treatments that could eliminate HIV in infected patients – GeekWire

Dr. Joshua Schiffer (third from left) and E. Fabian Cardozo-Ojeda (far right) led research published on Tuesday that provides mathematical models on strategies for optimizing treatment for HIV. (Fred Hutchinson Cancer Research Center Photo)

In the nearly four decades since HIV was discovered, only two people have been cured of the virus that has killed millions.

Researchers in Seattle are hoping to boost that number. On Tuesday, scientists from the Fred Hutchinson Cancer Research Center and the University of Washington published a study that provides clues to optimizing treatments that could wipe out HIV in infected patients.

Worldwide, some 26 million people are receiving antiviral therapy to keep the virus in check, but the drugs dont completely stamp out HIV, the virus that causes AIDS. The virus becomes latent, hiding out in cells until the drugs are gone. It gets activated again and starts reproducing.

One key component to HIVs reanimation is the presence of a molecule called CCR5 thats found on the outside of a certain class of immune system cells. The CCR5 helps the virus enter and infect new cells.

The two men seemingly cured of HIV, known as the Berlin Patient and the London Patient, also had cancer, one with acute myeloid leukemia and the other Hodgkin Lymphoma. As part of their cancer treatments, the patients received transplants of healthy stem cells, which produce immune system cells. They received the transplants from donors who lacked the gene that produces functional CCR5 molecules.

It appears that by suppressing the virus and then cutting off its pathway to resurgence, the virus can be defeated.

Since the 1960s, the Fred Hutch has been a pioneer in bone marrow transplants in cancer treatment, and researchers there are applying similar strategies for treating HIV.

Fred Hutch and UW scientists in recent years have performed experiments using pig-tailed macaques that are infected with a simian version of HIV. In one study of 22 monkeys, the infected macaques received transplants of their own stem cells, after they were treated to knock out the CCR5 gene. Researchers were interested in using the monkeys own altered cells because their immune systems would accept them and not perceive them as foreign invaders to be fought off.

One of the challenges of this approach to fighting HIV is figuring out how many of the altered stem cells are needed its difficult to produce a massive supply in order to overwhelm the cells that still produce CCR5. Add to that the rate of stem cell replication and figuring out the timing of administering and stopping antiviral drugs.

Thats where the new research comes in.

E. Fabian Cardozo-Ojeda, a senior staff scientist at the Fred Hutchs Vaccine and Infectious Disease Division, took all of the data available from the 22 monkeys to figure out how to perfect the treatment. He and his team developed a multi-stage mathematical model to calculate the effects of different amounts of residual and transplanted stem cells, the HIV viral load and the timing of when antiviral drugs are halted.

Were trying to do interdisciplinary work to get that optimal approach for a cure, Cardozo-Ojeda said.

In order to control HIV through this strategy, the researchers came to two conclusions with their formula. First, a patient needs a dose of at least five times as many transplanted stem cells compared to residual cells, and second, before a patient stops taking antiviral drugs, the cells lacking CCR5 need to total between 76-to-94% of the total transplanted stem cell population in their blood.

While the study was based on macaque data, were generating possible hypotheses of what could happen with people, Cardozo-Ojeda said. When it comes to applying their formula to higher primates, we believe that could be translated to humans for sure.

The peer-reviewed study was published by eLife, a non-profit platform. Cardozo-Ojeda is first author of the study and the other authors are Elizabeth Duke, Christopher Peterson, Daniel Reeves, Bryan Mayer, Hans-Peter Kiem and Joshua Schiffer.

Read the original here:
Seattle researchers find clues for treatments that could eliminate HIV in infected patients - GeekWire

Flow Cytometry Market is Projected to Reach a Value of US$8100 Mn by the End of 2025 – KSU | The Sentinel Newspaper

The global flow cytometry market depicts the presence of a highly consolidated market, says Transparency Market Research on the basis of a recently published report. Such a consolidated presence mainly exists owing to a handful of players accounting for at least half the market shares in 2016. Dickinson and Company (BD), Beckman Coulter, Inc. (Danaher), and Becton, Merck & Co., Inc., are three companies that collectively encompassed these revenue figures, mainly by focusing on product development to establish themselves in the global cytometry market. However, with the number of players expected to increase in the near future, the competition is anticipated to expand and become intensified.

