Stem Cell Therapy Global Market Report 2020-30: Covid 19 Growth and Change – GlobeNewswire

November 24, 2020 09:26 ET | Source: ReportLinker

New York, Nov. 24, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Stem Cell Therapy Global Market Report 2020-30: Covid 19 Growth and Change" - https://www.reportlinker.com/p05989412/?utm_source=GNW

This report focuses on stem cell therapy market which is experiencing strong growth. The report gives a guide to the stem cell therapy market which will be shaping and changing our lives over the next ten years and beyond, including the markets response to the challenge of the global pandemic.

Description: Where is the largest and fastest growing market for the stem cell therapy? How does the market relate to the overall economy, demography and other similar markets? What forces will shape the market going forward? The Stem Cell Therapy market global report answers all these questions and many more. The report covers market characteristics, size and growth, segmentation, regional and country breakdowns, competitive landscape, market shares, trends and strategies for this market.It traces the markets historic and forecast market growth by geography.

It places the market within the context of the wider stem cell therapy market, and compares it with other markets. The market characteristics section of the report defines and explains the market. The market size section gives the market size ($b) covering both the historic growth of the market, the influence of the Covid 19 virus and forecasting its growth. Market segmentations break down market into sub markets. The regional and country breakdowns section gives an analysis of the market in each geography and the size of the market by geography and compares their historic and forecast growth. It covers the growth trajectory of Covid 19 for all regions, key developed countries and major emerging markets. Competitive landscape gives a description of the competitive nature of the market, market shares, and a description of the leading companies. Key financial deals which have shaped the market in recent years are identified. The trends and strategies section analyses the shape of the market as it emerges from the crisis and suggests how companies can grow as the market recovers. The stem cell therapy market section of the report gives context. It compares the stem cell therapy market with other segments of the stem cell therapy market by size and growth, historic and forecast. It analyses GDP proportion, expenditure per capita, stem cell therapy indicators comparison.

Scope Markets Covered: 1) By Type: Allogeneic Stem Cell Therapy; Autologous Stem Cell Therapy 2) By Cell Source: Adult Stem Cells; Induced Pluripotent Stem Cells; Embryonic Stem Cells 3) By Application: Musculoskeletal Disorders; Wounds and Injuries; Cancer; Autoimmune Disorders; Others 4) By End-User: Hospitals; Clinics

Companies Mentioned: Anterogen; JCR Pharmaceuticals; Medipost; Osiris Therapeutics; Pharmicell

Countries: Australia; Brazil; China; France; Germany; India; Indonesia; Japan; Russia; South Korea; UK; USA

Regions: Asia-Pacific; Western Europe; Eastern Europe; North America; South America; Middle East; Africa

Time series: Five years historic and ten years forecast.

Data: Ratios of market size and growth to related markets, GDP proportions, expenditure per capita,

Data segmentations: country and regional historic and forecast data, market share of competitors, market segments.

Sourcing and Referencing: Data and analysis throughout the report is sourced using end notes.

Reasons to Purchase Gain a truly global perspective with the most comprehensive report available on this market covering 12+ geographies. Understand how the market is being affected by the coronavirus and how it is likely to emerge and grow as the impact of the virus abates. Create regional and country strategies on the basis of local data and analysis. Identify growth segments for investment. Outperform competitors using forecast data and the drivers and trends shaping the market. Understand customers based on the latest market research findings. Benchmark performance against key competitors. Utilize the relationships between key data sets for superior strategizing. Suitable for supporting your internal and external presentations with reliable high quality data and analysis Report will be updated with the latest data and delivered to you within 3-5 working days of order. Read the full report: https://www.reportlinker.com/p05989412/?utm_source=GNW

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Lyon, FRANCE

Formats available:

See more here:
Stem Cell Therapy Global Market Report 2020-30: Covid 19 Growth and Change - GlobeNewswire

Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder – Science Advances

INTRODUCTION

Tissue-resident macrophages regulate immunity and are pivotal for development, homeostasis, and repair (1). Major research efforts have uncovered roles for tissue-resident macrophages during infection, insult, and repair. However, in many cases, these studies disproportionally focus on certain organs in animals while disregarding tissue macrophages in other locations (2). Because function in macrophages is shaped by their tissue of residence and the local environment, specific phenotypes may not be universally applicable to all tissues (3). Notably, the bladder has generally been overlooked in macrophage studies; consequently, the function, origin, and renewal of bladder-resident macrophages in health and disease are poorly characterized or even completely unknown (4, 5).

Tissue-resident macrophages in adult organisms originate from embryonic progenitors, adult bone marrow (BM), or a mixture of both (612). During development, hematopoiesis begins in the yolk sac, giving rise to erythrocytes and macrophages directly and to erythro-myeloid progenitors (EMPs) (6, 13, 14). As hematopoiesis declines in the yolk sac, an intraembryonic wave of definitive hematopoiesis begins in the aorta-gonad-mesonephro, generating hematopoietic stem cells (HSCs). EMPs and then HSCs colonize the fetal liver to give rise to fetal liver monocytes, macrophages, and other immune cells, whereas only HSCs migrate to the BM to establish hematopoiesis in postnatal animals (15). Embryo-derived macrophages can either self-maintain and persist into adulthood or undergo replacement by circulating monocytes at tissue-specific rates. For example, a majority of macrophages in the gut are continuously replenished by BM-derived cells, whereas brain macrophages, or microglia, are long-lived yolk sacderived cells that are not replaced in steady-state conditions (8, 14, 16, 17). In certain conditions, origin influences macrophage behavior; for example, following myocardial infarction, embryonic-derived cardiac macrophages promote tissue repair, whereas BM-derived macrophages induce inflammation (18). However, macrophage functions are also imprinted by their microenvironment (19, 20). In the small intestine, macrophages in the muscle express higher levels of tissue-protective genes, such as Retnla, Mrc1, and Cd163 compared to lamina propria macrophages, although both originate from adult BM (21).

While the origin and maintenance of bladder-resident macrophages are currently unknown, these macrophages do play a role in response to urinary tract infection (UTI), which affects up to 50% of all women at some point in their lifetimes (5, 22). The immune response to uropathogenic Escherichia coli (UPEC) infection in the bladder is characterized by robust cytokine expression leading to rapid infiltration of large numbers of neutrophils and classical Ly6C+ monocytes (2328). Although essential to bacterial clearance, neutrophil and monocyte infiltration likely also induce collateral tissue damage. Targeted depletion of one of these two cell types is associated with reduced bacterial burden after primary infection in mice, whereas elimination of both cell types together leads to unchecked bacteria growth (23, 25, 26). Tissue-resident macrophages also take up a large number of bacteria during UTI; however, depletion of resident macrophages just before infection does not change bacterial clearance in a first or primary UTI (23). The absence of macrophages in the early stages of a primary UTI significantly improves bacterial clearance during a second, or challenge, infection (23). Exactly how the elimination of resident macrophages improves the response to a challenge infection is unclear, particularly as tissue-associated macrophages return to homeostatic numbers in the time interval between the two infections. Of note, improved bacterial clearance is lost in macrophage-depleted mice that are also depleted of CD4+ and CD8+ T cells, suggesting that macrophages modulate T cell activation or limit differentiation of memory T cells, as observed in other tissues (2933). For example, ablation of embryonic-derived alveolar macrophages results in increased numbers of CD8+ resident memory T cells following influenza infection in mice (31). In the gut, monocyte-derived macrophages support the differentiation of CD8+ tissue-resident memory T cells by production of interferon- (IFN-) and interleukin-12 (IL-12) during Yersinia infection (32). The opposing roles of macrophages in modulating T cell responses in the lung and gut support the idea that tissue type and/or ontogeny determines how macrophages may influence adaptive immunity (13).

To understand the role of bladder-resident macrophages, we investigated the origin, localization, and function of these cells during infection. We identified two subpopulations of resident macrophages in nave mouse bladders with distinctive cell surface proteins, spatial distribution, and gene expression profiles. We found that bladder macrophage subsets were long-lived cells, slowly replaced by BM-derived monocytes over the lifetime of the mouse. During UTI, the macrophage subsets differed in their capacity to take up bacteria and survive infection; however, both subsets were replaced by BM-derived cells following resolution of infection. Thus, after a first infection, macrophage subsets had divergent transcriptional profiles compared to their nave counterparts, shaping the response to subsequent UTI.

We reported that macrophage depletion before a first UTI improves bacterial clearance during challenge infection (23). Thus, we initiated a follow-up study to investigate the role of bladder-resident macrophages during UTI. Using the macrophage-associated cell surface proteins CD64 and F4/80 (34, 35), we identified a clear CD64 and F4/80 double-positive resident macrophage population in nave bladders from 7- to 8-week-old female CX3CR1GFP/+ mice. This transgenic mouse is widely used to distinguish macrophage populations in other tissues as the chemokine receptor CX3CR1 is expressed by monocytes and macrophages at some point in their development (36). In most tissues, resident macrophages are either GFP+ as they express CX3CR1 or GFP because they no longer express CX3CR1 (10). Therefore, we were surprised to observe heterogeneity in green fluorescent protein (GFP) expression levels, revealing potentially two subpopulations (Maclo and Machi) of CD64+ F4/80+ macrophages in the bladder (Fig. 1A). Although the differences were small in magnitude, the Machi-expressing population was present in statistically significantly greater numbers and proportions compared to the Maclo population (Fig. 1A). As CX3CR1 deficiency results in decreased macrophage numbers and frequency in the intestine and brain, and the transgenic CX3CR1GFP/+ mouse we used is hemizygous for this receptor (3638), we investigated whether our putative bladder-resident macrophage subsets were similarly present in wild-type C57BL/6 mice. Using the same gating strategy and an anti-CX3CR1 antibody, we clearly identified that CX3CR1 expression levels distinguished two distinct macrophage populations in 7- to 8-week-old nave female wild-type mice (Fig. 1B). Notably, wild-type mice had similar numbers and proportions of each macrophage subset (Fig. 1B).

