Platelet-Rich Plasma (PRP) Injections: Purpose & Effectiveness

You may have heard about athletes like Tiger Woods getting platelet-rich plasma (PRP) injections to help heal an injury. These shots, which are based on your own blood, are increasingly being used to treat sports injuries and to help wounds heal after surgery. Some doctors even use it as a cosmetic procedure to target signs of aging, such as wrinkles. But does it work? Heres what to keep in mind.

Plasma is the liquid part of your blood thats mostly made of water and protein. It lets red and white blood cells and platelets move through your bloodstream. Platelets are a type of blood cell that makes your blood clot. They also play a role in healing.

Doctors may use platelet-rich plasma (PRP) on injuries or damage to tendons, ligaments, muscles, joints, and skin.

To collect plasma, a doctor draws blood from your body and uses a machine to separate the platelet-rich plasma from the rest of the blood. Then the doctor numbs the area of your body being treated with PRP injections. Once youre numb, the doctor uses a needle to inject your plasma into the area of your body being treated.

For example, if youre being treated for a muscle injury, your doctor would inject plasma into several locations in that muscle. In some cases, doctors use ultrasound technology during injections to make sure theyre targeting the right area. PRP injections usually take about 30 minutes, though it depends on the area youre targeting.

Once platelets are in the area thats being treated, they break down and release growth factors, which are compounds that help cells repair and renew. This is thought to trigger your bodys healing process.

PRP injections are used to treat torn tendons, tendinitis, muscle injuries, arthritis-related pain, and joint injuries. Theyre becoming more common for cosmetic procedures, too. For example, dermatologists and hair replacement experts use PRP injections to treat a type of hair loss called androgenic alopecia, also known as male or female pattern baldness, which affects men and women. And some dermatologists provide PRP treatments for the face. (You may have heard these called a vampire facial.)

More studies are needed to see what conditions PRP can work on. So far, research shows that it speeds healing after injury or surgery for certain conditions, like torn tendons. In addition to helping injured tissue heal, some studies show PRP injections curb pain and boost mobility for people with rotator cuff injuries. PRP injections appear to reduce hair loss in people with male or female pattern baldness. But its not clear whether facial PRP injections ease visible signs of aging, like wrinkles and sagging skin.

It can take several weeks for PRP injections to start working. For some conditions, particularly those affecting the hair or the skin, it may take up to 6 months to notice the full effects. For some conditions, including hair loss, you may need to repeat the procedure to maintain the results.

Youll likely need to stop taking certain medications that thin your blood, like aspirin and ibuprofen, before you get PRP injections. You may also need to take a break from certain vitamins or supplements, such as omega-3 fatty acids. Your doctor can tell you exactly what you need to do to prepare for these shots.

PRP doesnt usually cause major side effects. But because it involves drawing blood, youll want to make sure you eat before the procedure. That will help you avoid feeling lightheaded when you get PRP injections.

After the shot, you shouldnt wash the area that was treated for 48 hours. You might notice some soreness and bruising in the area that received injections. If you feel sharp or intense pain, let your doctor know.

PRP injections may or may not be covered by your health insurance, so check your plans details. If youre getting it for cosmetic reasons -- for example, PRP injections for hair loss -- your insurance probably wont cover it. Treatment can cost $250 to $1,500 a session, and you may need several sessions to see results.

You cant get PRP injections if you have:

You should only get PRP injections from a licensed doctor.

SOURCES:

Hospital for Special Surgery: Platelet-Rich Plasma (PRP) Injection.

American Academy of Orthopaedic Surgeons: Platelet-Rich Plasma (PRP).

Johns Hopkins Medicine: Platelet-Rich Plasma (PRP).

Cedars-Sinai: Platelet Rich Plasma Therapy.

American Society of Plastic Surgeons: Platelet-Rich Plasma for Cosmetic Facial Procedures Promising Results, but Evidence Has Limitations.

American Academy of Dermatology: Is platelet-rich plasma the secret to younger-looking skin?

PLOS ONE: A Pilot Study Evaluating the Effectiveness of Platelet-Rich Plasma Therapy for Treating Degenerative Tendinopathies: A Randomized Control Trial with Synchronous Observational Cohort.

The rest is here:
Platelet-Rich Plasma (PRP) Injections: Purpose & Effectiveness

Business beat – The Spokesman-Review

UPDATED: Fri., Dec. 18, 2020

Spokane Center for Facial Plastic Surgery, a division of Columbia Surgical Specialists, has hired Brittany Martin, MSN, APRN, FNP-C. Martin graduated magna cum laude from Whitworth University and WSU College of Nursing, then completed graduate studies at Gonzaga University and graduated with honors. She is a Spokane native and worked at Columbia Surgical Specialists through her graduate studies. Martin will provide various in-office procedures, including Botox/Dysport injections, filler treatments, miraDry treatments, platelet rich plasma injections and intense-pulsed light therapy. She also will assist with post-op appointments.

Paul Merritt has been appointed as the CEO of Fatbeam, a fiber-broadband internet provider in the Coeur dAlene and Spokane areas. He has nearly 20 years experience in the telecom industry. Merritt recently served in the hyperscalers-business segment for Lumen, formerly CenturyLink, managing strategies for product and solution development and sales performance. Prior to his role at Lumen, Merritt directed all aspects of daily-sales operations for cloud, software, and infrastructure vertical teams at Zayo. He also has served as the regional vice president for Comcast Business and has held various positions with XO Communications, Qwest (CenturyLink), Redapt and Allstream.

Spokane Home Builders Association has hired Jennifer Thomas as the membership services director and Beth Hanson as office manager. Thomas previously worked with SHBAs advertising agency, QUINN, where she headed the digital advertising team. She has also been a strategist for multiple Spokane businesses. In her new role, Thomas will oversee member services, such as recruitment and retention efforts and member benefit programs. Hanson previously worked for Douglass Properties, serving nine years as a property manager and four years as the accounts payable processor, assistant to the financial controller and senior property manager. In her new role, she will handle office operations, database management and financial oversight. She will also serve as a staff liaison for the Finance and Education Committees and the Remodelers Council.

Numerica Credit Union has been honored as Outstanding Community Lender for the U.S. Small Business Administrations Seattle District, which includes all of Washington state and North Idaho. The award recognizes the community bank or credit union which closed the most standard SBA loans in the district during the SBA fiscal year, which ran from October 2019 to September . The award only measures traditional SBA 7 (a) loans, which provide assistance to small businesses. Loans and relief provided by banks and credit unions due to COVID-19 legislation, such as Paycheck Protection Program loans, were not included in the U.S. Small Business Administrations count of standard SBA loans for this award. Numerica is headquartered in Spokane Valley and has more than 158,000 members in Central and Eastern Washington and North Idaho. It manages $2.9 billion in assets.

Inland Empire Property Watch has earned accreditation from the National Home Watch Association. The NHWA is an organization that was founded in 2009 with the goal to create and maintain high-industry standards for Home Watch and absentee homeowner services throughout the United States and Canada. Home Watch is a visual inspection service for homes and other properties available to property owners who are not physically present to oversee their property. Inland Empire Property Watch is owned by John and Shari Miller who reside in Wilbur, Washington. Originally from Skagit Valley, Washington, they moved to Eastern Washington in 2012 and worked at Lake Roosevelt, where they operated the Keller Ferry and managed the Keller Ferry Marina and Campground for several years.

After meeting many seasonal residents in the area, they recently decided to open Inland Empire Property Watch.

The business serves Wilbur, Davenport, Republic, Seven Bays and Grand Coulee. Accreditation through NHWA ensures that owners and operators of Home Watch service providers have passed criminal background checks; maintain insurance coverage for general and professional liability and proper bonding; display truthful website and advertising content; and adhere to the NHWAs code of ethics and mission statement. NHWA also checks on the providers consumer complaints.

Plenty of us will be happy to see 2020 in our rear-view window come Jan. 1.