Many companies are investing large amounts of money to improve their product quality, majorly by adding infrared and ultraviolet sensors. Strengthening the geographical reach, increasing customer base, and garnering large market shares, are other domains where players are imparting substantial focus. Development of advanced technologies remains a primary strategy of most businesses present in the global flow cytometry market.

Request Brochure of Report https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=40472

As per expert analysts, this market is projected to expand at a healthy CAGR of 11.0% during the forecast period from 2017 to 2025. At this rate, the market is expected to fetch revenue worth US$8100 mn by 2025, which is a decent increase from the earlier revenue worth US$3,072 mn clocked in 2016.

Rise in Chronic Disease Occurrences Increases Cytometry Utilization

Rising prevalence of chronic diseases like cancer, HIV/AIDS, hematological ailments, and others is primarily driving the global flow cytometry markets growth. This is mainly due to the fact that flow cytometry is employed as an efficient tool for clinical diagnosis of these diseases. An increasing preference by health specialists to use allergenic and autologous stem cell therapies instead of radiation and chemotherapies also is making the market growth at a steady rate, as flow cytometry falls in the former category. With a number of companies heavily investing in research and development for introducing new technologies, the global flow cytometry market is foretold to progress rapidly in the next few years.

Request for Analysis of COVID-19 Impact on Flow Cytometry Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=40472

High Costs of Cytometry Analysis Stunts Growth

However, many doctors and other health specialist prefer using image analyzers and other alternatives, owing to their easier availability and less costs. This exists as a large obstacle to the markets growth, consequently hindering its progress. Moreover, high costs of equipment needed to carry out cytometry processes might discourage small healthcare centers having less capital to not invest in the same, thereby restraining the global cytometry market. In remote and underdeveloped regions, lack of necessary equipment needed to implement cytometry analyses along with shortage of relevant expertise too exists as a prime factor hindering the markets progress. However, many companies are expected to introduce cost-effective cytometry apparatus as well as increase their geographical reach, thus offsetting the restraints in future.

Buy Flow Cytometry Market Report https://www.transparencymarketresearch.com/checkout.php?rep_id=40472&ltype=S

From a geographical perspective, the global flow cytometry market is spread across North America, Asia Pacific, Latin America, the Middle East and Africa, and Europe. An increase in governmental initiatives for promoting research studies regarding prevalence of chronic diseases in North America is making this region hold a leading position.

More Trending Reports by Transparency Market Research

Intraocular Lens Market: https://www.biospace.com/article/intraocular-lens-market-high-level-of-awareness-along-with-presence-of-major-players-aids-north-america-to-lead/

Read our Case study at https://www.transparencymarketresearch.com/casestudies/innovative-medical-device-manufacturing-start-up

About Us

Transparency Market Research is a global market intelligence company providing global business information reports and services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insight for several decision makers. Our experienced team of analysts, researchers, and consultants use proprietary data sources and various tools and techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts so that it always reflects latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

Contact

Transparency Market Research,

90 Sate Street, Suite 700,

Albany, NY 12207

Tel: +1-518-618-1030

USA Canada Toll Free: 866-552-3453

Website: https://www.transparencymarketresearch.com/

Read more from the original source:
Flow Cytometry Market is Projected to Reach a Value of US$8100 Mn by the End of 2025 - KSU | The Sentinel Newspaper

Stem cells on the ballot – Science Magazine

California's ballot measures often reveal much about the broader U.S. policy environment. This is particularly true of the approval by the state's voters in November of Proposition 14, The California Stem Cell Research, Treatments, and Cures Initiative of 2020. Proposition 14 extends the 2004 ballot Proposition 71, which established the California Institute for Regenerative Medicine (CIRM) and authorized $3 billion in state-issued bonds for CIRM to fund stem cell and regenerative research and medicine (restricted to California). Proposition 14, which authorizes $5.5 billion over the next 10 years to continue CIRM's work, succeeded in part by informing voters of CIRM's successes and that its conflict-of-interest provisions are extremely strong. This state-level action is critical because, contrary to opponents' opinions, the overall policy environment for human stem cell research in the United States is in some ways worse now than when Proposition 71 passed.