(A to C) Bladders from 7-week-old female CX3CR1GFP/+ and C57BL6/J mice were analyzed by flow cytometry. (A and B) Dot plots depict the gating strategy for macrophages subsets and graphs show the total cell number (log scale, left) and proportion (right) of bladder macrophage subset, derived from cytometric analysis in (A) CX3CR1GFP/+ and (B) C57BL6/J mice. (C) Histograms show the relative expression of CX3CR1, TIM4, and LYVE1 on macrophage subsets in C57BL6/J mice, Maclo is green and Machi is orange. (See fig. S1 for data on expression of additional proteins). (D) Representative confocal images of bladders from C57BL6/J mice at 20 and 40. Merged images and single channels with the target of interest are shown. DAPI, 4,6-diamidino-2-phenylindole. (E) Graphs show the proportion of each macrophage subset in the lamina propria and muscle of nave C57BL6/J mice. Data are pooled from three experiments, n = 3 to 6 mice per experiment. Each dot represents one mouse; lines are medians. Significance was determined using the nonparametric Mann-Whitney test to compare macrophage subset numbers (A and B) and the nonparametric Wilcoxon matched-pairs signed-rank test to compare the macrophage subset percentages (A, B, and E). All P values are shown; statistically significant P values (<0.05) are in red.

Next, we assessed the surface expression level of proteins known to define macrophage subsets in other tissues (39). We observed that the efferocytic receptor TIM4 and hyaluronan receptor LYVE1 were expressed by the Maclo population, whereas the Machi population was TIM4 and LYVE1 (Fig. 1C). Macrophage-associated proteins, such as CD64, F4/80, CD11b, CD11c, and MHC II, were differentially expressed between the subsets (fig. S1A), supporting the notion that these are distinct populations. A recent publication described several organs as having two distinct macrophage subsets, differentiated by their expression of LYVE1, CX3CR1, and, in particular, MHC II (39). To determine whether bladder macrophage subsets represented these two cell types, we used a similar gating strategy (fig. S1B); however, we observed that MHC II CD64+F4/80+ cells made up a very minor proportion (<2%) of bladder-resident macrophages (fig. SC). Last, to determine whether additional heterogeneity existed within the CD64+ F4/80+ bladder-resident macrophage population, we used the dimension reduction analyses tSNE and UMAP to visualize our data. In our analyses of the nave CD45+ cell population, a large CD64+ cluster contained two putative subsets that corresponded to traditionally gated Maclo and Machi populations and included the tiny proportion of MHC II macrophages (fig. S1D). tSNE (t-distributed stochastic neighbor embedding) and, more particularly, UMAP (uniform manifold approximation and projection) analysis of CD64+ F4/80+ macrophages revealed two groups, with differential expression of CX3CR1, F4/80, CD64, LYVE1, and TIM4, reflecting the data shown in the traditionally gated histograms (fig. S1, D and E). Thus, we concluded that two subsets of macrophages reside in nave mouse bladders with differential surface protein expression.

To determine the spatial orientation of the subsets, we stained nave female C57BL/6 bladders with antibodies to F4/80 and LYVE1 and phalloidin to demarcate the muscle layer from the lamina propria (Fig. 1D). We quantified the number of each subset in these two anatomical locations, observing a higher percentage of the LYVE1+ Maclo macrophage subset in the muscle compared to the LYVE1 Machi macrophage subset (Fig. 1E). Macrophages in the lamina propria were predominantly of the Machi phenotype (Fig. 1E). Thus, the phenotypic differences we observed in bladder-resident macrophage subsets extended to differential tissue localization. Given their spatial organization, we renamed the Maclo subset MacM for muscle and the Machi subset MacL for lamina propria. Together, these results reveal that two phenotypically distinct macrophage subsets reside in different regions of the nave bladder.

We next investigated whether macrophage heterogeneity in adult mouse bladders arose due to distinct developmental origins of the subsets. We analyzed bladders from newborn C57BL/6 pups by confocal imaging and by flow cytometry from CX3CR1-GFPexpressing E16.5 (embryonic day 16.5) embryos and newborn mice. We observed that, in E16.5 and newborn animals, a single CX3CR1hi macrophage population was present in the muscle and lamina propria of the bladder. By flow cytometry, these cells were uniformly positive for CD64 and negative for MHC II as expected for fetal macrophages (40) and stained positively for LYVE1 in confocal images of newborn mouse bladder, supporting that diversification of bladder macrophage subsets occurs after birth (Fig. 2A).

(A) Merged confocal and single channel images from a C57BL/6 newborn mouse bladder. Left image is enlarged at the right. Gating strategy in Cdh5-CreERT2Rosa26tdTomato CX3CR1GFP newborn mice and E16.5 embryos; histograms show CX3CR1 and MHC II expression. (B to E) Reporter recombination in microglia, monocytes, bladder macrophages, and MacM and MacL subsets in Cdh5-CreERT2Rosa26tdTomato mice: (B) E16.5 embryos, newborns 4-hydroxytamoxifen (4OHT)-treated at E7.5, (C) adults 4OHT-treated at E7.5, (D) E16.5 embryos, newborns 4OHT-treated at E10.5, (E) adults 4OHT-treated at E10.5. (F) Percentage of YFP+ cells in microglia, monocytes, MacM, and MacL macrophages in adult Flt3CreRosa26YFP mice. (G to I) Adult shield-irradiated C57BL/6 CD45.2 mice reconstituted with CCR2+/+ CD45.1 BM and C57BL/6 CD45.1 mice reconstituted with CCR2/ CD45.2 BM. Percentage of donor cells (G) in monocytes or (H) bladder-resident macrophages in mice transplanted with CCR2+/+ or CCR2/ BM at 3 and 6 months after transplantation. (See fig. S2 for data on blood leukocyte chimerism). (I) Bladder-resident macrophage replacement rate. Data pooled from two to three experiments, n = 2 to 6 mice per experiment. Each point represents one mouse; lines are medians. Significance determined using the Mann-Whitney test comparing (B to F) macrophages or subsets to monocytes or (G and H) CCR2+/+ to CCR2/ recipients, P values were corrected for multiple testing using the false discovery rate (FDR) method. All P values are shown; statistically significant P values (<0.05) are in red.

We hypothesized that, in adult mice, macrophage subsets arise following differentiation of cells seeded from embryonic progenitors or that one subset is derived from embryonic macrophages, whereas the second subset arises from BM-derived monocytes (41). To test these hypotheses, we used the Cdh5-CreERT2 Rosa26tdTomato transgenic mouse, in which the contribution of distinct hematopoietic progenitor waves to immune cell populations can be followed temporally, such that treatment of pregnant mice with 4-hydroxytamoxifen (4OHT) at E7.5 labels yolk sac progenitors and their progeny and treatment at E10.5 labels HSC that will settle in the BM (adult-type HSCs) and their cellular output (42). After treatment with 4OHT at E7.5, in which microglia were labeled as expected (8, 14), we found a significantly higher proportion of labeled bladder macrophages compared to monocytes in E16.5 embryos and newborn mice (Fig. 2B). Labeled bladder macrophage subsets were nearly absent, similar to monocytes, in adult (8- to 11-week-old) mice (Fig. 2C). These data support the fact that yolk sacderived bladder macrophages are diluted after birth in the adult and suggest that the subsets are composed of HSC-derived macrophages. Low levels of E10.5-labeled macrophages were detected in embryonic bladders (Fig. 2D), and their frequency increased in newborn and adult mice, although to a lesser degree than monocytes, supporting the idea that bladder macrophage subsets arise, at least in part, from adult-type HSCs (Fig. 2, D and E). Of note, both subsets found in the adult bladder showed similar frequencies of E10.5 labeling (Fig. 2E). Together, these results demonstrate that adult bladder macrophages are partially HSC-derived and the macrophage subsets cannot be distinguished from each other by their ontogeny.

To confirm that HSC-derived progenitors contribute to the bladder-resident macrophage pool, we analyzed bladders from adult Flt3Cre Rosa26YFP mice. In this transgenic mouse, expression of the tyrosine kinase receptor Flt3 in multipotent progenitors leads to expression of yellow fluorescent protein (YFP) in the progeny of these cells, such as monocytes, whereas microglia, arising from yolk sac progenitors, are essentially YFP (43). Recombination rates driven by Flt3 are very low during embryonic development, but blood monocyte labeling reaches 80 to 90% in adult mice (7). Therefore, if tissue-resident macrophages arise from postnatal BM-derived monocytes, labeling in adult mice should be similar to blood monocytes, whereas the presence of Flt3 tissue macrophages would indicate that they originated from either embryonic HSCs or adult Flt3-independent progenitors. We observed that, in 2- to 4-month-old and 22- to 24-month-old mice, ~50% of each macrophage subset was YFP+, which was significantly lower compared to circulating monocytes (Fig. 2F). This observation and those from the Cdh5-CreERT2 mice together support the fact that, in addition to adult HSCs, adult bladder macrophage subsets are derived from embryonic progenitors that may include fetal HSCs, and/or later yolk sac progenitors, but with no contribution from early yolk sac progenitors. In addition, the lack of equilibration of YFP labeling in the bladder with blood monocytes at 22 to 24 months suggests that tissue macrophages are not rapidly replaced over the lifetime of the mouse by BM-derived cells in the context of homeostasis.