Read more:
Business beat - The Spokesman-Review

Scientists have restored youth to aging eyes in mice – Massive Science

Following the harassment of Christian Cooper in Central Park in May 2020, Black birders created #BlackBirdersWeek to celebrate Black nature enthusiasts and highlight their belonging in outdoor spaces. Since then, dozens of campaigns have emerged to amplify and appreciate Black academics, scientists, and naturalists.

Next up is #BlackInMarineScienceWeek, running from November 29th to December 5th.Led by founder Dr. Tiara Moore and organizers Amani Webber-Schultz, Dr. Camille Gaynus, Carlee Jackson, Al Troutman, Jasmin Graham, Jeanette Davis, Kris Howard, Leslie Townsell, Kaylee Arnold, and Jaida Elcock, this week represents an opportunity for community building and improved representation.

There are few Black folks in ecology and even fewer in marine ecology, says Arnold, a science communicator and disease ecologist. The network that Ive gained through organizing this week is phenomenal. Meeting other Black marine scientists and showing that to the world, especially young Black folks, is a way to say we exist, were here. We have a full day dedicated to young kids, which is unique and exciting.

The organizers hope that the week will help normalize Black folks doing marine research, inspire younger generations, and remind everyone to check their preconceived notions.

"When I say I study sharks people seem concerned about my swimming or my hair, [and] sometimes respond with 'Oh, thats super interesting'... I dont know if that's because it's unusual for people to study sharks or because Im Black and I study sharks, recalls Elcock, an elasmobranch movement ecologist, science communicator, and co-founder of Minorities in Shark Science. Science is for everybody. People say there isn't diversity because [Black] people arent interested... thats clearly not true theres a whole week dedicated [to it]."

Discussion this week will address the fact that exclusion, not lack of interest, led to todays lack of representation. Centuries of segregation and underinvestment in Black neighborhood pools led to, and are perpetuated by, these incorrect and harmful ideas.

My grandparents and my mom said there were just no pools for her to go to... I had a very different experience. Despite people trying to push us out of the water and science, we persevered, and now we get to break down those stereotypes, notes Arnold.

Black in Marine Science Week is here to do just that, showcasing organizers and participants from every imaginable marine science niche, all shaping how society views the oceans and its inhabitants.

There's more Black folks than even we know and are showcasing. I hope that if the media picks up on the number of us as well, and has better representation. Seminar series are extremely white, and now you have a resource of people you can invite instead, emphasizes Arnold, pointing to the necessity of non-Black marine scientists to step up and ensure representation continues beyond this joyous and educational week.

Here is the original post:
Scientists have restored youth to aging eyes in mice - Massive Science

Top Technical Advances of 2020 – The Scientist

COVID-19 diagnostics

A mockup of an at-home test

MAMMOTH BIOSCIENCES

Much of the world became aware of the disease now known as COVID-19 in January, and impressively, a diagnostic PCR test became available the same month. Weve since seen an explosion in potential variations on that assay, including saliva tests, which bypass the need for scarce swabs, and a slew of techniques that could be considerably faster and cheaper than PCR, including breath tests, at-home antigen tests, a diagnostic that combines loop-mediated isothermal amplification (LAMP) and CRISPR, and even an AI model that detects telltale signs of COVID-19 from CT scans.

While diagnostics gave us hard numbers on SARS-CoV-2s devastating sweep, the rapid development of vaccines against it allowed us to imagine the pandemic coming under control. mRNA vaccines from Pfizer and Moderna were among the early leaders of the vaccine race, training the spotlight on a newer technique that had been attempted for other diseases but had not yet made it to the market before 2020. The principle is to deliver a stretch of viral mRNA to recipients cells, which go on to manufacture viral proteins from the transcripts, provoking an immune response.

The year also saw researchers experimenting with other innovative ways of producing vaccines. In one examplewhich, unlike with mRNA vaccines, would avoid the need for cold temperatures during transport and storageresearchers showed that a flu vaccine delivered orally as a thin film induced an immune response in mice.

A colony of spotted wing Drosophila flies entomologist Hannah Burrack maintained at home

COURTESY HANNAH BURRACK

The pandemics effects on science were far-reaching, and necessitated adaptation as many researchers were shut out of their labs in a bid to prevent infection. Among the creative means scientists devised to continue their work was Cut&Tag@home, a protocol for profiling chromosome components that Steven Henikoff of the Fred Hutchinson Cancer Research Center devised in his laundry room.

Induced pluripotent stem cells (iPSCs) have proved a boon to research, but most labs grow the cells in expensive commercial media that require frequent tending to replenish the stock. In a paper at the start of this year, researchers described a DIY recipe for a medium with ingredients that cost a fraction of what commercial alternatives do, and that only needs to be changed every 3.5 days, enabling caretakers to have weekends off.

Neurositys Notion headset, released in 2019, is one of a handful of consumer brain-computer interface devices that scientists are adapting for their EEG research.

STEVE GONG

Collecting data on humans brain activity typically requires researchers to put their subjects into expensive MRI or PET scanners, or to affix wires to their skulls for a traditional EEG setup. But advances in brain-computer interface (BCI) technologymuch of it made with an eye toward the consumer market for devices that could be used for applications such as gaminghold the potential for neuroscientists to gather a wealth of brain activity information as subjects go about their daily activities. The field continued to advance this year with the release of two new BCI headsets, NextMind, which decodes visual attention, and the Neurosity Notion 2, an upgraded iteration of a product that, while designed for coders, can also be used to collect research data.

Read this article:
Top Technical Advances of 2020 - The Scientist

A new psychedelic drug gives psychiatric benefits without causing hallucinations – Massive Science

Following the harassment of Christian Cooper in Central Park in May 2020, Black birders created #BlackBirdersWeek to celebrate Black nature enthusiasts and highlight their belonging in outdoor spaces. Since then, dozens of campaigns have emerged to amplify and appreciate Black academics, scientists, and naturalists.

Next up is #BlackInMarineScienceWeek, running from November 29th to December 5th.Led by founder Dr. Tiara Moore and organizers Amani Webber-Schultz, Dr. Camille Gaynus, Carlee Jackson, Al Troutman, Jasmin Graham, Jeanette Davis, Kris Howard, Leslie Townsell, Kaylee Arnold, and Jaida Elcock, this week represents an opportunity for community building and improved representation.

There are few Black folks in ecology and even fewer in marine ecology, says Arnold, a science communicator and disease ecologist. The network that Ive gained through organizing this week is phenomenal. Meeting other Black marine scientists and showing that to the world, especially young Black folks, is a way to say we exist, were here. We have a full day dedicated to young kids, which is unique and exciting.

The organizers hope that the week will help normalize Black folks doing marine research, inspire younger generations, and remind everyone to check their preconceived notions.

"When I say I study sharks people seem concerned about my swimming or my hair, [and] sometimes respond with 'Oh, thats super interesting'... I dont know if that's because it's unusual for people to study sharks or because Im Black and I study sharks, recalls Elcock, an elasmobranch movement ecologist, science communicator, and co-founder of Minorities in Shark Science. Science is for everybody. People say there isn't diversity because [Black] people arent interested... thats clearly not true theres a whole week dedicated [to it]."

Discussion this week will address the fact that exclusion, not lack of interest, led to todays lack of representation. Centuries of segregation and underinvestment in Black neighborhood pools led to, and are perpetuated by, these incorrect and harmful ideas.

My grandparents and my mom said there were just no pools for her to go to... I had a very different experience. Despite people trying to push us out of the water and science, we persevered, and now we get to break down those stereotypes, notes Arnold.

Black in Marine Science Week is here to do just that, showcasing organizers and participants from every imaginable marine science niche, all shaping how society views the oceans and its inhabitants.

There's more Black folks than even we know and are showcasing. I hope that if the media picks up on the number of us as well, and has better representation. Seminar series are extremely white, and now you have a resource of people you can invite instead, emphasizes Arnold, pointing to the necessity of non-Black marine scientists to step up and ensure representation continues beyond this joyous and educational week.

Read the original here:
A new psychedelic drug gives psychiatric benefits without causing hallucinations - Massive Science

Michigans Catholic bishops say 2 COVID-19 vaccines are OK morally but another is problematic – MLive.com

GRAND RAPIDS, MI Michigans seven Catholic bishops said COVID-19 vaccines by Pfizer and Moderna are morally permissible but raised concerns about AstraZencas vaccine using a cell line that originated from tissue of an aborted fetus.