Since 2004, CIRM has funded groundbreaking work on immune disorders, cancer, spinal cord injury, diabetes, and more. The result has been more than 90 stem cellrelated clinical trials (directly or indirectly supported by CIRM), almost 3000 scientific papers, and contributions to two cancer therapies approved by the U.S. Food and Drug Administration. The lives of many patients have improved because of CIRM. Notably, many CIRM-funded clinical trials rely on human embryonic or fetal stem cells, whereas the federal government currently does not fund any clinical trials using these types of cells.

Proposition 71 was motivated largely in response to restrictions on human embryonic stem cell research in the United States in 2004. However, although research was limited to a small number of human embryonic stem cell lines, there was no formal ban on federal funding of research on such stem cells. In addition, in 2004 there were no restrictions on federal funding of human fetal stem cell and tissue research; however, there is now near-complete blockage of federal funding for such research. And federal funding for human embryonic stem cell research is again at risk. On 4 September 2020, 22 Republican senators and 72 Republican House members wrote to President Trump requesting an end to all federal funding of human embryonic stem cell research. Could President Trump impose a ban that would be difficult to revoke? Or, could Republican senators manufacture a ban by legislative maneuvering on a budget reconciliation vote, which requires 60% support? Such maneuvering created the effectively permanent 1995 Dickey-Wicker amendment, which prohibits federal funding of any research in which human embryos are created or destroyed. Dickey-Wicker has limited research on in vitro fertilization methods and stalled progress on understanding early human development. It has not solved the problem of the many, perhaps 1 million frozen embryos in the United States that will not be used for in vitro fertilization and will be destroyed without benefit if not used for research. Vital long-term research is greatly harmed by the U.S. policy environment, with the likely outcome that many young scientists will avoid research using human embryonic stem cells and human fetal tissue.

Restrictions on valuable, ethical research appear particularly fool-hardy during a deadly pandemic. Research on viruses such as HIV and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can benefit greatly from work using mice that utilize human fetal stem cells and tissues to generate a human-like immune system. These mice allow evaluation of a human immune system in the contexts of infection mechanisms, generation of immunity, and drug response. These studies can be supported with Proposition 14 funds in California, but not with federal funds. It is crucial for the incoming Biden administration to evaluate the need for federal funding in these important areas with high-quality scientific input and evidence.

California's vote on Proposition 14 should also help the rest of the country appreciate the need to increase investments in biomedical research at the U.S. National Institutes of Health and other federal agencies. Current biomedical research expenditures amount to only a tiny fraction of the costs of disease, so an objective evaluation of appropriately increased research funding relative to disease costs is warranted. Once again, California is showing the way.

Read more from the original source:
Stem cells on the ballot - Science Magazine

2021 Startups to Watch: Ronawk’s T-Blocks stack the future of stem cell research in an Olathe lab – Startland News

Editors note: Startland News selected 10 Kansas City firms to spotlight for its annual Startups to Watch list. The following is one of 2021s companies. Click here to view the full, ranked list of Startups to Watch presented bysponsorsHusch Blackwelland the Ewing Marion Kauffman Foundation.

Born out of a frustration with growing stem cells, scientists A.J. Mellott and Heather Decker found a solution that would make cell production more efficient and consume fewer materials, Mellott shared.

Elevator pitch: Ronawk develops customized 3D-printed consumables to accelerate cell production in the biotech, healthcare and agriculture industries.