To determine the replacement rate of bladder-resident macrophages by BM-derived cells in the adult mouse, we evaluated shielded irradiated mice, in which adult animals are irradiated with a lead cover over the bladder to protect this organ from radiation-induced immune cell death and nonhomeostatic immune cell infiltration. Animals were transplanted with congenic BM from wild-type or CCR2/ mice. Monocytes depend on CCR2 receptor signaling to exit the BM into circulation (44). At 3 and 6 months, we observed that a median of 27.7% (3 months) and 27.6% (6 months) of circulating Ly6C+ monocytes were of donor origin in mice reconstituted with wild-type BM, which is well in-line with published studies using this approach (45, 46), whereas only 6.1% (3 months) and 6.5% (6 months) of Ly6C+ monocytes were of donor origin in wild-type mice receiving CCR2/ BM (Fig. 2G). B and natural killer (NK) cells were replenished to a greater extent in mice reconstituted with CCR2/ BM compared to mice reconstituted with CCR2+/+ BM, which could be due to different engraftment efficiencies between CD45.1 and CD45.2 BM (fig. S2) (47, 48). In mice reconstituted with wild-type BM, 4.7% of MacM and 4.5% MacL were of donor origin at 3 months after engraftment. At 6 months after irradiation, 7% of MacM and 8.5% of MacL macrophages were of donor origin (Fig. 2H). Chimerism in bladder macrophage subsets was markedly reduced in CCR2/ BM recipients, suggesting that monocytes slowly replace bladder macrophage subsets in a CCR2-dependent manner (Fig. 2H). By dividing the median macrophage subset chimerism (7 or 8.5%) by the median circulating Ly6C+ monocyte chimerism at 6 months in mice receiving wild-type BM (27.6%), we determined that 25.3% of MacM and 30.8% MacL were replaced by BM-derived monocytes within 6 months (Fig. 2I).

Together, these results reveal that the establishment of distinct bladder-resident macrophage subsets occurs postnatally. Yolk sac macrophages initially seed the fetal bladder but are replaced by fetal HSC-derived macrophages. In adult mice, bladder macrophage subsets are partially maintained through a slow replacement by BM-derived monocytes, although a substantial number of fetally derived cells remain. The incomplete macrophage labeling we observed in our experiments supports the idea that a progenitor source, which cannot be labeled in either model, contributes to resident bladder macrophages. Currently, there is no fate-mapping model to discriminate or follow progeny specifically from late yolk sac EMPs or early fetally restricted HSC, as hematopoietic waves overlap in development. We can conclude that MacM and MacL macrophages do not differ in their developmental origin or rate of replacement by monocytes, supporting the view that one or more unique niches in adult tissue may be responsible for macrophage specialization into phenotypical and functionally distinct macrophage subsets.

Although bladder-resident macrophage subsets had similar ontogeny, their distinct spatial localization and surface protein expression suggested that they have different functions. To test this hypothesis, we first analyzed gene expression profiles of nave adult female MacM and MacL macrophages using bulk RNA sequencing (RNA-seq) (fig. S3A, gating strategy). To formally demonstrate that our cells of interest are macrophages, we aligned the transcriptomes of the bladder macrophage subsets with the macrophage core signature list published by the Immunological Genome Consortium and the bladder macrophage core list from the mouse cell atlas single-cell database (35, 49). The MacM and MacL subsets expressed 80% of the genes from the Immunological Genome Consortium macrophage core signature list and more than 95% of the genes in the bladder macrophage core list (fig. S3B), supporting the idea that our cells of interest are fully differentiated tissue-resident macrophages.

We observed that 1475 genes were differentially expressed between nave MacM and MacL macrophages, in which 899 genes were positively regulated and 576 genes were negatively regulated in the MacL subset relative to MacM macrophages (Fig. 3A). In the top 20 differentially expressed genes (DEG), MacM macrophages expressed higher levels of Tfrc, Ms4a8a, Serpinb6a, CCL24, Scl40a1, Clec10a, and Retnla, all of which are associated with an alternatively activated macrophage phenotype (5053); genes involved in iron metabolism, such as Tfrc, Steap4, and Slc40a1 (54); and genes from the complement cascade, including C4b and Cfp (Fig. 3B). In the same 20 most DEG, MacL macrophages expressed greater levels of Cx3cr1, Cd72, Itgb5, Axl, and Itgav, which are associated with phagocytosis, antigen presentation, and immune response activation (Fig. 3B) (5557). MacL macrophages also expressed inflammatory genes, such as Cxcl16, a chemoattractant for T and NKT cells (58, 59), and Lpcat2 and Pdgfb, which are involved in the metabolism of inflammatory lipid mediators (Fig. 3B) (60, 61). Using gene set enrichment analysis of the DEG to detect pathways up-regulated in the macrophage subsets, we observed that the MacM subset expressed genes linked to pathways such as endocytosis, mineral absorption, lysosome, and phagosome (Fig. 3C). Within the phagosome and endocytosis pathways, genes critical for bacterial sensing and alternative activation such as Tlr4, Mrc1 (encoding for CD206), Cd209, and Egfr (6264) were increased in the MacM subset. In the mineral absorption pathway, genes controlling iron metabolism that also enhance bacterial killing such as Hmox1 and Hmox2 were up-regulated in MacM macrophages (Fig. 3D) (65). In the MacL subset, genes linked to diverse inflammatory pathways, including Toll-like receptor signaling, apoptosis, antigen processing and presentation, and chemokine signaling, were present, as were many infectious and inflammatory diseaserelated pathways (Fig. 3E). Within these pathways, the MacL subset expressed genes related to bacterial sensing, such as Tlr1, Tlr2, and Cd14; initiation of inflammation, such as Il1b, Tnf, Ccl3, Ccl4, Cxcl10, Cxcl16, and Nfkb1; and apoptotic cell death, such as Mapk8, Pmaip1, Bcla1d, Cflar, Bcl2l11, and Birc2 (Fig. 3F).

MacM and MacL macrophages were sorted from 7- to 8-week-old female nave adult C57BL/6 mouse bladders and analyzed by RNA-seq (fig. S3, gating strategy). (A) Heatmaps show the gene expression profile of the 1475 differentially expressed genes and (B) the 20 most differentially expressed genes between the MacM and MacL subsets. (C to F) Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of significantly up-regulated genes, the following are depicted: (C) pathways enriched in MacM macrophages, (D) up-regulated genes associated with selected pathways in MacM macrophages, (E) pathways enriched in MacL macrophages, and (F) up-regulated genes associated with selected pathways in MacL macrophages. In (C) and (E), the size of the nodes reflects the statistical significance of the term. (Q < 0.05; terms > 3 genes; % genes/term > 3; 0.4).

These findings suggest that MacM macrophages are more anti-inflammatory with increased endocytic activity, which is a common feature of highly phagocytic resident macrophages (66), and as such may play a prominent role in bacterial uptake or killing during infection. MacL, on the other hand, may play a greater role in antigen presentation and initiation or maintenance of inflammation.

As we observed enrichment of genes belonging to endocytosis, lysosome, and phagosome pathways in the MacM subset, we reasoned that the macrophage subsets differentially take up bacteria during infection. To test our hypothesis, we used a well-described mouse model of UTI, in which we transurethrally infect adult female mice via catheterization with 107 colony-forming units (CFU) of UPEC strain UTI89-RFP, which expresses a red fluorescent protein (RFP) (23). At 24 hours post-infection (PI), we investigated bacterial uptake by macrophage subsets (Fig. 4, A and B). Despite that MacM macrophages are farther from the infected urothelium than MacL macrophages, we observed that 20% of MacM and only 10% of MacL subsets contained bacteria at 24 hours PI, providing functional evidence to support the transcriptional data that MacM macrophages have a superior phagocytic capacity compared to MacL macrophages (Fig. 4B). Supporting this conclusion, we found that when we exposed sorted MacM and MacL macrophages to live UPEC in vitro, a greater proportion of MacM macrophages internalized bacteria after 2 hours compared to MacL macrophages (fig. S4A). In addition, despite very low levels of infection overall (~1% of macrophages), more UPEC could be found in MacM macrophages compared to MacL macrophages at 4 hours PI in vivo (fig. S4B). Taking the total population of UPEC-containing macrophages at 24 hours PI, we observed that ~80% of these cells were MacM macrophages, whereas the MacL subset comprised only 20% of this population, which was unusual given that MacM and MacL exist in the bladder in a 1:1 ratio (Fig. 4B and fig. S4C, gating strategy).

