Junshi Biosciences Announces Acceptance by NMPA of its IND Application for JS006

SHANGHAI, China, Dec. 01, 2020 (GLOBE NEWSWIRE) -- Junshi Biosciences (HKEX: 1877; SSE: 688180), an innovation-driven biopharmaceutical company dedicated to the discovery, development and commercialization of novel therapies, is pleased to announce that the China National Medical Products Administration (NMPA) has recently accepted its Investigational New Drug (IND) application for JS006, a humanized monoclonal antibody against a human lymphocyte inhibitory receptor TIGIT.

Go here to see the original:
Junshi Biosciences Announces Acceptance by NMPA of its IND Application for JS006

Tower One Announces Third Quarter 2020 Results and Provides an Update on the Progress of the Business

VANCOUVER, British Columbia, Nov. 30, 2020 (GLOBE NEWSWIRE) -- TOWER ONE WIRELESS CORP. (CSE: TO) (OTCQB: TOWTF) (Frankfurt: 1P3N) (“Tower One” or the “Company”) announces that it has filed its financial results for the third quarter of 2020, and the related Management’s Discussion and Analysis, the details of which are available on the System for Electronic Document Analysis and Retrieval at www.sedar.com.

Here is the original post:
Tower One Announces Third Quarter 2020 Results and Provides an Update on the Progress of the Business

Amarin Files Patent Infringement Lawsuit Against Hikma

DUBLIN, Ireland and BRIDGEWATER, N.J., Nov. 30, 2020 (GLOBE NEWSWIRE) -- Amarin Corporation plc (NASDAQ:AMRN), announced today the filing of a patent infringement lawsuit by Amarin affiliates and a licensor against Hikma Pharmaceuticals PLC and Hikma’s U.S. affiliate. The lawsuit was filed in the United States District Court in Delaware. A copy of the complaint is available in the FAQ section of Amarin’s investor relations website.

Read more:
Amarin Files Patent Infringement Lawsuit Against Hikma

Progenity Announces Proposed Public Offering of Common Stock

SAN DIEGO, Nov. 30, 2020 (GLOBE NEWSWIRE) -- Progenity, Inc. (“Progenity”) (NASDAQ: PROG), a biotechnology company with an established track record of success in developing and commercializing molecular testing products, today announced that it has commenced an underwritten public offering of $25 million of shares of its common stock. In addition, Progenity is expected to grant the underwriters of the offering an option for a period of 30 days to purchase up to an additional $3.75 million of shares of common stock at the public offering price, less the underwriting discounts and commissions. The offering is subject to market and other conditions, and there can be no assurance as to whether or when the offering may be completed.

Visit link:
Progenity Announces Proposed Public Offering of Common Stock

Progenity Announces Proposed Convertible Senior Notes Offering

SAN DIEGO, Nov. 30, 2020 (GLOBE NEWSWIRE) -- Progenity, Inc. (NASDAQ: PROG) today announced its intention to offer, subject to market and other conditions, $75 million aggregate principal amount of convertible senior notes due 2025 (the “notes”) in a private offering to qualified institutional buyers pursuant to Rule 144A under the Securities Act of 1933, as amended (the “Securities Act”). Progenity also expects to grant the initial purchaser of the notes an option to purchase, for settlement within a period of 13 days from, and including, the date notes are first issued, up to an additional $15 million principal amount of notes.

Read more:
Progenity Announces Proposed Convertible Senior Notes Offering

Junshi Biosciences Announces Dosing of First Patient in Phase I Study of Anti-TROP2 Antibody -TUB196 Conjugate

SHANGHAI, China, Dec. 01, 2020 (GLOBE NEWSWIRE) -- Junshi Biosciences (HKEX: 1877; SSE: 688180), an innovation-driven biopharmaceutical company dedicated to the discovery, development and commercialization of novel therapies, is pleased to announce that the Phase I clinical study (NCT04601285) of a recombinant humanized anti-TROP2 monoclonal antibody - Tub196 conjugate (JS108), has completed the dosing of the first patient.