Founders: A.J. Mellott, Heather Decker Founding year: 2019 Amount raised to date: $1.3M Noteworthy investors: Undisclosed Programs completed: NIGMS Sustainable Heartland Accelerator Regional Partnership Hub,Wichita State University Shockers Innovation Corps, UMKC E-Scholars, Digital Sandbox KC, Pipeline Entrepreneurs Current employee count: 3 (2 FTE, and 1 part-time)

We came up with these Tissue Blocks, also referred to as T-Blocks, said Mellott, who co-founded Ronawk with Decker in February 2019 after the duo left their jobs at University of Kansas Medical Center to pursue the idea.

T-Blocks 3D model allows researchers to rapidly expand the growth of cells, eliminate the need to subculture and greatly reduce labor costs, Mellott stated. With all these benefits at hand, the COVID-19 pandemic accelerated Ronawks timeline.

COVID gave us this unique opportunity, he continued, noting the pandemic caused heightened interest in using T-Blocks as a way to research the never-before-studied virus. But even outside of COVID, there are several applications to how our technology can be used.

Click here to read more about Ronawks journey throughout the pandemic.

Already having closed a first round of funding and other additional open funding in 2020, Ronawk is set to launch its Series A funding in early 2021. The funding is designated to allow Ronawk to expand both its team and Olathe lab facility to meet the production needs of customers, Mellott stated.

The biggest goal for 2021: secure a manufacturing partner able to do large-scale production.

That need is there, Mellott shared. We are also already in conversations with a large distributor that is testing our product because they are looking at the potential to include it co-branded with a product that they sell. Its another exciting opportunity.

Ronawk is also on track to receive its Good Manufacturing Practices (GMP) certification this year, Mellott added.

Our product right now is what is considered 510K exempt; its a class one device with the FDA, Mellott explained. What that means is we only have to manufacture under GMP conditions, but it does not require an FDA approval to be used. We will be making this leap from what was a [research and development] product to now a GMP grade version of the product.

Having a GMP-certified product will help close production deals, Mellott said noting that several companies already in trial with the T-Blocks are interested in large purchase orders once the product is certified.

We have 23 product trials going on in four of the seven continents, he said. Some of our customers are testing stem cells, others are testing cancer cells, and even some are actually looking for things that they can procure from the cells.

Were hoping that well have some of that positive data, possibly by the turn of the year, but we expect the bulk of it to come in early to mid-quarter one of 2021.

Click here to read about Ronawks T-Blocks run for the Kansas Chambers Coolest Thing Made in Kansas prize.

As a scientist who added entrepreneur to his title, Mellot said he has learned a lot from the innovative ecosystem and is grateful for the chance to share his expertise.

Its been chaotic and intense, but also fun and rewarding, Mellott said of his journey so far. Its allowed us to meet a number of people, and weve gotten to learn more about the human aspect of community which is a main reason we founded the company. We wanted to be able to help people with our knowledge.

The Kansas City Startups Watch in 2021 list is made possible by presenting sponsorsHusch Blackwell,a value-driven law firm with offices in Kansas City, and the Ewing Marion Kauffman Foundation, though independently produced by Startland News.

Startups to Watch in 2021

1) TripleBlind 2) LaborChart 3) Bar K 4) Ronawk 5) SureShow 6) Daupler 7) PMI Rate Pro 8) Scissors & Scotch 9) Replica 10) The Market Base

Startups to Watch is now in its sixth year, thanks to ongoing support from the Ewing Marion Kauffman Foundation, a private, nonpartisan foundation that works together with communities in education and entrepreneurship to create uncommon solutions and empower people to shape their futures and be successful.

For more information, visit http://www.kauffman.org and connect at http://www.twitter.com/kauffmanfdnandwww.facebook.com/kauffmanfdn

Read this article:
2021 Startups to Watch: Ronawk's T-Blocks stack the future of stem cell research in an Olathe lab - Startland News

Towards a Cure: Carleton Research Team Working on Stem Cell Therapy to Reverse Type 1 Diabetes – Carleton Newsroom

Tyrone Burke, January 13, 2021

The human pancreas is only about 15 cm long, but within it are about a million tiny islets of hormone-producing cells. Though they are many in number, these islets are tiny they make up only 2-3% of the volume of the pancreas. Cells within these islets secrete hormones that help us regulate our blood sugar. And when they malfunction, it can cause diabetes.