(A to H) Female C57BL6/J mice were infected with UTI89-RFP and bladders were analyzed by flow cytometry at (A to D) 24 hours or (E to H) 4 hours PI. (A) Gating strategy, resident macrophage subsets, and cells containing bacteria. (B) Percentage of infected macrophage subsets and UPEC distribution (fig. S4B, gating strategy). (C) IL-4R gMFI (geometric mean fluorescence intensity) in nave mice and 24 hours PI. (D) Total number and frequency of bladder macrophage subsets. (E) Gating strategy. (F) Total number and frequency of bladder macrophage subsets. Percentage of (G) macrophage subsets labeled with a live/dead marker (fig. S4D, gating strategy) and (H) dying macrophages containing UPEC. (I) MacM and MacL macrophage quantification in nave mice and 4 hours PI. (B to D and F to H) Data pooled from three experiments, n = 3 to 6 mice per experiment. (I) Data are pooled from two experiments, n = 2 to 3 mice per experiment. Each dot represents one mouse; lines are medians. In (D) and (F), Mann-Whitney test was used to compare the numbers and the nonparametric Wilcoxon matched-pairs signed-rank test was used to compare the percentages of each macrophage subset. (B and C and G to I) Mann-Whitney test. P values were corrected for multiple testing using the FDR method. All P values are shown; statistically significant P values (<0.05) are in red.

Given the predominance of genes associated with alternatively activated macrophages in the top 20 DEGs of MacM macrophages (Fig. 3B), we measured polarization of the macrophage subsets in nave and infected bladders by analyzing the expression of IL-4R by flow cytometry (Fig. 4C). IL-4R is the receptor of IL-4 and IL-13, two cytokines that drive alternative activation in macrophages (67). Both subsets had increased expression of IL-4R at 24 hours PI compared to their nave counterparts; however, MacM macrophages had consistently higher expression levels of IL-4R compared to MacL macrophages in nave and infected tissue (Fig. 4C).

In the course of our studies, we observed that the total number and proportion of MacL macrophages were significantly lower than those of MacM macrophages at 24 hours PI, whereas, in nave mice, both the number and proportion of the macrophage subsets were equivalent (Figs. 4D and 1B). To rule out the contribution of differentiated monocyte-derived cells to the macrophage pool, we assessed total macrophage cell numbers in the bladder at 4 hours PI, when there is minimal monocyte infiltration (Fig. 4E) (23). Macrophage subset numbers and proportions were significantly different at 4 hours PI (Fig. 4F). As the total numbers of each subset were not increased over nave levels (Fig. 1B), we hypothesized that macrophages die during infection, particularly as apoptosis pathways were more highly expressed in MacL macrophages (Fig. 3, C and D). Using a cell viability dye, which labels dying/dead cells, we found that a significantly higher proportion of MacL macrophages were dying compared to MacM macrophages at 4 hours PI (Fig. 4G and fig. S4D, gating strategy). As UPEC strains can induce macrophage death in vitro (68, 69), we asked whether macrophage cell death was induced by UPEC in vivo. We observed that only 20% of dying or dead cells in each subset were infected (Fig. 4H), suggesting that macrophage death was not primarily driven by UPEC uptake. To determine whether macrophage cell death was confined to a distinct location, we quantified macrophage subset numbers in the muscle and lamina propria. We observed that, at 4 hours PI, only MacL macrophages located in the lamina propria were reduced in numbers compared to nave mice (Fig. 4I). Given that, in the first hours after infection, the urothelium exfoliates massively (70), these results suggest that macrophage death, specifically in the lamina propria, may be due to the loss of a survival factor in this niche. To test whether alteration of the niche induced macrophage death, we chemically induced global urothelial exfoliation by intravesical instillation of protamine sulfate (71, 72). We observed that at 5 hours after treatment, the total numbers of both MacM and MacL subsets were reduced compared to macrophage subsets in nave mice (fig. S4E), suggesting that alterations in bladder urothelium are sufficient to reduce resident macrophage numbers in the bladder, although protamine sulfate may also directly induce macrophage death. Thus, we functionally validated the divergent gene expression observed between macrophage subsets, in which MacM macrophages are more phagocytic and MacL macrophages are more prone to die, supporting the idea that gene expression differences translate to divergent roles for the subsets in response to UTI.

As we observed macrophages dying during infection, we investigated the change in macrophage numbers over time as animals resolved their infection. Both populations significantly decreased at 24 hours PI, then subsequently increased nearly 10-fold at 7 days PI, and returned to numbers just above homeostatic levels at 4 weeks PI (Fig. 5A). With the dynamic increase of macrophage numbers over the course of UTI, we hypothesized that infiltrating monocytes replace resident macrophage subsets during infection, as we previously reported that infiltrating monocytes differentiate to cells resembling macrophages at 48 hours PI (23). To test this hypothesis, we used the CCR2CreERT2 Rosa26tdTomato mouse, in which administration of 4OHT induces recombination in CCR2-expressing cells, such as circulating Ly6C+ monocytes, leading to irreversible labeling of these cells in vivo (73). Blood monocytes and bladder-resident macrophages are not Tomato+ in untreated mice (fig. S5). We administered 4OHT to nave mice and, then, 24 hours later, infected half of the treated mice with 107 CFU of UTI89. At this time point, 24 hours after 4OHT treatment, we analyzed the labeling efficiency in circulating classical Ly6C+ monocytes, finding that approximately 80% of Ly6C+ monocytes were labeled in both nave and infected mice (Fig. 5B). After 6 weeks, when animals had resolved their infection, there were no labeled circulating Ly6C+ monocytes in nave or post-infected mice (Fig. 5B). When we analyzed the bladders of nave mice 6 weeks after the 4OHT pulse, only 2.9% of MacM and 2.1% of MacL macrophage subsets were labeled, supporting our earlier conclusion that monocytes contribute to bladder macrophage subsets at a very slow rate in the steady state (Fig. 5C). At 6 weeks PI, the total numbers of macrophage subsets finally returned to homeostatic levels (Fig. 5D), but PI MacM and MacL macrophages had two to three times more Tomato+ cells (median, MacM 8.4%, MacL 4.4%) than their nave counterparts. These data support the fact that, after monocytes infiltrate the bladder during infection, they remain in the tissue following resolution, integrating themselves into the resident macrophage pool, and thus contribute to the return of macrophage subsets to homeostatic levels.

(A) Total number of MacM (green) and MacL (orange) in nave and 1-, 7-, or 28-day PI mice. (B and C) CCR2CreERT2Rosa26tdTomato mice were pulsed with 4OHT. Twenty-four hours later, half were infected with UTI89-RFP. Percentage of Tomato+ (B) Ly6C+ monocytes 24 hours and 6 weeks after 4OHT-pulse or (C) bladder macrophage subsets 6 weeks after 4OHT-pulse. (D) Total number of macrophage subsets in nave and 6-week PI bladders. (E) Replicate-adjusted principal component analysis of all genes from nave and post-infected bladder macrophage subsets. Differentially expressed genes between nave and 6-week PI (F) MacM (513 genes) and (G) MacL (617 genes) macrophages. KEGG pathway analysis of significantly up-regulated genes, enriched in 6-week PI (H) MacM and (I) MacL macrophages. Up-regulated genes from selected pathways in 6-week PI (J) MacM and (K) MacL macrophages. (A, C, and D) Mann-Whitney test comparing infection to nave. P values were corrected for multiple testing using the FDR method. Higher left-shifted P values refer to MacM and lower right-shifted P values refer to MacL. (H and I) Node size reflects statistical significance of the term (Q < 0.05; terms > 3 genes; %genes/term > 3; 0.4). All P values are shown; statistically significant P values (<0.05) are in red.

As monocytes generally have different origins and developmental programs compared to tissue-resident macrophages, we used RNA-seq to determine whether the macrophage pool in post-infected bladders was different from nave tissue-resident cells. Using principal component analysis (PCA), we compared bladder macrophage subsets from 6-week post-infected mice to their nave counterparts. We found that macrophages clustered more closely together by subset, rather than by infection status, or, in other words, nave and post-infected MacL macrophages clustered more closely to each other than either sample clustered to nave or post-infected MacM macrophages (Fig. 5E). Five hundred thirteen genes (247 genes down-regulated and 266 genes up-regulated) were different between nave and post-infected MacM macrophages (Fig. 5F). Six hundred seventeen genes (401 genes down-regulated and 216 genes up-regulated) were differentially expressed between the nave and post-infected MacL subset (Fig. 5G). Applying gene set enrichment analysis to up-regulated genes in the post-infected macrophage subsets, we detected common pathways between the subsets including enrichment of genes linked to pathways such as antigen presentation; cell adhesion molecules; TH1, TH2, and TH17 cell differentiation; and chemokine signaling pathway (Fig. 5, H and I). Although the enriched genes were not identical within each subset for these pathways, some common up-regulated genes included those encoding for histocompatibility class 2 molecules, such as H2-Ab1, H2-Eb1, H2-DMb1, Ciita, and the Stat1 transcription factor (Fig. 5, I and J). As differentiation of monocytes into macrophages includes up-regulation of cell adhesion and antigen presentation molecules (74), including in the bladder (23), these data further support the idea that monocytes specifically contribute to the PI bladder-resident macrophage pool.

These results show that, in the context of UTI, dying macrophages are replaced by monocyte-derived cells. Tissue-resident macrophage subsets maintain their separate identities distinct from each other after infection, although each subset also takes on a different transcriptional profile compared to their nave counterparts, with up-regulated expression of genes related to adaptive immune responses.