Pfizer and Moderna have received emergency approval for use by the U.S. Food and Drug Association. Pfizers vaccine has already rolled out across the country while Moderna expects to begin shipping its vaccine on Sunday, Dec. 20.

AstraZencas vaccine along with a vaccine by Johnson & Johnson - is nearing its final trial stage.

The Catholic bishops issued a statement Saturday, Dec., 19, on what they called the morality of COVID-19 vaccines.

It is morally permissible to receive the vaccines developed by Pfizer and Moderna, the bishops said.

Neither of these vaccines have used cell lines originating in tissue taken from aborted babies in their design, development, and production. However, both the Pfizer and the Moderna vaccine did use such a cell line in the confirmatory testing. This connection to the abortion is very remote, however, and it is important to keep in mind that there are varying levels of responsibility. Greater moral responsibility lies with the researchers than with those who receive the vaccine, the bishops wrote.

The vaccine developed by AstraZeneca is more morally problematic, however, the bishops wrote.

It did utilize in the design, production, development, and confirmatory testing a cell line that originated from tissue taken from an aborted baby. This vaccine may be received only if there are no other alternatives. If one does not have a choice of vaccine and a delay in immunization may bring about serious consequences for ones health and the health of others, it would be permissible to accept the AstraZeneca vaccine.

Science Magazine said that at least five COVID-19 vaccine candidates use a fetal kidney cell line from a fetus aborted around 1972 or cells of an 18-week-old fetus that was aborted in 1985.

Dr. Deepak Srivastava, former president of the International Society for Stem Cell Research, told the Associated Press that the fetal cell lines were vital in developing vaccines for a range of viruses.

They are widely used in many aspects in biomedical science because they are so effective, he said. Whats important for the public to know even if they are opposed to the use of fetal cells for therapies, these medicines that are being made and vaccines do not contain any aspect of the cells in them, Srivastava said. The cells are used as factories for production.

In a column for the Heritage Foundation, which promotes conservative public policy, Dr. Melissa Moschella said she strongly opposes abortion but supported using the cell lines derived long ago from the tissue of aborted fetuses - to develop life-saving vaccines.

Cell lines (from one of the fetuses) are far removed from the unborn child from whose tissue they were initially derived. Such cell lines are immortal, meaning that, once developed, they continue to divide and reproduce themselves indefinitely. This means that the use of such lines does not necessarily create additional demand for new fetal tissue, Moschella wrote.

The bishops said the Congregation for the Doctrine of the Faith found vaccinations permissible because of the pandemics serious health risks.

Those who do not receive vaccinations have a moral responsibility to take steps to prevent spread of the virus, they said.

At this same time, we join our voices to call for the development of vaccines that have no connection to abortion. Our consciences must not be dulled, nor may we imply in any way that abortion is acceptable, the bishops said.

The statement was issued by Allen H. Vigneron, archbishop of Detroit, and bishops Paul J. Bradley of Kalamazoo; Earl A. Boyea of Lansing; John F. Doerfler of Marquette; Robert D. Gruss of Saginaw; Walter A. Hurley, apostolic administrator, of Gaylord; and David J. Walkowiak of Grand Rapids.

Read more:

Michigan Senate approves $465M for coronavirus response, relief for businesses and unemployed workers

US clears Moderna vaccine for COVID-19, 2nd shot in arsenal

General apologizes for COVID-19 vaccine distribution day after Whitmer blasts Trump administration

See the original post:
Michigans Catholic bishops say 2 COVID-19 vaccines are OK morally but another is problematic - MLive.com

How Researchers Are Making Do in the Time of COVID-19 – The Wire Science

Image: UN/Unsplash.

One of the astonishing aspects of the human response to the COVID-19 pandemic has been how quickly scientists pivoted to studying every facet of the virus in order to mitigate the loss of life and plan for a return to normalcy. At the same time, a lot of non-coronavirus research ground to a near halt.

With research labs and offices shuttered for all but essential workers, many scientists were stuck at home, their fieldwork and meetings canceled and planned experiments kicked down the road as they struggled to figure out how to keep their research programs going. Many took the opportunity to catch up on writing grants and papers; some in between caring for kids came up with strategic workarounds to keep the scientific juices flowing.

To gauge how researchers in different fields are managing,Knowable Magazine spoke with an array of scientists and technical staff among them a specialist keeping alive genetically important strains of fruit flies, the maintenance chief of an astronomical observatory working to keep telescopes safe and on standby during the lockdown, and a paediatrician struggling to manage clinical trials for a rare genetic disease. Here are a few slices of scientific life during the pandemic.

Agnieszka Czechowicz, Stanford University School of Medicine

Czechowicz is a paediatrician in Stanfords division of stem cell transplantation and regenerative medicine, where she manages a research group that develops new therapies and conducts clinical trials on rare genetic diseases.

Agnieszka Czechowiczs father suffers from severe Parkinsons disease. The coronavirus pandemic forced him to remain indoors and away from people, robbing him of the physical conditioning and social interactions he needs to cope with his disease. A recent fall left him in the hospital, bringing the additional worry that he might contract COVID-19 there and isolating him further.

For Czechowicz, his situation brought into sharp relief the challenges the coronavirus has forced upon those carrying out clinical trials, including those she is running, which involve patients traveling to hospitals around the country. Would I have him travel to any clinical site right now for a new Parkinsons treatment? she says. Absolutely not.

The pandemic forced Czechowicz to halt clinical trials she oversees for a rare genetic disease of children called Fanconi anAemia, a condition that impairs the bodys ability to repair damaged DNA and often leads to bone marrow failure and cancer. The treatment Czechowicz and colleagues are testing involves extracting blood-forming stem cells from the patients bone marrow, inserting a healthy copy of a missing or malfunctioning gene and then reinfusing those cells back into the patient.

Every aspect of what I do is massively impacted by the pandemic, Czechowicz says. One of her early-stage clinical trials involves testing the safety of the therapy. But during the initial shutdown which started in mid-March and lasted for two months her patients could not readily travel to Stanford for the necessary follow-up visits, and remote monitoring was difficult.

Theres special blood testing and bone marrow testing that we need to do. In particular, its critical to get the samples to make sure the patients, for example, arent developing leukAemia, she says. Theres no way to know that without really checking the bone marrow. She had to clear large hurdles to get her patients evaluated.

Another early-stage trial, designed to determine the effectiveness of the therapy, also had to stop enrolling new patients. Because speed is important when it comes to treating Fanconi anaemia the children are likely losing stem cells all the time any delay in treatment can be a source of great anxiety for their parents. Czechowicz had to explain to them why the trials were temporarily halted. It was really challenging to have these discussions with the families, she says.

With the easing of travel and workplace restrictions, the families began traveling to Stanford in June but with infections back on the rise, many families are becoming hesitant again, says Czechowicz. Fortunately, her trials are small, so she can guide each family through the process of safely resuming the trials and continuing with follow-up. Her own team also has to follow strict safety protocols. For example, even though her lab has 10 members, only two can be in the lab at any one time, and only one parent is allowed into the clinic with the child.

Not all clinical trials can pay such close attention to individual patients. Large trials with hundreds of patients can involve multiple sites and require much more monitoring, so resuming those remains difficult. Also, restrictions on working full bore are slowing the pipeline for new therapies. The impact of that, were not going to see for many years to come, Czechowicz says.

Abolhassan Jawahery, University of Maryland, College Park

Jawahery is a particle physicist and a member of LHCb, one of the main experiments at the Large Hadron Collider (LHC) at CERN, the particle physics laboratory near Geneva.

In December 2018, well before the coronavirus pandemic began, the LHC shut down for upgrades. Housed in a 27-kilometre-long tunnel about 100 meters underground, the LHC accelerates two beams of protons, one clockwise and one counterclockwise, and makes them collide head-on at four locations. There, four gigantic subterranean detectors ATLAS, CMS, LHCb and ALICE sift through the debris of particles created by the collisions, looking for evidence of new physics. (For example, ATLAS and CMS found the Higgs boson, the fundamental particle of the Higgs field, which gives all elementary particles their mass.)