Link:
Junshi Biosciences Announces Dosing of First Patient in Phase I Study of Anti-TROP2 Antibody -TUB196 Conjugate

New Drug Could Improve Effectiveness of Stem Cell Therapy – Pain News Network

By Pat Anson, PNN Editor

Scientists have developed an experimental drug that can lure stem cells to damaged tissues and help them heal -- a discovery being touted as a major advancement in the field of regenerative medicine.

The findings, recently published in the Proceedings of the National Academy of Sciences (PNAS), could improve the effectiveness of stem cell therapy in treating spinal cord injuries, stroke, amyotrophic lateral sclerosis(ALS), Parkinsons disease and other neurodegenerative disorders. It could also expand the use of stem cells to treat conditions such as heart disease and arthritis.

The ability to instruct a stem cell where to go in the body or to a particular region of a given organ is the Holy Grail for regenerative medicine, said lead authorEvan Snyder, MD, director of theCenter for Stem Cells & Regenerative Medicineat Sanford Burnham Prebys Medical Discovery Institute in La Jolla, CA. Now, for the first time ever, we can direct a stem cell to a desired location and focus its therapeutic impact.

Over a decade ago, Snyder and his colleagues discovered that stem cells are drawn to inflammation -- a biological fire alarm that signals tissue damage has occurred. However, using inflammation as a therapeutic lure for stem cells wasnt advisable because they could further inflame diseased or damaged organs, joints and other tissue.

To get around that problem, scientists modified CXCL12 -- an inflammatory molecule that Snyders team discovered could guide stem cells to sites in need of repair to create a drug called SDV1a. The new drug works by enhancing stem cell binding, while minimizing inflammatory signals.

Since inflammation can be dangerous, we modified CXCL12 by stripping away the risky bit and maximizing the good bit, Snyder explained. Now we have a drug that draws stem cells to a region of pathology, but without creating or worsening unwanted inflammation.

To demonstrate its effectiveness, Snyders team injected SDV1a and human neural stem cells into the brains of mice with a neurodegenerative disease called Sandhoff disease. The experiment showed that the drug helped stem cells migrate and perform healing functions, which included extending lifespan, delaying symptom onset, and preserving motor function for much longer than mice that didnt receive the drug. Importantly, the stem cells also did not worsen the inflammation.

Researchers are now testing SDV1as ability to improve stem cell therapy in a mouse model of ALS, also known as Lou Gehrigs disease, which is caused by a progressive loss of motor neurons in the brain. Previous studies conducted by Snyders team found that broadening the spread of neural stem cells helps more motor neurons survive so they are hopeful that SDV1a will improve the effectiveness of neuroprotective stem cells and help slow the onset and progression of ALS.

We are optimistic that this drugs mechanism of action may potentially benefit a variety of neurodegenerative disorders, as well as non-neurological conditions such as heart disease, arthritis and even brain cancer, says Snyder. Interestingly, because CXCL12 and its receptor are implicated in the cytokine storm that characterizes severe COVID-19, some of our insights into how to selectively inhibit inflammation without suppressing other normal processes may be useful in that arena as well.

Snyders research is supported by the National Institutes of Health, U.S. Department of Defense, National Tay-Sachs & Allied Disease Foundation, Childrens Neurobiological Solutions Foundation, and the California Institute for Regenerative Medicine (CIRM).

Thanks to decades of investment in stem cell science, we are making tremendous progress in our understanding of how these cells work and how they can be harnessed to help reverse injury or disease, says Maria Millan, MD, president and CEO of CIRM. This drug could help speed the development of stem cell treatments for spinal cord injury, Alzheimers, heart disease and many other conditions for which no effective treatment exists.

Originally posted here:
New Drug Could Improve Effectiveness of Stem Cell Therapy - Pain News Network

Are stable producer cells the future of viral vector manufacturing and when will allogeneic cell therapy take hold? – BioPharma-Reporter.com

The publication, based on data generated from a questionnaire with 150 industry representatives, explores the challenges and solutions facing cell and gene therapy (CGT) companies over the next few years.

The top six trends identified in the CRB survey were:

We got the inside track from Noel Maestre, director of SlateXpace, a CRB solution focused on suite-based manufacturing platforms for the Advanced Therapy Medicinal Products (ATMP) and Peter Walters, CRBs director of ATMP, on how the CGT landscape is likely to develop in the short-term.