We previously reported that macrophage depletion 24 hours before a primary UTI does not affect bacterial clearance (23). Given that post-infected macrophage subsets up-regulated pathways different from those associated with the transcriptomes of nave bladder macrophage subsets, and that these pathways were linked to inflammatory diseases and the adaptive immune response, we hypothesized that one or both macrophage subsets would mediate improved bacterial clearance to a challenge infection. To test this hypothesis, we infected mice with 107 CFU of kanamycin-resistant UTI89-RFP. Four weeks later, when the infection was resolved, mice were challenged with 107 CFU of the isogenic ampicillin-resistant UPEC strain, UTI89-GFP, and bacterial burden was measured at 24 hours PI. To test the contribution of the macrophage subsets to the response to challenge infection, we used different concentrations of anti-CSF1R depleting antibody to differently target the two macrophage subsets directly before challenge infection (Fig. 6A, experimental scheme). Using 500 g of anti-CSF1R antibody, we depleted 50% of MacM and 80% of MacL macrophages, whereas depletion following treatment with 800 g of anti-CSF1R antibody reduced MacM macrophages by 80% and the MacL subset by more than 90% (Fig. 6B and fig. S6A). Twenty-four hours after anti-CSF1R antibody treatment, the number of circulating neutrophils, eosinophils, NK, B, or T cells was not different from mock-treated mice at either concentration (fig. S6B). Classical Ly6C+ monocytes were modestly reduced in mice treated with 800 g of anti-CSF1R antibody but were unchanged in mice receiving 500 g of depleting antibody. Antibody treatment did not change circulating nonclassical monocyte numbers (fig. S6B). After challenge infection, the bacterial burden was not different in mice treated with 500 g of anti-CSF1R compared to mock-treated mice (Fig. 6C). By contrast, mice depleted with 800 g of anti-CSF1R had reduced bacterial burdens, indicative of a stronger response after challenge compared to nondepleted mice (Fig. 6D).

(A) Experimental scheme. (B) Efficacy of macrophage subset depletion in nave C57BL/6 mice treated with 500 or 800 g of anti-CSF1R antibody. (C and D) Bacterial burden per bladder 24 hours after challenge in female C57BL/6 mice infected with UTI89-RFP according to (A) and treated with phosphate-buffered saline (PBS) (mock) or (C) 500 g or (D) 800 g of anti-CSF1R antibody 72 hours before being challenged with the isogenic UTI89-GFP strain. (E to G) Mice were infected according to (A) and treated with 800 g of anti-CSF1R antibody 72 hours before challenge infection with 107 CFU of the isogenic UTI89-GFP strain. Graphs depict the (E) total number of the indicated cell type, (F) the percentage of the indicated cell type that was infected, and (G) the total number of the indicated cell type that contained UPEC at 24 hours after challenge in mice treated with PBS or 800 g of anti-CSF1R antibody. Data are pooled from three experiments, n = 3 to 6 mice per experiment. Each dot represents one mouse; lines are medians. (C to G) Mann-Whitney test, P values were corrected for multiple testing using the FDR method. All P values are shown; statistically significant P values (<0.05) are in red.

Neutrophils take up a majority of UPEC at early time points during UTI (23). Therefore, we hypothesized that the improved bacterial clearance in macrophage-depleted mice may be due to increased infiltration of inflammatory cells, such as neutrophils. At 24 hours after challenge infection, we observed that, while the numbers of resident macrophage subsets, MHCII+ monocytes, and MHCII monocytes in macrophage-depleted mice were reduced compared to mock-treated mice, as expected, the numbers of infiltrating neutrophils were unchanged by antibody treatment (Fig. 6E and fig. S6C, gating strategy). Fewer eosinophils infiltrated the tissue in macrophage-depleted mice, although the impact of this is unclear as their role in infection is unknown (Fig. 6E). Given that neutrophil infiltration was unchanged and that monocytes, which also take up a large number of bacteria during infection, were reduced in number, we considered that improved bacterial clearance in macrophage-depleted mice may be due to increased bacterial uptake on a per-cell basis during challenge infection. However, bacterial uptake was not different between depleted and mock-treated mice in neutrophils, MHCII+ and MHCII monocytes, or either macrophage subset (Fig. 6F). The lower numbers of the MacM subset in macrophage-depleted mice translated to lower numbers of infected MacM macrophages (Fig. 6, E and G, respectively). However, we observed no differences in the numbers of infected MacL macrophages, neutrophils, and MHCII+ or MHCII monocytes in macrophage-depleted mice compared to nondepleted animals (Fig. 6G). Together, these results support the notion that MacM macrophages negatively affect bacterial clearance in a challenge infection, but not at the level of direct bacterial uptake or myeloid cell infiltration.

As infiltration of inflammatory cells or the number of infected cells during challenge infection was not changed in macrophage-depleted mice, we questioned whether another host mechanism was involved in bacterial clearance. Exfoliation of infected urothelial cells is a host mechanism to eliminate bacteria (70, 75). We hypothesized that macrophage-depleted mice have increased urothelial exfoliation during challenge infection, leading to reduced bacterial numbers. We quantified the mean fluorescence intensity of uroplakins, proteins expressed by terminally differentiated urothelial cells (76), from bladders of post-challenged mice, depleted of macrophages or not (Fig. 7A). We did not detect a significant difference in urothelial exfoliation between mock-treated animals and mice depleted of macrophage before challenge infection, supporting that urothelial exfoliation is not the underlying mechanism behind improved bacterial clearance in macrophage-depleted mice (Fig. 7B). Infiltration of inflammatory cells is associated with bladder tissue damage and increased bacterial burden (26). As we observed fewer monocytes and eosinophils in macrophage-depleted mice during challenge infection, we investigated whether reduced cell infiltration was associated with less tissue damage. We assessed edema formation by quantifying the area of the lamina propria in post-challenged bladders, depleted of macrophages or not (Fig. 7A). We did not detect a difference in edema formation between nondepleted mice and mice depleted of macrophage before challenge infection (Fig. 7C).

Female C57BL/6 mice were infected according to the scheme shown in Fig. 6A and treated with 800 g of anti-CSF1R antibody 72 hours before challenge infection with 107 CFU of UTI89. (A) Representative confocal images of bladders from mice treated with PBS or 800 g of anti-CSF1R antibody 24 hours after challenge. Uroplakin, green; phalloidin, turquoise; DAPI, blue. (B) The graph shows the mean fluorescence intensity of uroplakin expression, quantified from imaging, at 24 hours after challenge. (C) The graph shows the area of the lamina propria, quantified from imaging, at 24 hours after challenge. (D to F) Graphs depict the (D and E) total number of the indicated cell type or (F) the total number of the indicated cell type expressing IFN- at 24 hours after challenge infection. Data are pooled from two experiments, n = 4 to 6 mice per experiment. Each dot represents one mouse; lines are medians. In (B) to (F), significance was determined using the nonparametric Mann-Whitney test and P values were corrected for multiple testing using the FDR method. All calculated/corrected P values are shown and P values meeting the criteria for statistical significance (P < 0.05) are depicted in red.

As we observed fewer eosinophils in macrophage-depleted mice during challenge infection, and our previous work demonstrated that type 2 immune responserelated cytokines are expressed early in UTI (24), we assessed the polarity of the T cell response to challenge infection (fig. S7, gating strategy). Macrophage depletion did not alter the infiltration of T regulatory cells or TH2 or TH17 T helper subsets (Fig. 7D). However, macrophage depletion did correlate with an increase in the numbers of TH1 T cells, NKT cells, NK cells, and type 1 innate lymphoid cells (ILC1s) (Fig. 7E). In macrophage-depleted mice, TH1 T cells, NKT cells, and NK cells had higher IFN- production compared to mock-treated mice (Fig. 7F), suggesting that, in the absence of post-infected macrophages, a more pro-inflammatory, bactericidal response to challenge infection arises in the bladder.

Despite numerous studies of macrophage ontogeny and function in many organs, the developmental origin and role of bladder macrophages are largely unknown. Here, we investigated this poorly understood compartment in homeostasis and a highly inflammatory infectious disease, UTI. A single macrophage population of yolk sac and HSC origin seeds the developing bladder; however, the yolk sac macrophage pool is ultimately replaced at some point after birth. After birth, two subsets, MacM and MacL, arise in the tissue, localizing to the muscle and the lamina propria, respectively. These subsets share similar developmental origin, in that they are primarily HSC-derived and, in adulthood, display a very slow turnover by Ly6C+ monocytes in the steady state. Their distinct transcriptomics support the idea that they play different roles in the bladder, at least in the context of infection. The MacM subset is poised to take up bacteria or potentially infected dying host cells, while polarizing toward a more alternatively activated profile during UTI. MacL macrophages express a profile with greater potential for the induction of inflammation and, whether due to direct consequences of this inflammation or potentially due to loss of the urothelium, undergo pronounced cell death during UTI.

In adult animals, steady-state tissue-resident macrophages are a mix of embryonic and adult monocyte-derived macrophages, with the exception of brain microglia (8, 14). The contributions from embryonic macrophages and circulating adult monocytes to the adult bladder macrophage compartment are similar to that of the lung and kidney (7, 11, 77). Although two macrophage subsets reside in the adult bladder, only a single LYVE1+CX3CR1+ macrophage population was identified in embryonic and newborn bladders. As the bladder is fully formed in newborn mice (78), it is unlikely that macrophage subsets arise to meet the needs of a new structure, as is the case for peritubular macrophages in the testis (41). Rather, although all structures are present, embryonic or prenatal bladder tissue demands are likely distinct from postnatal tissue remodeling in very young mice. For example, in the first weeks after birth, bladder macrophages may support urothelial cells undergoing increased proliferation to establish the three layers of urothelium in adult bladders (79). As these adult tissue niches become fully mature, they may provide different growth or survival factors, driving functional macrophage specialization in discrete locations in the tissue.