For its next set of experiments, which aim to probe the properties of subatomic particles with greater precision, the LHC needed to increase the intensity of its proton beams. Consequently, the four detectors needed to be upgraded too, to handle the resultant higher temperatures and increased radiation at the sites of the particle collisions. The work was on track for a restart around May 2021 until the pandemic swept all the scientists careful plans away.

The LHC and its four detectors are each run by a separate collaboration. CERN, which manages the LHC, is hopeful it can restart the collider by February 2022. They think that they can get the accelerator going if there are no more major catastrophic events, says physicist Abolhassan Jawahery. But the impact on the four detectors is less clear.

For the LHCb upgrade, Jawaherys team at the University of Maryland had been working on building about 4,000 extremely sensitive electronic circuit boards. These boards have to be burned in before they can be sent to CERN. We put them in an oven, literally cooking the boards and then running extensive tests in order to get them ready so that we can put them in the accelerator and run them for 10 to 20 years, says Jawahery. And none of that could be done during the pandemic shutdown.

The team resumed its work in June, but with restrictions put in place by the state of Maryland. Jawahery runs two labs, and for months was allowed only two people at a time in one lab and three in the other, making progress extremely slow. Still, his team is fortunate that it does not depend on supplies from countries hit hard by the coronavirus. Other labs werent so lucky. Scientists in Milan, for example, built some electronics and detector components for the LHCb, and a lab at Syracuse University in New York built sensors that relied on shipments from Milan. When Milan was completely closed down at the height of the pandemic, Syracuse, too, stopped working on Milan-dependent components.

For Jawahery the lockdown had a silver lining. The LHCs most recent run had produced about 25 gigabytes of data per second but his team had found little time to analyse any of it before the pandemic. We were complaining that we were spending all our time building the new instrument and the data keeps on coming, he says. When he and his team were locked out of their labs, they turned to their data backlog. We could do actual physics, he says. We are already getting ready to publish some papers.

Gordon Gray, Princeton University

Gray is a professionalDrosophila specialist in the department of molecular biology.

Gordon Gray has been called the chef de cuisine of Princetons fly kitchen, where he has been feeding flies for 46 years. He concocts meals for millions of fruit flies, at least 150 litres each week. When the pandemic hit in March and universities around the world shut down, Princeton deemed Grays work an essential service: The Drosophilafruit flies could not be allowed to die off.

Princetons flies include mutant and transgenic strains everything from ones that allow researchers to study the genes that influence normal development of a fly embryos organs, to those that have cancer-causing mutations. If the flies starved, researchers would need months or years to recreate these strains, says Princeton molecular biologist Elizabeth Gavis. And often, as techniques in molecular biology improve, the biologists reexamine flies they had studied earlier to get a more fine-grained understanding, making it worthwhile to preserve the strains.

Normally, if a lab had to shut down, researchers would send their flies to stock centres, such as one at Bowling Green State University in Ohio, that preserve the flies as part of their genetic library. But the stock centres couldnt handle Princetons flies, so Gray found himself on his own. Its basically catch as catch can with regards to the various labs here, just to keep things operational, he says.

For months, university pandemic restrictions have allowed only one person to be in Grays kitchen at a time. This has caused problems. Before the pandemic began, Gray, who is in his late 60s, had started training someone as a backup. But because of the one-person restriction, Gray and his trainee havent been able to work together. Gray envisions doing so soon, while wearing masks, keeping nearly 12 feet apart and communicating using hand signals.

To whip up a batch of fly food, or media, Gray uses a 50-litre steel cauldron, to which is attached a mixer that looks like an outboard motor. Gray fills the cauldron with water and adds agar, sugars, yeasts, salts and cornmeal, then brings it to a boil, all the while stirring watchfully. You dont want it to boil over, because when it does you wind up with a gigantic pancake on the floor, which you have to scoop up immediately because it gels, he says. Once the suspension cools to the right temperature, Gray adds an acid to inhibit mould, then dispenses precise amounts of the media into bottles and vials.

Even before the pandemic, Grays kitchen was isolated, to keep errant fruit flies from contaminating the pristine media. But at least he could work regular hours, because he knew the rhythms of the 10 or so fly labs he cooked for. That has changed. Labs, restricted to two occupants at a time, are now working seven days a week on rotating shifts. Gray comes in to work at all hours, because he cannot predict when each batch of fly food will run out and hell need to cook more.

He tries to work mostly at night to avoid coming into contact with others. But he still worries for his health, given his asthma and age-related risk. The relentless pandemic is taking a toll. Its exhausting, he says. It doesnt help not knowing when we will return to a sense of normalcy.

Celeste Kidd, University of California, Berkeley

Kidd is a child developmental psychologist who uses behavioural tests and computational methods to understand how children acquire knowledge.

When UC Berkeley locked down in March, Celeste Kidd found herself closeted at home, dealing simultaneously with virtual meetings and her three-year-old son. During the early days of the pandemic, Kidd kept a supply of treats handy, and when her toddler came up to her during a meeting shed sneak him some under the desk. But she hadnt accounted for how long the pandemic would last. It turns out thats not a good strategy, long term, she says. I was very literally rewarding him for bad behaviour.

Kidds son soon learned that acting up during her meetings meant more candy. I knew that would happen. I did it anyway because I didnt have the bandwidth to come up with a better solution, she says. But Kidd knew from her own research that children are also extremely flexible and can unlearn behaviours. Eventually, she had a chat with her son. First, she admitted to him that she had made a mistake by giving him candy when he disrupted her meetings, and that was bad of her. Then she brought in new rules: no candy for misbehaving and misbehaviour could even mean no treats for the rest of day. We had some meltdown moments, says Kidd. But he gets it now and he doesnt do those things.

Her son may be the only child Kidd gets to interact with during the pandemic. Thats a huge loss for her research, because the bulk of her work focuses on young children. In normal times, families would bring their children to her lab, where her research team would track their gaze as they watched videos. In one study, for example, infants about seven to nine months old would look away (demonstrating lack of interest) when the events in the video were either too complex or too simple, suggesting that infants use their cognitive resources for stimuli that have just the right amount of information.

Such work, of course, requires the presence of parent, child and researchers, all in the same room. None of that is going to happen anytime soon, she says. Those families are not going to feel comfortable coming in for a while.

Kidd is also concerned about the impact of the pandemic on younger scientists. One of her undergraduate students had spent six months working on a study aimed at exploring the complexity of kids play patterns using physical objects and their relation to working memory and other cognitive resources. The university had approved the protocol, but shelter-in-place orders went into effect the week the first child was to come for the experiment. I feel so bad for her as a young scientist, to have done all this hard work and then right when you get to the fun part, which is collecting the data and finding out if her ideas have lasting merit, she doesnt get to do that part, Kidd says.

The situation might be even worse for grad students and postdocs. All of them are experiencing a big blow to morale in general, because there is so much uncertainty about what the future holds, she says. University budget cuts mean fewer slots for graduate students and fewer jobs for postdocs. Its very hard to stay motivated and get things done when youre not sure if there will be a payoff in the future, says Kidd. Thats literally a study that we ran in the lab so were all acutely aware of it.

Maxime Boccas, ESO Paranal Observatory

Boccas is the head of maintenance, support and engineering at the European Southern Observatorys Paranal Observatory in Chile.

When the massive domes of the Very Large Telescope, a constellation of four 8-meter-class telescopes atop Mount Paranal in Chiles Atacama Desert, open to the night sky each evening and the telescopes get ready for observations, its like a dragon waking up.

When the pandemic hit in March, the dragon on Mount Paranal closed its eyes to the cosmos and slept the first shutdown in its 20-year history, which included a major earthquake in 2010 that paralyzed much of the rest of Chile. For those who had to leave Paranal, it was like being sent away from home. We spend 40% of our life here, says Maxime Boccas, who oversaw the process of ensuring an orderly shutdown of the sites scientific and technical facilities. We work and sleep here, and we stay here eight days in a row. Some of Boccass colleagues have been doing that for 20 to 25 years. Leaving Paranal was like leaving their second home. That was a weird feeling.