In a recent report, the MITs Center for Biomedical Innovationprojected that around 500,000 patients will have been treated with 40-60 approved gene therapies by 2030.

Going from the current scenario whereby only a few gene therapies are approved to 60 launches in a decade would represent an extraordinary leap forward and would dramatically change how medicine is actually perceived, said Maestre.

But as regards CGT production today, especially autologous cell therapy (ACT) work, he said that while the science exists the technology - process equipment, facility design and automation platforms - is really still trying to catch up, endeavoring to address a sector that has exploded in the past five years, he commented.

Looking ahead at the CGT landscape over the next few years, he expects a significant amount of change. The science is evolving we see the industry moving away from old cell lines to new cell lines or moving away from viral vectors altogether and using cleavage enzymes as a gene editing tool.

A new host cell line stable producer lines is gaining momentum, he said.

We are seeing the industry moving towards suspension cell culture from less than optimal cell lines, and then further going into producer cell lines.

A full 65% of respondents to the CRB poll said they are developing or intend to develop this type of vector host cell, drawn by the potential for a less expensive, more scalable process.

CRB: Our survey findings provide a data-driven snapshot of an industry whose intellectual capital and cutting-edge science is too often betrayed by outdated technology and applications ill-suited for commercial scale at a time when demand for urgent therapies is rising.

Once the industry gets to the point where producer cell lines are more like a name brand, easier to pull off the shelf and use, it will be a much more cost-effective way to produce viral vectors.

But we are right on the cusp - a lot of companies are recognizing the opportunity and are investing the time and money into producing these. And we also see a lot of contract development and manufacturing organizations (CDMOs) producing their own cell lines in house and using those as a lure to [attract the clinical material work] of their clients, said Walters.

According to Maestre, and the CRB survey data backs him up, the product pipelines of companies operating in the CGT space are going to get more complex, for the next five years at least.

More than half of those polled indicated they expect to adopt a multimodal solution within the next two years, with flexibility, scalability, operational efficiency, and speed to market as the top drivers.

Every company is going to be dealing with this dilemma of whether they build dedicated spaces for each of their different modalities, or whether they build highly flexible facilities that can allow them to accommodate whatever is coming next, said Maestre.

He also sees a lot more companies wanting to integrate their supply chain, bringing a lot of manufacturing in-house whereas before they would have been reliant on a whole set of different CDMOs and manufacturers.

Project delivery is also where change is occurring.

We are seeing the industry really moving away from the way projects were executed in the past into a much more integrated model; they are looking for turnkey facility delivery and they want turnaround to be faster. COVID-19 has only accentuated that, with project timelines compressed by 30-40%, and I dont think that it is ever going back to the way it was I think that is going to become the standard, commented Maestre.

And another major trend over the next few years will be around the cost of therapies. As they become more commonplace and there are more and more CGT licensed products, the costs will come down.

Projecting forward, Walters sees an eventual shift away from autologous to allogeneic cell therapy.

As the technology continues to develop and the science continues to improve and new and better ways are found to use and leverage cells, we will see companies moving to a scalable allogeneic model, getting away from having to do that point-of-care, personalized tracking and more towards a classic manufacturing model that allows them to produce cells in advance in a way that they can be scaled up.

The idea, evidently, is to process cells for not one but dozens of patients at a time.

We see the industry moving towards donated cells for allogeneic therapy and we are also seeing the beginnings of a shift to using stem cells that can be genetically modified and scaled up and differentiated to become T-Cells or NK cells. I dont think industry has settled on a course yet but there are a lot of companies trying to find that pathway, trying to find the edge to move their manufacturing platform that way, remarked Walters.

Right now, though, all facets of CGT manufacturing are under pressure from COVID-19 vaccine production, they said.

There is significant shortage of cleanroom manufacturing space to manufacture and develop the almost 1,200 CGT products in clinical trials currently.

What we are seeing is that CDMOs have so much demand - they have 12-18 months of backlog in terms of contracts for product development so they are building [new facilities] very rapidly.

As owner operator companies are stuck with that delay in getting their products into development, they are also developing a significant amount of manufacturing space on their own. But while both branches are building as fast as they can, it still isnt enough.