Carletons Jenny Bruin is part of a team of researchers that has been awarded a 5-year, $3 million grant from the Canadian Institutes of Health Research (CIHR) and JDRF Canada to develop a novel therapy that transplants insulin-secreting cells derived from stem cells into patients with Type 1 diabetes.

This could reverse the effects of the condition, and help eliminate diabetics need for insulin therapy.

People with Type 1 diabetes lack insulin secreting cells in the pancreas. These are called beta cells, and the immune systems has destroyed them, says Bruin, an Assistant Professor in the Department of Biology and the Institute of Biochemistry.

We want to replace them with beta cells derived from pluripotent stem cells. Right now, we can take stem cells part way down the path to becoming beta cells in vitro. When we transplant these cells into mice, the final stages of maturation occur in the mouse over a period of several months. It works really well, but it is kind of like a black box we dont know what is happening in the time after the cells are transplanted, but before they start producing insulin and responding to glucose.

The project brings five principal applicants and two co-researchers, and will use several different techniques to understand factors that could be influencing the cell maturation process. For example, Francis Lynn of the University of British Columbia is conducting a detailed characterization of stem cell-derived beta cells and human beta cells from organ donors to identify differences between the two different types, and Pat MacDonald of the University of Alberta is studying the electrophysiology of these cells how ions move in and out.

If we can understand what is functionally missing at a genetic level, then it should be possible to target those gaps, and activate the key pathways that are missing, says Bruin.

Transplants of stem cells into human patients are currently being tested for safety, but the ultimate aim is to be able to transform stem cells into fully functional beta cells in a dish.

Some think it could be sufficient to transplant cells that are secreting insulin, but not yet fully functional. And it might be, but the environment that the cells are being transplanted into is hugely variable. There is a lot of room for environmental factors to throw off the process inside a human, says Bruin.

Bruins role in the project is to identify how common contaminants and pollutants could be affecting the maturation process.

When we grow these cells in a dish, it is a very controlled environment. We control every step, and every component of the media that they are in. But when we transplant them into a patient, the environment is completely uncontrolled. We know that people across Canada are exposed to all kinds of environmental pollutants, and we can measure those in their blood and their tissues, says Bruin.

My lab is interested in how these contaminants are influencing beta cell function, not just in transplanted cells, but also in our pancreas. That environmental exposure might potentially influence the function of beta cells, and our ability to successfully transplant stem cells.

This has implications for the new stem cell transplantation technique, but also for our understanding of diabetes more broadly.

We focus mainly on the beta cell because it is critical for both Type 1 and Type 2 diabetes. Any defect in beta cells will affect the regulation of glucose. If the way that beta cells secrete insulin or sense glucose is affected by chemicals in our environment or additives in food or there is beta cell death in response to some of these exposures then you have fewer functional beta cells, says Bruin.

One of the problems for people with Type 2 diabetes is that their beta cells dont work as well as healthy individuals. In early stages of the disease, they secrete too much insulin. At later stages, they dont secrete enough, in part because they lose maturity. We dont understand how beta cells become mature, and what potentially sends them backwards. This research could help us understand why beta cells in people with Type 2 diabetes dont work as well as they should, but our primarily goal is to learn how to generate fully mature beta cells from stem cells for treating patients with Type 1 diabetes.

See original here:
Towards a Cure: Carleton Research Team Working on Stem Cell Therapy to Reverse Type 1 Diabetes - Carleton Newsroom

Stem Cell Assay Market | Know the aspects that will serve as game-changers for the market – BioSpace

Stem cell assay refers to the procedure of measuring the potency of antineoplastic drugs, on the basis of their capability of retarding the growth of human tumor cells. The assay consists of qualitative or quantitative analysis or testing of affected tissues and tumors, wherein their toxicity, impurity, and other aspects are studied.