The skeleton staff just 20 of the normal 150 or so people remained on site kept the observatory safe, ensuring that essential systems continued working: computers that astronomers were accessing remotely, the fire detection system and the earthquake protection system essential for protecting the 8-meter-wide primary mirrors from Chiles frequent quakes. The mirrors will likely never be made again, says Boccas. All the factories that cast and polished them are dismantled. If we lost a mirror, it would take between 5 and 10 years to build up the factory again and fabricate it. So each mirror has an airbag a tube that inflates around it when the system detects tremors and other protections.

During the shutdown, astronomers kept their fingers crossed. They were anxious that no big thing, like a supernova in our galaxy, would explode, Boccas says. The heavens have been quiet, but the six-month shutdown harmed research that involves continuously monitoring the same patch of the sky for transient phenomena such as gamma ray bursts. It creates a hole in their science program, says Boccas.

The observatory began a slow return to normalcy on September 9. Boccas is overseeing the reawakening of each telescope, one at a time. The staff still less than full strength is now working in shifts that have doubled from 8 to 15 days to limit the amount of travel to and from the site. The four large telescopes are now up and running again, and Boccas hopes they will be back to working together as one by the end of January.

Boccas, his crew and a few lucky astronomers are glad to be back at Paranal. It really feels like a family and I think everyone has noticed that, he says. Even in the kitchen, they have to cook for 30 people instead of 150, so the quality of the food is different, its slightly better.

But even as people return to the observatory, Boccas worries about long-term effects of the shutdown. Given the reduced staff, he has had to cut down on the frequency of preventive maintenance tasks, such as changing belts and lubricating motors, potentially shortening the lifetime of some components. We will not know until six months, a year or three years from now, he says.

This article is part ofReset: The Science of Crisis & Recovery, an ongoing series exploring how the world is navigating the coronavirus pandemic, its consequences and the way forward. Reset is supported by a grant from the Alfred P. Sloan Foundation.

Anil Ananthaswamy is a science journalist who enjoys writing about cosmology, consciousness and climate change. Hes a 2019-20 MIT Knight Science Journalism fellow. His latest book is Through Two Doors at Once. http://www.anilananthaswamy.com.

This article originally appeared in Knowable Magazine, an independent journalistic endeavour from Annual Reviews.

Go here to read the rest:
How Researchers Are Making Do in the Time of COVID-19 - The Wire Science

Real-time observation helpful in Stem cell for vascular diseases: Study – Hindustan Times

A study has found out that Stem cell treatment for vascular diseases can be predicted through real time observation.(ANI)

A recent study has found out that Stem cell treatment for vascular diseases can be predicted through real-time observation.

In the study which was published in the journal Biomaterials, therapeutic efficacy prediction was done using initial distribution images of stem cells that differentiate to endothelial cells. It can be applied to research in the field of stem cell treatments for blood vessel regeneration.

In recent years, the number of high-risk groups for ischemic diseases such as critical limb ischemia where tissues of the toe may decay is increasing due to an increase in the number of people with obesity, diabetes, and hypertension which are triggered by changes in dietary habits, smoking and consumption of alcohol. A number of studies are actively conducted on endothelial progenitor cells (hEPCs), which are stem cells that contribute to the blood vessel regeneration in the ischemic tissues, to treat such ischemia diseases.

Vascular hEPCs migrate to regions requiring angiogenesis, such as ischemic regions, and then differentiate into endothelial cells of blood vessels or release growth factors that help the formation of blood vessels to induce regeneration of the damaged blood vessels. Hence, these cells can be developed into stem cell therapy for diseases related to blood vessels including ischemic diseases.

However, when the hEPCs with outstanding blood vessel regeneration capability are used as stem cell therapy in ischemic diseases, the therapeutic treatment efficacy may differ depending on various variables such as survival of the transplanted cells and migration to the treatment region. Accordingly, treatments for ischemic diseases are remaining in the clinical stage without being commercialized due to the limitations in accurately observing and predicting the therapeutic efficacy.

The Korea Institute of Science and Technology (KIST) recently announced that the collaborative research team led by Dr. Kwangmeyung Kim from Center for Theragnosis and Sung-Hwan Moon from Stem Cell Research Institute, T&R Biofab Co. Ltd developed a method that can predict the therapeutic efficacy based on the distribution of the initial transplantation of hEPCs by tracking the initial distribution and migration of the transplanted cells using fluorescence romographic images.

The KIST research team first enabled observing fluorescence signals through fluorescence molecular tomography by binding fluorescent dyes to the surface of hEPCs. Subsequently, the team transplanted the cells into the hind limb of mouse with severe limb ischemia and tracked them through images for 28 days to evaluate the cell movement in the body; then, tracked and observed the regeneration process of the blood flow through laser scanning microscope (Laser Doppler imaging). As a result, it was revealed that the hEPCs migrate to the damaged tissues where the ischemic disease is found.

Additionally, the shapes of cell clusters were observed to be injected into two different shapes as a result of analyzing the images of hEPCs during the initial transplantation of cell therapy treatment. The two shapes were condensed round shape and spread shape. When the therapeutic efficacy was observed by classifying the experimental groups into these two shapes, it was found that the initial condensed round shape cells migrated better and showed superior therapeutic efficacy in the experimental groups. Based on these findings, the research team predicted that the treatment efficacy will be superior when the treatment cells are formed into a condensed round shape during the initial treatment.

Our developed technology, which can quickly and accurately monitor the initial transplantation forms and changes of stem cell therapy, will enable predicting the efficacy of the transplanted hEPCs in the early stages of ischemic disease treatments, and we expect it to be used in the development of stem cell therapy treatments for ischemic diseases in the future, said Dr. Kwangmeyung Kim at KIST, who led the research.

(This story has been published from a wire agency feed without modifications to the text. Only the headline has been changed.)

Follow more stories on Facebook and Twitter

Link:
Real-time observation helpful in Stem cell for vascular diseases: Study - Hindustan Times

NurOwn May Be Given to Early ALS Patients in US Who Finished Phase… – ALS News Today

BrainStorm Cell Therapeutics has opened an expanded access program (EAP) in the U.S. to allow certain amyotrophic lateral sclerosis (ALS) patients to gain access to its investigational cell-based therapy NurOwn.

EAPs, also known as compassionate use programs, are intended to make investigational therapies available outside of a clinical trial to people whose serious or life-threatening conditions have few or no adequate treatments, when the therapys benefits are thought to outweigh potential risks.

Developed in partnership with the U.S. Food and Drug Administration (FDA), the program will allow clinicians to prescribe NurOwn, at no cost, to ALS patients who completed the therapys pivotal, placebo-controlled Phase 3 trial (NCT03280056) and who meet specific eligibility criteria.

Those with less advanced disease as measured by the ALS Functional Rating Scale(ALSFRS-R) will be the first to receive the treatment. This decision was based on the trials top-line data, which showed a superior treatment response in people in earlier stages of ALS.

Detailed, full data are expected to be presented at upcoming scientific conferences, and published in a peer-reviewed scientific journal.

We are pleased to have the opportunity to treat additional patients with NurOwn through this Expanded Access Program, which was strongly advocated for by members of the ALS advocacy community, Chaim Lebovits, BrainStorms CEO, said in a press release.

We recognize the urgency with which people with ALS want and need access to new potential treatments. This EAP is an important next step to providing an immediate option for some patients, Lebovits added.

Fred Fisher, president and CEO of The ALS Associations Golden West Chapter, said that enabling early access, while the data review continues, is an extraordinary gesture of support and compassion for those living with ALS, and reflects an understanding of the ALS communitys urgent need for an effective therapy. The Golden West Chapter represents the largest ALS community in the U.S.

I applaud Brainstorm for taking this important step, and I look forward to learning the results of their full data analysis, Fisher added.