In the lung, spleen, BM, and liver, a subpopulation of pro-resolving macrophages are present that phagocytize blood-borne cellular material to maintain tissue homeostasis (66). These macrophages express Mrc1 (encoding for CD206), CD163, and Timd4 (encoding TIM4) (66). MacM macrophages likely represent this subpopulation in the bladder, as they expressed higher levels of genes associated with a pro-resolving phenotype, including the efferocytic receptor TIM4, CD206, and CD163. It is also possible that, similar to muscularis macrophages in the gut, MacM macrophages interact with neurons to control muscle contraction in the bladder and limit neuronal damage during infection (80, 81). By contrast, up-regulated pathways in the MacL subset, in combination with their localization under the urothelium, suggest that, similar to intestinal macrophages, they may regulate T cell responses to bladder microbiota or support urothelial cell integrity (82, 83).

Although it was somewhat unexpected, given that the MacM macrophage subset is located farther from the lumen and urothelium, where infection takes place, we favor the conclusion that MacM macrophages contain more bacteria because they are programmed to do so. This conclusion is supported by the higher expression of genes associated with complement, endocytosis, and phagosome pathways in the MacM subset. It is possible, although challenging to empirically demonstrate, that the MacM subset recognizes dying neutrophils, or even dying MacL macrophages, that have phagocytosed bacteria. We may also consider that, between the subsets, the rate at which bacteria are killed is different, UPEC may survive better in MacM macrophages, MacL macrophages may die after bacterial uptake, the near-luminal location of MacL macrophages may result in their disproportionate sloughing, or even that MacL macrophages break down phagocytosed content better. Additional genetic and knockout models would be needed to address these possibilities.

Significant numbers of MacL macrophages died in the first hours following infection, reflecting their enriched apoptosis pathway. The reduced numbers of both macrophage subsets in protamine sulfate-treated mice suggest that alterations in the urothelium may affect macrophage survival, although we cannot rule out the fact that protamine sulfate directly kills macrophages. Exfoliation induced by protamine sulfate is not comparable to infection, as protamine sulfate induces a rapid, large increase in trans-urothelial conductance (71), suggesting that it induces major disruptions in the urothelium. Protamine sulfate can also suppress cytokine activity and the inflammatory response in the bladder compared to UPEC infection (84). This severe disruption of the urothelium may lead to inadequate supplies of oxygen, nutrients, or survival factors, all of which would be detrimental to macrophage survival. It is less likely that bacteria induce macrophage death as only a small, and importantly equivalent, proportion of both subsets were infected. Instead, MacL macrophage death may be an important step to initiate immune responses to UTI. In the liver, Kupffer cell death by necroptosis during Listeria monocytogenes infection induces recruitment of monocytes, which, in turn, phagocytose bacteria (85). Here, macrophage depletion before challenge infection resulted in decreased infiltration of monocytes, likely due to diminished numbers of these cells in circulation, and fewer eosinophils; however, bacterial burden was also decreased. This suggests that macrophage-mediated immune cell recruitment is not their primary function in the bladder. Infiltration of inflammatory cells is not the only way macrophage cell death regulates infection, however. For instance, pyroptotic macrophages can entrap live bacteria and facilitate their elimination by neutrophils in vivo (86). As MacM macrophages express genes regulating iron metabolism, limiting iron to UPEC would also be a plausible mechanism to control bacterial growth (87).

In the steady state, tissue-resident macrophages can self-maintain locally by proliferation, with minimal input of circulating monocytes (9, 88). By contrast, under inflammatory conditions, resident macrophages are often replaced by monocyte-derived macrophages (85, 8890). Monocytes will differentiate into self-renewing functional macrophages if the endogenous tissue-resident macrophages are depleted or are absent (91, 92). Our results show that UPEC infection induces sufficient inflammation to foster infiltration and differentiation of newly recruited monocytes. It is likely, even, that greater macrophage replacement occurs than we actually measured, as we used a single 4OHT pulse in CCR2CreERT2 Rosa26tdTomato mice 24 hours before infection; however, these cells infiltrate infected bladders over several days. These experiments do not rule out a role for local proliferation in the bladder during UTI, but experiments to test this must be able to distinguish infiltrated monocytes that have already differentiated into tissue macrophages from bona fide tissue-resident macrophages when assessing proliferating cells. These data do support, however, the fact that infiltrating monocytes remain in the tissue, integrated into the resident macrophage pool, after tissue resolution.

Recruited monocyte-derived macrophages can behave differently than resident macrophages when activated, such as in the lung. Gamma herpes virus induces alveolar macrophage replacement by regulatory monocytes expressing higher levels of Sca-1 and MHC II (93). These post-infected mice have reduced perivascular and peribronchial inflammation and inflammatory cytokines, and fewer eosinophils compared to mock-infected mice when exposed to house dust mite to induce allergic asthma (93). Alveolar macrophages of mice infected with influenza virus are replaced by pro-inflammatory monocyte-derived macrophages. At 30 days PI, influenza-infected mice have more alveolar macrophages and increased production of IL-6 when challenged with S. pneumoniae compared to mock-infected mice, leading to fewer deaths (90). Although mechanisms regulating the phenotype of monocyte-derived macrophages are not known, the time of residency in the tissue and the nature of subsequent insults likely influence these cells. The longer that recruited macrophages reside in tissue, the more similar they become to tissue-resident macrophages and no longer provide enhanced protection to subsequent tissue injury (89, 90). In contrast to these studies in the lung, we found that elimination of macrophages, including those recruited during primary infection, led to improved bacterial clearance during secondary challenge, although it is not clear what the long-term consequences on bladder homeostasis might be when a more inflammatory type 1 immune response arises during infection.

Overall, our results demonstrate that two unique subsets of macrophages reside in the bladder. During UTI, these cells respond differently, and a proportion of the population dies. Thus, a first UPEC infection induces replacement of resident macrophage subsets by monocyte-derived cells. When sufficient numbers of MacM macrophages, composed of resident and replaced cells, are depleted, improved bacterial clearance follows, suggesting a major role of this subset in directing the immune response to challenge infection. While these findings greatly improve our understanding of this important immune cell type, much remains to be uncovered, such as the signals and niches that contribute to the establishment of two subsets of bladder-resident macrophages, their roles in the establishment and maintenance of homeostasis, and whether parallel populations and functions exist in human bladder tissue.

This study was conducted using a preclinical mouse model and transgenic mouse strains in controlled laboratory experiments to investigate the origin, maintenance, and function of bladder-resident macrophages in homeostasis and bacterial infection. At the onset of this study, our objective was to understand how bladder-resident macrophages negatively affect the development of adaptive immunity to UTI. Having found two resident macrophage subsets in the course of this work, our objectives were to determine whether these subsets have similar origins and homeostatic maintenance and whether they play divergent roles in response to primary or challenge infection. Mice were assigned to groups upon random partition into cages. In all experiments, a minimum of 2 and a maximum of 10 mice (and more typically 3 to 6 mice per experiment) made up an experimental group and all experiments were repeated two to three times. Sample size was based on our previous work and was not changed in the course of the study. In some cases, n was limited by the number of developing embryos available from timed pregnancies. Data collection is detailed below. Data from all repetitions were pooled before any statistical analysis. As determined a priori, all animals with abnormal kidneys (atrophied, enlarged, and white in color) at the time of sacrifice were excluded from all analyses, as we have observed that abnormal kidneys negatively affect resolution of infection. End points were determined before the start of experiments and researchers were not blinded to experimental groups.

All animals used in this study had free access to standard laboratory chow and water at all times. We used female C57BL/6J mice 7 to 8 weeks old from Charles River, France. Female CX3CR1GFP/+ mice 7 to 8 weeks old were bred in-house. CX3CR1GFP/GFP mice, used to maintain our hemizygous colony, were a gift from F. Chretien (Institut Pasteur). Cdh5-CreERT2 Rosa26tdTomato mice were crossed to CX3CR1GFP mice, producing Cdh5-CreERT2.Rosa26tdTomato.CX3CR1GFP mice at Centre dImmunologie de Marseille-Luminy. In Cdh5-CreERT2.Rosa26tdTomato.CX3CR1GFP mice, cells expressing the CX3CR1 receptor are constitutively GFP+, and treatment with 4OHT conditionally labels hemogenically active endothelial cells (42). We used female and male Cdh5-CreERT2.Rosa26tdTomato.CX3CR1GFP mice 8 to 11 weeks old, at E16.5, and newborns. Flt3Cre.Rosa26YFP mice were a gift from E.G.P. (Institut Pasteur). CCR2/ mice were a gift from M. Lecuit (Institut Pasteur). CCR2creERT2BB mice were a gift from B. Becher (University of Zurich) via S. Amigorena (Institut Curie). CCR2creERT2BB male mice were crossed to Rosa26tdTomato females to obtain CCR2creERT2BB-tdTomato mice at Institut Pasteur. We used female CCR2creERT2BB-tdTomato mice 7 to 8 weeks old. Additional details of the mouse strains used, including JAX and MGI numbers, are listed in table S1. Mice were anesthetized by injection of ketamine (100 mg/kg) and xylazine (5 mg/kg) and euthanized by carbon dioxide inhalation. Experiments were conducted at Institut Pasteur in accordance with approval of protocol number 2016-0010 and dha190501 by the Comit dthique en exprimentation animale Paris Centre et Sud (the ethics committee for animal experimentation), in application of the European Directive 2010/63 EU. Experiments with Cdh5-CreERT2 mice were performed in the laboratory of M. Bajenoff, Centre dImmunologie de Marseille-Luminy, in accordance with national and regional guidelines under protocol number 5-01022012 following review and approval by the local animal ethics committee in Marseille, France.