With the growing number of successful stem cell therapy treatment cases, the global market for stem cell assays will gain substantial momentum. A number of research and development projects are lending a hand to the growth of the market. For instance, the University of Washingtons Institute for Stem Cell and Regenerative Medicine (ISCRM) has attempted to manipulate stem cells to heal eye, kidney, and heart injuries. A number of diseases such as Alzheimers, spinal cord injury, Parkinsons, diabetes, stroke, retinal disease, cancer, rheumatoid arthritis, and neurological diseases can be successfully treated via stem cell therapy. Therefore, stem cell assays will exhibit growing demand.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=40

Another key development in the stem cell assay market is the development of innovative stem cell therapies. In April 2017, for instance, the first participant in an innovative clinical trial at the University of Wisconsin School of Medicine and Public Health was successfully treated with stem cell therapy. CardiAMP, the investigational therapy, has been designed to direct a large dose of the patients own bone-marrow cells to the point of cardiac injury, stimulating the natural healing response of the body.

Newer areas of application in medicine are being explored constantly. Consequently, stem cell assays are likely to play a key role in the formulation of treatments of a number of diseases.

Global Stem Cell Assay Market: Overview

The increasing investment in research and development of novel therapeutics owing to the rising incidence of chronic diseases has led to immense growth in the global stem cell assay market. In the next couple of years, the market is expected to spawn into a multi-billion dollar industry as healthcare sector and governments around the world increase their research spending.

The report analyzes the prevalent opportunities for the markets growth and those that companies should capitalize in the near future to strengthen their position in the market. It presents insights into the growth drivers and lists down the major restraints. Additionally, the report gauges the effect of Porters five forces on the overall stem cell assay market.

Global Stem Cell Assay Market: Key Market Segments

For the purpose of the study, the report segments the global stem cell assay market based on various parameters. For instance, in terms of assay type, the market can be segmented into isolation and purification, viability, cell identification, differentiation, proliferation, apoptosis, and function. By kit, the market can be bifurcated into human embryonic stem cell kits and adult stem cell kits. Based on instruments, flow cytometer, cell imaging systems, automated cell counter, and micro electrode arrays could be the key market segments.

In terms of application, the market can be segmented into drug discovery and development, clinical research, and regenerative medicine and therapy. The growth witnessed across the aforementioned application segments will be influenced by the increasing incidence of chronic ailments which will translate into the rising demand for regenerative medicines. Finally, based on end users, research institutes and industry research constitute the key market segments.

The report includes a detailed assessment of the various factors influencing the markets expansion across its key segments. The ones holding the most lucrative prospects are analyzed, and the factors restraining its trajectory across key segments are also discussed at length.

Global Stem Cell Assay Market: Regional Analysis

Regionally, the market is expected to witness heightened demand in the developed countries across Europe and North America. The increasing incidence of chronic ailments and the subsequently expanding patient population are the chief drivers of the stem cell assay market in North America. Besides this, the market is also expected to witness lucrative opportunities in Asia Pacific and Rest of the World.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=40

Global Stem Cell Assay Market: Vendor Landscape

A major inclusion in the report is the detailed assessment of the markets vendor landscape. For the purpose of the study the report therefore profiles some of the leading players having influence on the overall market dynamics. It also conducts SWOT analysis to study the strengths and weaknesses of the companies profiled and identify threats and opportunities that these enterprises are forecast to witness over the course of the reports forecast period.

Some of the most prominent enterprises operating in the global stem cell assay market are Bio-Rad Laboratories, Inc (U.S.), Thermo Fisher Scientific Inc. (U.S.), GE Healthcare (U.K.), Hemogenix Inc. (U.S.), Promega Corporation (U.S.), Bio-Techne Corporation (U.S.), Merck KGaA (Germany), STEMCELL Technologies Inc. (CA), Cell Biolabs, Inc. (U.S.), and Cellular Dynamics International, Inc. (U.S.).