Lebovits emphasized that BrainStorm remains committed to rapidly advancing NurOwn through clinical development and regulatory review in the hope that the greatest number of people living with ALS may benefit. The EAP will not interfere with data or regulatory timelines.

NurOwn involves collecting mesenchymal stem cells(MSCs) from a patientsown bone marrow, and expanding and maturating them into cells that produce high levels of neurotrophic factors molecules that promote nervous tissue growth and survival. MSCs are stem cells that can generate a variety of other cell types.

The mature cells called MSC-NTF cells are then injected into the patients spinal canal to promote and support nerve cell repair. Using a patients own cells minimizes the risk of an immune reaction, as might occur with cells from a donor.

NurOwn has been designated an orphan drug in both the U.S. and European Union, and given to fast track designation in the U.S.; all help to speed its clinical development and review.

Afterpromising Phase 2 resultsin people with fast-progressing ALS, BrainStorm launched a Phase 3 trial to confirm NurOwns benefits in a larger patient population.

The Phase 3 study evaluated the therapys safety and effectiveness in 189 people with rapidly progressing ALS, who wererandomly assigned to a total of three injections of either NurOwn or a placebo, given directly into the spinal canal, every other month.

Patients were recruited at six clinical sites in the U.S.: three in California, two in Massachusetts, and one in Minnesota. NurOwn will be available under the EAP at these six centers.

Top-line data showed that a greater proportion of NurOwn-treated patients (34.7%) had a slower disease progression as assessed with the ALSFRS-R compared with those given a placebo (27.7%).

However, this difference did not reach statistical significance. This was mainly due to unexpectedly good placebo group responses, exceeding those reported in other ALS trials, the company reported.

Also, no significant group differences were observed in ALSFRS-R score mean changes over the seven months of treatment (-5.52 in the NurOwn group vs. -5.88 in the placebo group), meaning that the trial failed to meet both its main and secondary effectiveness goals.

However, greater treatment responses were seen in a pre-specified group of participants with less advanced disease.

In this group, 34.6% of those given NurOwn showed a slower disease progression, compared with 15.6% of those in the placebo group. In addition, the mean decline in the ALSFRS-R total score was 1.77 with NurOwn and 3.78 with a placebo reflecting a 2.01-point improvement with the cell-based therapy.

Differences between these groups were also not statistically significant, but they were considered clinically meaningful. Based on these positive findings, BrainStorm is actively working with the FDA to identify regulatory pathways that may support NurOwn approval as an ALS treatment.

Biomarker analyses also confirmed that NurOwn was driving its intended biological effects. Its use significantly increased the levels of neurotrophic factors, and dropped those of neurodegenerative and neuroinflammatory biomarkers, in patients cerebrospinal fluid a finding not observed among placebo patients. (The cerebrospinal fluid is the liquid that surrounds the brain and spinal cord.)

This expanded access program is an appropriate and welcome next step in following up the exciting results of the Phase 3 study; it is widely anticipated and deeply appreciated by our ALS patients, said Robert Brown, MD, PhD, one of the trials principal investigators.

Brown is also the Leo P. and Theresa M. LaChance chair in medical research, and chair of the neurology department atUniversity of Massachusetts Medical Schooland UMass Memorial Medical Center.

NurOwn will initially be manufactured by the Dana Farber Cancer Institute, assisted by on-site BrainStorm personnel.

BrainStorm also is evaluating NurOwn as a potential therapy for other neurodegenerative diseases, such as multiple sclerosis, Parkinsons disease, Huntingtons disease, as well as for autism spectrum disorder.

Marta Figueiredo holds a BSc in Biology and a MSc in Evolutionary and Developmental Biology from the University of Lisbon, Portugal. She is currently finishing her PhD in Biomedical Sciences at the University of Lisbon, where she focused her research on the role of several signalling pathways in thymus and parathyroid glands embryonic development.

Total Posts: 45

Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.

Continue reading here:
NurOwn May Be Given to Early ALS Patients in US Who Finished Phase... - ALS News Today

Follow the Money: Spatial Omics, CAR-NK Cells, AI-Powered Biology – Bio-IT World

December 21, 2020 | Funding updates around the life sciences including cash for a handheld mass spec device, Series D for oncolytic immunotherapy, a new company launch in allogenic CAR-NK cells, AI-powered cell classification, a 3-D sequencing platform, and more.

$170M: Israeli Digital Health First VC Firm

OTV (formerly Olive Tree Ventures), Israels digital health first venture capital firm, today announced the closing of a fund with a total value of $170M. OTV also announced their new name and the appointment of a new Head of Asia Pacific to spearhead the funds expansion into the regions market. OTV is the only venture capital fund in Israel whose primary focus is digital health, specializing in supporting their portfolio companies reach maturity, refine execution, tackle regulatory hurdles and ensure a global imprint on validated products. Over the course of the past five years, OTV has prioritized investment in digital health companies that develop cutting-edge solutions to todays most pressing healthcare problems. OTVs portfolio includes some of the worlds highest-profile digital health leaders, including TytoCare, Lemonaid Health, Emedgene, Scopio and Donisi Health.

$116M: Handheld, Desktop Mass Spec

908 Devices, which provides mass spectrometry devices for forensic and scientific research, raised the proposed deal size for its upcoming IPO. The Boston, MA-based company now plans to raise $116 million by offering 6.3 million shares at a price range of $18 to $19. The company had previously filed to offer the same number of shares at a range of $15 to $17. At the midpoint of the revised range, 908 Devices will raise 16% more in proceeds than previously anticipated. 908 Devices provides handheld and desktop mass spectrometry devices that are used to interrogate unknown and invisible materials, providing actionable answers to directly address critical problems in life sciences research, bioprocessing, industrial biotech, forensics and adjacent markets. Since its inception, the company has sold more than 1,200 handheld and desktop devices to over 300 customers in 32 countries, including 18 of the top 20 pharmaceutical companies by 2019 revenue, as well as numerous domestic and foreign government agencies and leading academic institutions.

$91M: Series C for Digital, Decentralized Trials

Medable has announced $91 million in Series C funding to accelerate the life sciences industrys shift to digital and decentralized clinical trials. The round was led by Sapphire Ventures, with follow-on investment from existing investors GSR Ventures, PPD, and Streamlined Ventures. The funding brings Medables total capital raised to more than $136 million. Medables flexible and modular software platform enables clinical leaders to shift from clinic-centric to patient-centric research strategies. The platform provides a unified experience for patients and clinicians, enabling recruitment, remote screening, electronic consent, clinical outcomes assessment (eCOA), eSource, telemedicine, and connected devices. Medable has seen rapid eCOA adoption, driving the field forward with enhancements including connected devices and telemedicine. The COVID-19 pandemic has driven demand for remote clinical trial technologies and Medable is enabling complex research protocols to be conducted remotely through its platform. By minimizing the need for in-person site visits, Medable customers have achieved unprecedented results including 3X faster enrollment and over 90% retention rates.

$58M: Series B for Healthcare Ecosystem Platform

H1, a global platform for the healthcare ecosystem, announced today that it has closed a $58 million Series B round of funding. The round was co-led by IVP and Menlo Ventures, which led the Series A round in April 2020. Transformation Capital, Lux Capital, Lead Edge Capital, Novartis dRx and YC also participated. H1 has created the largest healthcare platform to forge connections in the healthcare ecosystem. The H1 team has taken a unique approach to building the platform that combines AI, human powered engineering, third-party data sources, and government partnerships, to create the largest platform of healthcare professionals, currently spanning over 9 million healthcare professions around the globe.

$50M: Series C for Somatic Cancer, Wellness Platform

Congenica has announced the completion of its Series C funding round, raising $50 million. The round was co-led by Tencent and Legal & General and included other new investors Xeraya, Puhua Capital and IDO Investments. Existing investors Parkwalk, Cambridge Innovation Capital and Downing also participated. The funding is aimed at accelerating international market development and driving further expansion of Congenicas product platform into somatic cancer, wellness and through partnerships with pharmaceutical companies. Furthermore, the company will deliver capabilities including the ability to integrate with existing electronic health systems and deliver automated interpretation.