Antibodies, reagents, and software used in this study are listed in tables S2, S3, and S4, respectively.

Samples were acquired on a BD LSRFortessa using DIVA software (v8.0.1), and data were analyzed by FlowJo (Treestar) software, including the plugins for downsampling, tSNE, and UMAP (version 10.0). The analysis of bladder and blood was performed as described previously (23). Briefly, bladders were dissected and digested in buffer containing Liberase (0.34 U/ml) in phosphate-buffered saline (PBS) at 37C for 1 hour with manual agitation every 15 min. Digestion was stopped by adding PBS supplemented with 2% fetal bovine serum (FBS) and 0.2 M EDTA [fluorescence-activated cell sorting (FACS) buffer]. Fc receptors in single-cell suspensions were blocked with anti-mouse CD16/CD32 and stained with antibodies. Total cell counts were determined by addition of AccuCheck counting beads to a known volume of sample after staining, just before cytometer acquisition. To determine cell populations in the circulation, whole blood was incubated with BD PharmLyse and stained with antibodies (table S2). Total cell counts were determined by the addition of AccuCheck counting beads to 10 l of whole blood in 1-step Fix/Lyse Solution.

For intracellular staining, single-cell suspensions were resuspended in 1 ml of Golgi stop protein transport inhibitor, diluted (1:1500) in RPMI with 10% FBS, 1% sodium pyruvate, 1 Hepes, 1 nonessential amino acid, 1% penicillin-streptomycin, phorbol 12-myristate 13-acetate (50 ng/ml), and ionomycin (1 g/ml), and incubated for 4 hours at 37C. Samples were washed once with FACS buffer, and Fc receptors blocked with anti-mouse CD16/CD32. Samples were stained with antibodies listed in table S2 against surface markers and fixed and permeabilized with 1 fixation and permeabilization buffer and incubated at 4C for 40 to 50 min protected from light. After incubation, samples were washed two times with 1 permeabilization and wash buffer from the transcription factor buffer kit and stained with antibodies against IFN- and the transcriptional factors RORT, GATA3, T-bet, and FoxP3 (table S2), diluted in 1 permeabilization and wash buffer at 4C for 40 to 50 min protected from light. Last, samples were washed two times with 1 permeabilization and wash buffer and resuspended in FACS buffer. Total cell counts were determined by addition of counting beads to a known volume of sample after staining, just before cytometer acquisition.

Whole bladders were fixed with 4% paraformaldehyde (PFA) in PBS for 1 hour and subsequently washed with PBS. Samples were then dehydrated in 30% sucrose in PBS for 24 hours. Samples were cut transversally and embedded in optimal cutting temperature compound, frozen, and sectioned at 30 m. Sections were blocked for 1 hour with blocking buffer [3% bovine serum albumin (BSA) + 0.1% Triton X-100 + donkey serum (1:20) in PBS] and washed three times. Immunostaining was performed using F4/80, LYVE1 antibodies, or polyclonal asymmetrical unit membrane antibodies, recognizing uroplakins [gift from X.-R. Wu, NYU School of Medicine, (76)] (1:200) in staining buffer (0.5% BSA + 0.1% Triton X-100 in PBS) overnight. Sections were washed and stained with phalloidin (1:350) and secondary antibodies (1:2000) in staining buffer for 4 hours. Last, sections were washed and stained with 4,6-diamidino-2-phenylindole. Confocal images were acquired on a Leica SP8 confocal microscope. Final image processing was done using Fiji (version 2.0.0-rc-69/1.52p) and Icy software (v1.8.6.0).

Fate mapping of Cdh5-CreERT2 mice was performed as described previously (42). Briefly, for reporter recombination in offspring, a single dose of 4OHT supplemented with progesterone (1.2 mg of 4OHT and 0.6 mg of progesterone) was delivered by intraperitoneal injection to pregnant females at E7.5 or E10.5. Progesterone was used to counteract adverse effects of 4OHT on pregnancies. To fate map cells in CCR2creERT2BB-tdTomato mice, a single dose (37.5 g/g) of 4OHT injection was delivered intraperitoneally.

For shielded irradiation, 7- to 8-week-old wild-type female CD45.1 or CD45.2 C57BL6/J mice were anesthetized and dressed in a lab-made lead diaper, which selectively exposed their tail, legs, torso, and head to irradiation, but protected the lower abdomen, including the bladder. Mice were irradiated with 9 gray from an Xstrahl x-ray generator (250 kV, 12 mA) and reconstituted with ~3 107 to 4 107 BM cells isolated from congenic (CD45.1) wild-type mice or CD45.2 CCR2/ mice.

Samples were obtained from the whole bladders of nave and 6-week post-infected female C57BL/6J mice. Using FACS, four separate sorts were performed to generate biological replicates, and each sort was a pool of 10 mouse bladders. Macrophage subsets were FACS-purified into 350 l of RLT Plus buffer from the RNeasy Micro Kit plus (1:100) -mercaptoethanol. Total RNA was extracted using the RNeasy Micro Kit following the manufacturers instructions. Directional libraries were prepared using the Smarter Stranded Total RNA-Seq kit Pico Input Mammalian following the manufacturers instructions. The quality of libraries was assessed with the DNA-1000 kit on a 2100 Bioanalyzer, and quantification was performed with Quant-It assays on a Qubit 3.0 fluorometer. Clusters were generated for the resulting libraries with Illumina HiSeq SR Cluster Kit v4 reagents. Sequencing was performed with the Illumina HiSeq 2500 system and HiSeq SBS kit v4 reagents. Runs were carried out over 65 cycles, including seven indexing cycles, to obtain 65-bp single-end reads. Sequencing data were processed with Illumina Pipeline software (Casava version 1.9). Reads were cleaned of adapter sequences and low-quality sequences using cutadapt version 1.11. Only sequences of at least 25 nucleotides in length were considered for further analysis, and the five first bases were trimmed following the library manufacturers instructions. STAR version 2.5.0a (94), with default parameters, was used for alignment on the reference genome (Mus musculus GRCm38_87 from Ensembl version 87). Genes were counted using featureCounts version 1.4.6-p3 (95) from Subreads package (parameters: -t exon -g gene_id -s 1). Count data were analyzed using R version 3.4.3 and the Bioconductor package DESeq2 version 1.18.1 (96). The normalization and dispersion estimation were performed with DESeq2 using the default parameters, and statistical tests for differential expression were performed applying the independent filtering algorithm. A generalized linear model was set to test for the differential expression among the four biological conditions. For each pairwise comparison, raw P values were adjusted for multiple testing according to the Benjamini and Hochberg procedure and genes with an adjusted P value lower than 0.05 were considered differentially expressed. Count data were transformed using variance stabilizing transformation to perform samples clustering and PCA plot. The PCA was performed on the variance-stabilized transformed count matrix that was adjusted for the batch/replicate effect using the limma R package version 3.44.3.

To perform pathway analysis, gene lists of DEGs were imported in the Cytoscape software (version 3.7.2), and analyses were performed using the ClueGO application with the Kyoto Encyclopedia of Genes and Genomes as the database. Significant pathways were selected using the threshold criteria Q < 0.05; terms > 3 genes; % genes/term > 3; 0.4.

We used the human UPEC cystitis isolate UTI89 engineered to express the fluorescent proteins RFP or GFP and antibiotic-resistant cassettes to either kanamycin (UPEC-RFP) or ampicillin (UPEC-GFP) to infect animals for flow cytometric and bacterial burden analyses (23). We used the nonfluorescent parental strain UTI89 for confocal imaging experiments and flow cytometric experiments with CCR2CreERT2 Rosa26tdTomato mice (97). To allow expression of type 1 pili, necessary for infection (98), bacteria cultures were grown statically in Luria-Bertani broth medium for 18 hours at 37C in the presence of antibiotics [kanamycin (50 g/ml) or ampicillin (100 g/ml)]. Primary and challenge UTI were induced in mice as previously described (23, 99). For challenge infection, urine was collected twice a week, for 4 weeks, to follow the presence of bacteria in the urine. Once there were no UTI89-RFP bacteria in the urine, mice were challenged with UTI89-GFP bacteria and euthanized 24 hours after challenge infection. To calculate CFU, bladders were aseptically removed and homogenized in 1 ml of PBS. Serial dilutions were plated on LB agar plates with antibiotics, as required. For in vitro infections, macrophage subsets were sorted from a pool of 10 bladders of nave female C57BL/6J 7- to 8-week-old mice using FACS and 2 103 cells were incubated with 2 104 CFU of UPEC-RFP for 2 hours at 37C. Cells were acquired on a BD LSRFortessa using DIVA software (v8.0.1) and data were analyzed by FlowJo (Treestar) software (version 10.0).

Seven- to 8-week-old wild-type female C57BL6/J mice were anesthetized and instilled intravesically with 50 l of protamine sulfate (50 mg/ml) diluted in PBS and euthanized 5 hours after instillation for analysis.

To produce anti-CSF1R antibody, the hybridoma cell line AFS98 (gift from M. Merad at Icahn School of Medicine at Mount Sinai) (100) was cultured in disposable reactor cell culture flasks for 14 days, and antibodies were purified with disposable PD10 desalting columns. To deplete macrophages, wild-type C57BL/6 mice received intravenous injection of anti-CSF1R antibody (2 mg/ml) diluted in PBS. Animals received two or three intravenous injections, on consecutive days, of anti-CSF1R antibody or PBS. To deplete macrophages with a final concentration of 500 g of anti-CSF1R, we administered 250 g per mouse on day 1 and 250 g per mouse on day 2. To deplete macrophages with a final concentration of 800 g of anti-CSF1R, we administered 400 g per mouse on day 1, 200 g per mouse on day 2, and 200 g per mouse on day 3 to minimize the impact on circulating monocytes.