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Read the original here:
Stem Cell Assay Market | Know the aspects that will serve as game-changers for the market - BioSpace

Center for cell and gene therapy to open next year – Harvard Gazette

An innovative public-private partnership took a big step in its plan to open a center next year that aims at boosting advances in cell and gene therapy in the region, signing a 10-year lease for a 40,000-square-foot facility in Watertown.

Project participants refer to the facility, which has not been formally named, as the center for advanced biological innovation and manufacturing (CABIM). The goal is to increase availability of materials like genetically altered cells that are essential to advancing discoveries from the lab to clinics for use in treating patients.

There has been great progress in developing pharmaceuticals small-molecule drugs to treat a wide range of diseases, said Harvard Provost Alan Garber, who has led the effort. But many conditions resist treatment with conventional pharmaceuticals. Cell-based therapies offer biological approaches that are complementary to and sometimes far more effective than chemistry-based treatments.

Scientists say that a bottleneck in manufacturing such biological materials is slowing the development of cutting-edge advances in gene therapy, stem cell science, regenerative medicine, CRISPR/Cas9 gene editing, and cancer immunotherapy. An array of treatments based on those and similar technologies such as those involving RNA, peptides, and oligonucleotides are in development, in clinical trials, and in some cases already in the clinic.

This facility will help turn scientific findings into approved therapies by making these resources available to early-stage companies and labs.

Alan Garber, Harvard provost

The center, whose creation was announced in late 2019, is led by institutions from both academia and industry. It will contain both manufacturing and innovation space to boost the supply of materials for late-stage research and early clinical trials and provide space to develop ideas that have left the lab but are not yet ripe for corporate investment. It will also emphasize training in the operation of advanced equipment used in cell manufacturing as a way to increase the pool of workers with such critical skills in the region.

The promise of cell-based therapies has been proven, Garber said, pointing to recent gene-therapy trials to treat sickle cell anemia, which showed significant improvement. He also cited stem-cell-based work to treat diabetes by implanting insulin-producing beta cells, developed in the Harvard lab of Xander University Professor Douglas Melton.

The development of tools like CRISPR and progress in stem-cell science are among the advances that have given us hope that we will soon be able to treat cancer, immunological diseases, neurological conditions, and many other inherited conditions far better, Garber said. This facility will help turn scientific findings into approved therapies by making these resources available to early-stage companies and labs.

Follow this link:
Center for cell and gene therapy to open next year - Harvard Gazette

Covid-19 Impact On Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020 Booming So Rapidly by 2027 | Fibrocell Science, Inc., Genzyme…

A new market study on the 2020-2027Autologous Stem Cell and Non-Stem Cell Based Therapies Marketwith 100+ market data Tables, Pie Chat, Graphs & Figures spread through Pages and easy to understand detailed analysis. At present, the market is developing its presence. The Research report presents a complete assessment of the Market and contains a future trend, current growth factors, attentive opinions, facts, and industry-validated market data. Report offering you more creative solutions that combine our deep geographic experience, intimate sector knowledge and clear insights into how to create value in your business. The research study provides estimates for the 2020-2027 Autologous Stem Cell and Non-Stem Cell Based Therapies Market Forecast till2027*.

Exclusive Sample (350 Pages PDF) Report: To Know the Impact of COVID-19 on this Industry @https://www.coherentmarketinsights.com/insight/request-sample/523

Major Market Top Key Players: Autologous Stem Cell and Non-Stem Cell Based Therapies market

Caladrius Biosciences, Vericel Corporation, Fibrocell Science, Inc., Genzyme Corporation, BrainStorm Cell Therapeutics, Regeneus Ltd., and Dendreon Corporation.