$47M: Series D for Novel Oncolytic Immunotherapies

CG Oncology has closed a $47 million Series D preferred stock financing led by new investor Kissei Pharmaceutical Co., Ltd., with participation from existing investors ORI Healthcare Fund, Camford Capital and Perseverance Capital Management. The financing will support the advancement of CG Oncologys late-stage clinical programs for its lead oncolytic immunotherapy, CG0070, including an ongoing global Phase 3 trial (BOND3) with CG0070 as a monotherapy for the treatment of BCG-unresponsive, Non-Muscle Invasive Bladder Cancer (NMIBC), and a combination Phase 2 study (CORE1) of CG0070 with KEYTRUDA (pembrolizumab) in the same indication. In addition, a Phase 1b study (CORE2) is currently ongoing with CG0070 in combination with OPDIVO (nivolumab) as a neoadjuvant immunotherapy for Muscle-Invasive Bladder Cancer (MIBC) in cisplatin-ineligible patients.

$42M: Series A for Allogeneic CAR-NK Cell Therapies

Catamaran Bio has launched with $42 million in financing. Sofinnova Partners and Lightstone Ventures co-led the Series A round that is part of the launch financing, with participation by founding investor SV Health Investors, as well as Takeda Ventures and Astellas Venture Management. Proceeds will be used to advance the companys two lead chimeric antigen receptor (CAR)-NK cell therapy programs. In addition, funding will expand the companys TAILWIND Platform, an integrated and proprietary suite of technologies for designing, genetically engineering, and manufacturing allogeneic CAR-NK cell therapies.

$34M: Series B for glycoproteomic powered ovarian cancer diagnostic

InterVenn Biosciences has raised $34M in a Series B fundraising. The latest round was led by Anzu Partners with full participation of Genoa Ventures, Amplify Partners, and True Ventures; Xeraya Capital and the Ojjeh Family joined the syndicate as well. Funds will be used to commercialize the companys High-Throughput-Glycoproteomic powered diagnostic for ovarian cancer; to service increasing partnership platform demand; and to accelerate development efforts for the immuno-oncology treatment response and colorectal cancer indications. InterVenn has demonstrated that analysis of protein glycosylation, the most common and most complex form of post-translational protein modification, is a highly effective way of discovering uniquely informative biomarkers. This breakthrough was made possible given the companys development of its AI neural network for high throughput analysis (PiP) and enabling software that powers the proprietary Vista research product for over a dozen different oncology indications.

$24M: Series A for Molecular Cartography

Resolve Biosciences has completed a $24 million Series A financing round and appointed Co-founder Jason T. Gammack as Chief Executive Officer. The Series A financing round was led by PS Capital Management and MasterMind Advisory Services and included participation from Alafi Capital, John Shoffner, and High Tech Grnderfonds. The company will use the proceeds to accelerate product development and drive industry adoption of its Molecular Cartography technology. The company's Molecular Cartography platform is a groundbreaking multi-analyte and highly multiplex spatial analysis technology that enables scientists to resolve the most daunting biological challenges in areas such as oncology, neuroscience, and infectious disease. It produces deep contextual datasets that illuminate molecular interactions at subcellular resolution, while preserving the sample tissue. The initial applications of Resolve's Molecular Cartography platform deliver the highest-resolution view of transcriptomic activity and provide the ability to interrogate hundreds of genes in a single run. Future solutions will add DNA, protein, and metabolomic data layers. Unlike current approaches, Resolve's technology provides the required sensitivity, specificity, and workflow convenience to elucidate the cell's complex transcriptional landscape.

$23M: Series A for Traumatic Brain Injury Test

BRAINBox Solutions announced the initial closing on a $23 million Series A financing to support the clinical development of the company's BRAINBox TBI (Traumatic Brain Injury) Test to aid both in the diagnosis and prognosis of mild TBI (concussion). BioVentures Investors led the financing round and was joined by the Tauber Foundation, the Virginia Tech Carilion Innovation and Seed Funds, Genoa VC, Pharmakon Holdings LLC, Astia Angels and additional qualified investors, including Kevin Love, professional basketball player and mental health advocate. BRAINBox TBI is the first test designed to assist in both the diagnosis and prognosis of concussion. The multi-marker and multi-modality test, which can be used in either point-of-care or clinical laboratory settings, includes a panel of blood biomarkers as well as advanced digital neurocognitive testing in partnership with BrainCheck, Inc. Using proprietary AI algorithms, BRAINBox TBI combines the results of the test components and patient reported outcomes to generate a single, objective score for diagnosis up to 96 hours from the time of injury and a prognosis report for likely injury-related symptoms up to three months post-event.

$23M: Series B for Digital, Computational Pathology Solutions

Proscia has secured $23 million in Series B funding led by Scale Venture Partners, with participation from Hitachi Ventures, the strategic corporate venture capital arm of Hitachi, Ltd., bringing its funding total to $35 million. The company will use the investment to accelerate its global growth and strengthen its position of leadership in transforming cancer research and diagnosis at a time when demand for modernizing pathology is higher than ever. With its Concentriq software platform, Proscia is accelerating the transformation to digital pathology, which centers around high-resolution images of tissue biopsies, as the new standard of care. Concentriq combines enterprise scalability with powerful AI applications to help laboratories, health systems, and life sciences companies unlock new insights, accelerate breakthroughs, and improve patient outcomes.

$21.5M: Series B for Software, Data Products for Biomarker Discovery

Ovation.io has raised $21.5 million in Series B funding led by SignalFire with participation from Madrona Venture Group, Borealis Ventures, StageDotO Ventures and industry veteran David Shaw. Ovations suite of software and data products make it easier for molecular diagnostic labs to bring innovative tests to the patients that need them. Developed by scientists to help laboratories accelerate adoption of molecular diagnostics, Ovation is a turn-key, cloud-based platform with configurable, out-of-the-box workflows for molecular tests and seamless integrations to support the needs of a rapidly growing lab. With this latest round of funding, Ovation will work with its network of participating labs to develop insights that can help life-science companies reduce the time and cost associated with biomarker discovery.

$20M: Series A for AI-Powered Cell Classification

Deepcell has closed its Series A round of financing with $20 million, led by Bow Capital and joined by Andreessen Horowitz, which led its $5 million seed round. The new funding will allow Deepcell to develop its microfluidics-based technology, continue building a cell morphology atlas of more than 400 million cells, and drive a hypothesis-free approach to cell classification and sorting. Spun out of Stanford University in 2017, Deepcell is using deep learning and big data to classify and isolate individual cells from a sample. The technology combines advances in AI, cell capture, and single-cell analysis to sort cells based on detailed visual features, delivering novel insights through an unprecedented view of cell biology. The Deepcell platform maintains cell viability for downstream single-cell analysis and can be used to isolate virtually any type of cell even those occurring at frequencies as low as one in a billion to offer access to rare cells and atypical cell states that will help advance precision medicine research.

$20M: Series B for Spatial Omics

Rebus Biosystems has closed a $20 million Series B financing round, led by Illumina Ventures and joined by Lifecore Partners, Ncore Ventures, Xolon Invest, CTK Investments, Ray Co., Ltd., Seegene Medical Foundation, LabGenomics Co., Ltd., and Timefolio Asset Management. At the heart of the Rebus Biosystems spatial omics solution is the companys patented Synthetic Aperture Optics (SAO) system, which provides the resolution and sensitivity of a 100X oil lens, but with the breadth and depth of a 20X air lens. Data is captured 100 times faster than with other imaging based spatial omics methods that rely on 100x lenses and z-stacking. Speed and ease of use of the system is further improved by integration with custom microfluidics and image processing.