We are constantly hearing from our clients that they are concerned about their supply chains and being able to secure their material. Right now, a lot of companies are moving towards a combination of using CDMOs and manufacturing in-house, said Maestre.

CRB is a provider of engineering, architecture, construction and consulting solutions to the global life sciences and advanced technology industries, with over 1,300 employees.

Here is the original post:
Are stable producer cells the future of viral vector manufacturing and when will allogeneic cell therapy take hold? - BioPharma-Reporter.com

How Stem Cell Therapy Market Will Dominate In Coming Years? Report Covering Products, Financial Information, Developments, Swot Analysis And…

The Global Stem Cell Therapy Market analysis report published on IndustryGrowthInsights.com is a detailed study of market size, share and dynamics covered in XX pages and is an illustrative sample demonstrating market trends. This is a latest report, covering the current COVID-19 impact on the market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions. The rapidly changing market scenario and initial and future assessment of the impact is covered in the report. It covers the entire market with an in-depth study on revenue growth and profitability. The report also delivers on key players along with strategic standpoint pertaining to price and promotion.

Get FREE Exclusive PDF Sample Copy of This Report: https://industrygrowthinsights.com/request-sample/?reportId=168110

The Global Stem Cell Therapy Market report entails a comprehensive database on future market estimation based on historical data analysis. It enables the clients with quantified data for current market perusal. It is a professional and a detailed report focusing on primary and secondary drivers, market share, leading segments and regional analysis. Listed out are key players, major collaborations, merger & acquisitions along with upcoming and trending innovation. Business policies are reviewed from the techno-commercial perspective demonstrating better results. The report contains granular information & analysis pertaining to the Global Stem Cell Therapy Market size, share, growth, trends, segment and forecasts from 2020-2026.

With an all-round approach for data accumulation, the market scenarios comprise major players, cost and pricing operating in the specific geography/ies. Statistical surveying used are SWOT analysis, PESTLE analysis, predictive analysis, and real-time analytics. Graphs are clearly used to support the data format for clear understanding of facts and figures.

Customize Report and Inquiry for The Stem Cell Therapy Market Report: https://industrygrowthinsights.com/enquiry-before-buying/?reportId=168110

Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

Primary research, interviews, news sources and information booths have made the report precise having valuable data. Secondary research techniques add more in clear and concise understanding with regards to placing of data in the report.

The report segments the Global Stem Cell Therapy Market as: Global Stem Cell Therapy Market Size & Share, by Regions

Global Stem Cell Therapy Market Size & Share, by Products Autologous Allogeneic Stem Cell Therap

Global Stem Cell Therapy Market Size & Share, Applications Musculoskeletal Disorder Wounds & Injuries Cornea Cardiovascular Diseases Others

Key Players Osiris Therapeutics NuVasive Chiesi Pharmaceuticals JCR Pharmaceutical Pharmicell Medi-post Anterogen Molmed Takeda (TiGenix) Stem Cell Therap

Avail the Discount on this Report @ https://industrygrowthinsights.com/ask-for-discount/?reportId=168110

IndustryGrowthInsights offers attractive discounts on customization of reports as per your need. This report can be personalized to meet your requirements. Get in touch with our sales team, who will guarantee you to get a report that suits your necessities.

About IndustryGrowthInsights: INDUSTRYGROWTHINSIGHTS has set its benchmark in the market research industry by providing syndicated and customized research report to the clients. The database of the company is updated on a daily basis to prompt the clients with the latest trends and in-depth analysis of the industry. Our pool of database contains various industry verticals that include: IT & Telecom, Food Beverage, Automotive, Healthcare, Chemicals and Energy, Consumer foods, Food and beverages, and many more. Each and every report goes through the proper research methodology, validated from the professionals and analysts to ensure the eminent quality reports.

Contact Info: Name: Alex Mathews Address: 500 East E Street, Ontario, CA 91764, United States. Phone No: USA: +1 909 545 6473 Email: [emailprotected] Website: https://IndustryGrowthInsights.com

See more here:
How Stem Cell Therapy Market Will Dominate In Coming Years? Report Covering Products, Financial Information, Developments, Swot Analysis And...