Regional Analysis:

North America: United States, Canada, Mexico

Europe: Germany, France, UK, Russia, Italy, Rest of Europe

Middle East Africa: Turkey, Egypt, South Africa, GCC Countries, Rest of Middle East & Africa

Asia-Pacific: India, Australia, Japan, China, South Korea, Indonesia, Malaysia, Philippines, Thailand, Vietnam

In the end, the report makes some important proposals for a new project of this Industry before evaluating its feasibility. Overall, the report provides an in-depth insight into the global Autologous Stem Cell and Non-Stem Cell Based Therapies industry covering all important parameters.

Request for Customization of Research Report @ https://www.coherentmarketinsights.com/insight/request-customization/523

Further, in the research report, the following points are included along with an in-depth study of each point:

Production Analysis Production is analyzed with respect to different regions, types, and applications. Here, the price analysis of various Market key players is also covered.

Sales and Revenue Analysis Both, sales and revenue are studied for the different regions of the global market. Another major aspect, price, which plays an important part in the revenue generation is also assessed in this section for the various regions.

Supply and Consumption In continuation of sales, this section studies the supply and consumption of the Market. This part also sheds light on the gap between supply and consumption. Import and export figures are also given in this part.

Other analyses Apart from the information, trade and distribution analysis for the Market, contact information of major manufacturers, suppliers and key consumers are also given. Also, SWOT analysis for new projects and feasibility analysis for new investment are included.

In continuation with this data, the sale price is for various types, applications and regions are also included. The Market for major regions is given. Additionally, type wise and application wise consumption figures are also given.

Few Necessary Concerns Covered In The Report:

Innovation Techniques enlisted for the development in the market.

The main Regions considered profitable for Market development.

Development techniques implemented by key players.

The Prediction of the expected growth rate of market size and market share.

Apply Promo Code STAYHOME and Get Instant Discount of USD 1000

If you purchase the report this year:

Flat20%instant discount

25%discount on 2nd report

15 %free customization

Buy This Complete A Business Report @: https://www.coherentmarketinsights.com/insight/buy-now/523

Some of the key questions answered in this report:

What will the market growth rate, growth momentum or acceleration market carries during the forecast period?

Which are the key factors driving the Autologous Stem Cell and Non-Stem Cell Based Therapies market?

What was the size of the emerging Autologous Stem Cell and Non-Stem Cell Based Therapies market by value in 2020?

What will be the size of the emerging Autologous Stem Cell and Non-Stem Cell Based Therapies market in 2027?

Which region is expected to hold the highest market share in the Autologous Stem Cell and Non-Stem Cell Based Therapies market?

What trends, challenges and barriers will impact the development and sizing of the Global Autologous Stem Cell and Non-Stem Cell Based Therapies market?

What is sales volume, revenue, and price analysis of top manufacturers of Autologous Stem Cell and Non-Stem Cell Based Therapies market?

What are the Autologous Stem Cell and Non-Stem Cell Based Therapies market opportunities and threats faced by the vendors in the global Autologous Stem Cell and Non-Stem Cell Based Therapies Industry?

The reports conclusion leads into the overall scope of the Global market with respect to feasibility of investments in various segments of the market, along with a descriptive passage that outlines the feasibility of new projects that might succeed in the Global Autologous Stem Cell and Non-Stem Cell Based Therapies market in the near future.

Thanks for reading this article you can also get individual chapter wise section or region wise report version like North America, Europe, MEA or Asia Pacific.

About Us:

Coherent Market Insightsis a prominent market research and consulting firm offering action-ready syndicated research reports, custom market analysis, consulting services, and competitive analysis through various recommendations related to emerging market trends, technologies, and potential absolute dollar opportunity.

Contact Us

Mr. Shah Coherent Market Insights 1001 4th Ave, #3200 Seattle, WA 98154 Phone: US +12067016702 / UK +4402081334027 Email: sales@coherentmarketinsights.comWeb:https://www.coherentmarketinsights.com

Go here to read the rest:
Covid-19 Impact On Autologous Stem Cell and Non-Stem Cell Based Therapies Market 2020 Booming So Rapidly by 2027 | Fibrocell Science, Inc., Genzyme...