$14.8M: Scaled Up Production of Portable PCR Diagnostic Device

QuantuMDx Group Limited, a UK-based life sciences company, is investing over 11 million to scale up production to mass manufacture its flagship diagnostic device, Q-POC and disposable test cassette. QuantuMDx accelerated development, scale-up and manufacture of Q-POCits rapid point-of-care testing systemearlier this year in response to the COVID-19 pandemic.Q-POC is a portable, PCR device offering rapid, sample-to-answer, molecular diagnostic testing at the point of care, with results in approximately 30 minutes. The Q-POC system comprises a sample collection kit, single-use test cassette and analyzer. The companys first commercial assay for Q-POC will detect SARS-CoV-2, the virus causing COVID- 19, and Flu A & B, providing a powerful rapid PCR diagnostics and surveillance tool for clinicians and public health officials.QuantuMDx has worked with British development partner Cambridge Design Partnership to undertake pilot manufacturing of Q-POCTM, and is now working with Cogent Technology, as the company scales for volume manufacturing.

$14M: Novel Treatment for Ischemic Stroke

BrainsGate has secured $14 million in a new investment round at a pre-money valuation of $147 million. New investor, BNP Joint Capital Fund, and the Impact investment and consulting firm SPERO led the round alongside existing investors, Elron, Medtronic, Agate, Pitango, and Cipio. The new investment is expected to fund BrainsGate through its pre-market approval (PMA) and enable it to achieve volume production readiness and apply for coverage from the Centers for Medicare & Medicaid Services (CMS) for its Ischemic Stroke System (ISS). BrainsGates therapy involves a less than 5 minutes procedure in which a neurostimulator implant is injected into an existing canal. The implant stimulates a nerve center that augments collateral blood flow to improve stroke patients outcomes in a 24-hour window. In May 2020, BrainsGate received marketing approval in Europe (CE marking) of its ISS product. BrainsGates PMA application was filed with the US FDA in February 2020. The company plans to initiate commercialization activities subject to the PMA being approved.

$10.6M: UK Investment Firm for Life Sciences

Intuitive Investments Group, a closed-end investment company focused on the life sciences sector, has raised 7.85 million (before expenses) in its AIM float by placing 39,250,000 new Ordinary Shares at 20p. The net proceeds of the Placing will be used by the Company to invest in fast growing and/or high potential Life Sciences businesses, based predominantly in the UK, wider Europe and the US, chosen from an identified pipeline of investment opportunities. Investments will be focused on diagnostics and healthcare, medical devices, tools and technologies and bio-therapeutics and pharmaceuticals

$7.4M: BARDA Extension For Point-of-Care Infection Diagnostics

Inflammatix has announced a contract extension of $7.4 million from the Biomedical Advanced Research and Development Authority (BARDA) to further develop its point-of-care test and system to diagnose infection by reading the immune system. The contract is part of a BARDA contract worth up to $72 million, if all options are exercised. The new funding will support continued development and commercialization of Inflammatixs sample-to-answer, point-of-care Myrna test system, which is designed to read RNA using machine learning and produce results in under 30 minutes, as well as continued development of the ViraBac EZ test (formerly known as HostDx Fever), which reads gene expression patterns in the immune system to identify whether a suspected infection is bacterial or viral, enabling physicians to quickly and accurately determine when to prescribe antibiotics. The test will use a fingerstick collection and capillary blood sample, and is designed for use in primary care, urgent care and other outpatient clinical settings.

$6.6M: Series A for Robotics, Machine Learning in Biology

Trailhead Biosystems announced its $6.6 million Series A financing. The company has developed a proprietary platform to perform systems-level interrogation of complex biological problems, ranging from the generation of industrially-scalable manufacturing conditions for specialized human cells to combinatorial drug discovery in cancer and anti-viral therapies. Trailhead robotically conducts the largest dimensioned experiments in biology, using machine learning to discover critical process parameters and combinatorial inputs that explain biological responses. Trailhead aims to rapidly develop the capability of creating specialized human cell types at high purity for regenerative medicine and therapeutic purposes at an industrial scale, addressing current industry needs for highly specialized cells used in drug discovery and modeling of human diseases. Through strategic partnerships, the cells provided by the company will be used to address multiple areas of clinical need. The company currently develops products that target type I diabetes, Parkinson's disease, Multiple Sclerosis, Alzheimer's disease, and blood disorders, among others.

$6.1M: 3-D Sequencing Platform

DNA sequencing instigator Single Technologies announced the completion of a heavily oversubscribed 5 million share issue to existing and new shareholders. Among the new investors are Jens von Bahr, Rothesay Ltd, Carl-Henric Svanberg funded Cygnus Montanus Trust, Professor Ulf Landegren and Andreas Ehn. The funds will be used to accelerate development of the companys 3-D sequencing platform. Stockholm Corporate Finance acted as financial advisor. The new funding will enable the company to finalize automating its 3-D sequencing process, make it more robust and improve quality for both Whole Genome Sequencing (WGS) and transcriptomics applications. The ambition is to open the first data sequencing production site in Stockholm by 2022.

$5M: Gates Grant for At-Home COVID-19 Test

Sherlock Biosciences has received a $5 million grant from the Bill & Melinda Gates Foundation to continue to advance INSPECTR, its instrument-free, synthetic biology-based molecular diagnostics platform. In addition to advancing the INSPECTR platform development to be as sensitive as gold-standard PCR tests, the funding will support the development of an over-the-counter disposable product, similar to an at-home pregnancy test, that can be used to detect SARS-CoV-2, the virus that causes COVID-19. Pending approval, the company says they will launch this product in mid-2021. INSPECTR, which stands for Internal Splint-Pairing Expression Cassette Translation Reaction, uses synthetic biology to enable the creation of instrument-free diagnostic tests that can be conducted at home, at room temperature. INSPECTR can be adapted to work on a simple paper strip test or to provide an electrochemical readout that can be read with a mobile phone. It can also be adapted for use in laboratory or point-of-care settings.

$4M: Prostate Health Center at Mount Sinai

Mount Sinai has received a $4 million donation from Lizzie and Jonathan Tisch to support prostate health and the Milton and Carroll Petrie Department of Urology at Mount Sinai. The prostate program will be named The Lizzie and Jonathan Tisch Center for Prostate Health. The medical services provided at the Lizzie and Jonathan Tisch Center for Prostate Center include state-of-the-art prostate cancer screening and imaging technologies, precision urology, focal therapy, targeted biopsies, robotics for prostate cancer surgery, prostate cancer fusion biopsy, and active surveillance. Additionally, prostate cancer experts such as Dr. Tewari; Avinash Reddy, MD; Sujit Nair, PhD; Robert Valenzuela; MD; Michael Palese, MD; and Steven Kaplan, MD, are available to see patients at the newly named Center.

$2.9M: NIH Grant for Human Placental Stem Cells

Human placental stem cells may have the potential to regenerate heart tissue after a heart attack, according to Mount Sinai researchers who have received a $2.9 million grant from the National Institutes of Health to study them. Their findings could lead to new therapies for repairing the heart and other organs. Hina W. Chaudhry, MD, Director of Cardiovascular Regenerative Medicine at the Icahn School of Medicine at Mount Sinai, is the Principal Investigator for this four-year award. Dr. Chaudhry and a team of investigators previously discovered that mouse placental stem cells can help the hearts of mice recover from injury that could otherwise lead to heart failure. They identified a specific type of placental stem cells, called Cdx2 cells, as the most effective in making heart cells regenerate.

$2M: Cryo Solutions for Cell, Gene Therapy

GlycoNet has secured a $2-million USD equity investment for PanTHERA CryoSolutions (PanTHERA), a Canadian biotechnology start-up. The investment came from US-based investor Casdin Capital and bioproduction tools supplier BioLife Solutions Inc. In addition to an up-front investment, subject to closing conditions, BioLife will provide an additional $2 million to support product development over the next 24 months in exchange for exclusive, worldwide marketing and distribution rights to the technology for use in cell and gene therapy applications. The core technology from PanTHERA was created out of an academic research collaboration between the University of Ottawa and the University of Alberta. During cryopreservation of biological materials, the uncontrolled growth of ice causes cell injury and death. PanTHERA's solution is to develop ice recrystallization inhibitors (IRIs) to control the growth of ice and prevent this damage from occurring, ultimately resulting in superior cellular products after thawing.

Read the rest here:
Follow the Money: Spatial Omics, CAR-NK Cells, AI-Powered Biology - Bio-IT World