To quantify macrophage subsets in bladder tissue, six to seven images were randomly acquired of each of the areas of the muscle and lamina propria per mouse in wild-type C57BL/6 female mice with 40 magnification in an SP8 Leica microscope. Maximum intensity Z-projections were performed, and macrophage subsets were counted using Icy software (v1.8.6.0). To quantify urothelial exfoliation and tissue edema, images from whole bladder cross sections were acquired using 20 magnification in an SP8 Leica microscope. Maximum intensity Z-projections were performed, the urothelium was delimited, and mean fluorescence intensity of uroplakin staining was measured using Fiji (v1.51j) software. To quantify tissue edema, the lamina propria was delimited and the area was measured using Fiji software (v1.51j).

Statistical analysis was performed in GraphPad Prism 8 (GraphPad, USA) for Mac OS X applying the nonparametric Wilcoxon test for paired data or the nonparametric Mann-Whitney test for unpaired data in the case of two group comparisons. In the case that more than two groups were being compared or to correct for comparisons made within an entire analysis or experiment, calculated P values were corrected for multiple testing with the false discovery rate (FDR) method (https://jboussier.shinyapps.io/MultipleTesting/) to determine the FDR-adjusted P value. All calculated P values are shown in the figures, and those that met the criteria for statistical significance (P < 0.05) are denoted with red text.

See the article here:
Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder - Science Advances

California’s stem cell research agency looks to the future – Bond Buyer

Now that its been given a new lease on life after the passage of Proposition 14, a statewide $5.5 billion ballot measure, Californias bond-funded stem cell research agency will re-write its budget.

The California Institute for Regenerative Medicine was created in 2004 when voters approve Proposition 71, allocating $3 billion in general obligation bond proceeds to stem cell research.

It was running out of money and the bulk of discussion at the July meeting of the 29-member Independent Citizens Oversight Committee was about how to wind down operations. It also made plans for moving forward should Proposition 14 pass.

They had been operating on a dual track looking at what would occur with and without the passage of Proposition 14, said California Controller Betty Yee. They looked at everything the original $3 billion bond had supported, whether it was facilities, or intellectual property, and where all that would have been housed if Proposition 14 had not passed.

California Controller

But when the six-member Citizens Financial Accountability Oversight Committee chaired by Yee met Friday, talk was about the future for stem cell research in the state.CIRMs President and Chief Executive Officer Dr. Maria Millan asked Yee for time to submit a revised budget, taking into account the passage of the $5.5 billion bond measure.

With California residents struggling under the weight of the pandemic, voters looked upon anything requiring a tax increase unfavorably, except for the stem cell bond measure.

Some of the voters, or a good portion of voters are already familiar with work in the stem cell area, but I definitely think the pandemic had an impact, Yee said. This is state-funded research that has already shown progress in terms of clinical trials at a time when we are all anxious about the development of a vaccine.

In March 2020, as COVID-19 cases struck the U.S., the ICOC convened an emergency meeting and voted to redirect $5 million in grant funding from the 2004 $3 billion bond measure to support stem cell research toward vaccines for COVID-19. The grant review process also contained the stipulation that research targeting populations with racial and economic barriers to health care access and treatments would be prioritized, Yee said.

The $5 million didnt buy a lot, but it did help get information out to underserved communities, she said. And it put a model out there of how CIRM has been able to accelerate research projects.

Yees committee is responsible for reviewing CIRMs independent audit and making sure internal financial controls are in place.

We do an independent quality control review of it, she said. That responsibility was outlined in Proposition 71 and remains under Proposition 14.

The new bond measure added an additional performance review of operations and management systems.

Yee, who has chaired CFAOC since being elected controller in 2015, said CIRMs audits have received no negative opinions from the independent auditor during her tenure.

I always have my sixth sense, and its a complex organization with complex financial controls, but since I have chaired the committee all the audits have been completed and they have received no negative opinions from the independent auditor, she said.

Continued here:
California's stem cell research agency looks to the future - Bond Buyer

Unexpected discovery about stem cell immortality study – News – The University of Sydney

Telomeres are the protective caps at chromosome ends. In adult cells, telomeres shorten each time a cell divides and this contributes to ageing and cancer. Pluripotent stem cells, however, are specialised cells that exist in the earliest days of development. These pluripotent cells do not age and have the ability to turn into any type of adult cell.

The surprise finding, published today in Nature, shows that telomeres in pluripotent stem cells are protected very differently than telomeres in adult tissues.

This upends 20 years of thinking on how stem cells protect their DNA, said Associate Professor Tony Cesare, from the University of Sydneys Faculty of Medicine and Health, who is Head of the Genome Integrity Unit at Childrens Medical Research Institute (CMRI) and co-leader of a research team that collaborated on this research.

In adult cells, a protein called TRF2 is essential because it arranges DNA at the chromosome end into a telomere-loop structure. Removing TRF2 from adult cells causes the chromosomes to become stitched together into one long string, which is incompatible with life.

To the researchers astonishment, removing TRF2 from pluripotent stem cells did almost nothing. The chromosomes were normal, the telomere-loops remained, and the cells divided as if nothing happened. Telomeres are therefore protected differently in pluripotent stem cells and adult tissues.

This unexpected finding has major implications for research on ageing, human development, regenerative medicine, and cancer. Previously, researchers expected fundamental mechanisms that protected DNA would be the same in all tissues. This now appears to be incorrect.

Follow this link:
Unexpected discovery about stem cell immortality study - News - The University of Sydney

Breakthroughs in Stem Cell Based Treatment of Heart Disease – The Connecticut College Voice

Photo Courtesy of Unsplash.

In the United States alone, one person dies every 36 seconds from cardiovascular disease. Globally, it is also the leading cause of death, claiming over 17 million lives each year. In cases of severe illness, heart transplants have shown great promise in increasing the life expectancy of patients with heart disease. About 75% of heart transplant recipients survive for 5 more years and about 56% survive for 10 more years. However, the average wait times for heart transplants are long, often exceeding 6 months, and some patients simply cannot afford to wait that long.

Therefore, scientists tend to refer to other modes of treatment which rely on managing chronic symptoms, such as hypertension (high blood pressure), diabetes mellitus, obesity, and high cholesterol. This approach, however, does not address the root cause of the problem, which is impaired heart functioning. Since heart cells do not have a mechanism to replace damaged tissue, scientists have become increasingly excited about the possibility of repairing or replacing damaged heart tissue using stem cells (unique cells that have the ability to divide for an extended period of time and differentiate into specialized cells, such as cardiac cells or nerve cells).

Regenerative medicine has been a topic of excitement among researchers for decades. In 1999, Anthony Atala, director of the Wake Forest Institute for Regenerative Medicine, was the first to implant lab-grown organs into several patients between 4 and 19 years old. In his method, he obtained bladder cells from the children and coaxed those cells into dividing on a scaffold (a structure that mimics the normal organ). The engineered bladders functioned normally and no ill effects were reported. Pretty much I was able to live a normal life after, said Luke, one of Atalas patients.

More recently, Yoshiki Sawa, a professor of cardiovascular surgery at the University of Osakas medical school, and his team of Japanese researchers successfully transplanted lab-grown cardiac muscles into a human patient. The researchers first extracted adult stem cells from the patients blood or skin and genetically reprogrammed them into induced pluripotent stem (iPS) cells. They were then coaxed into 0.1-millimeter-thick sheets of cardiac tissue and grafted onto the diseased human hearts. According to Sawa, the cells do not seem to integrate into the heart tissue but rather release growth factors (proteins) that help regenerate blood vessels in the damaged muscle tissue and improve cardiac function. The team has conducted an operation on a patient in January 2020, marking the worlds first transplant of cardiac muscle cells.

The United States is also home to major breakthroughs in regenerative medicine. For decades, scientists have utilized embryonic stem cells to engineer heart muscle cells that are able to maintain synchronous breathing in a dish for hours. Despite this major feat, the creation of a working heart called for a more sophisticated technique. Doris Taylor, director of regenerative medicine research at the Texas Heart Institute (THI), has grown in her lab over 100 ghost hearts using protein scaffolds. She creates these scaffolds by first obtaining an animal heart and then decellularizing it by pumping a detergent through its blood vessels to strip away lipids, DNA, soluble proteins, sugars and almost all the other cellular material from the heart, leaving only a pale mesh of collagen, laminins, and the extracellular matrix. This heart does not necessarily have to be a human heart. She often finds pig hearts to be promising tissue because of their considerable safety and unlimited supply. She then recellularizes the heart by injecting it with millions of stem cells and attaching it to artificial lungs and a blood pump. Although her technique has only been used so far for growing animal hearts, she believes that it will eventually be used to create human heart transplants, thus, revolutionizing cardiovascular surgery and putting an end to organ shortage and anti-rejection drugs.

These groundbreaking results in regenerative medicine altogether have taken years of painstaking research to achieve. Taylor believes that her research is exceptionally close to building a working, human-sized heart, and Sawa says that his technique of grafting healthy cardiac muscle sheets onto the patients diseased heart tissue has already helped one of his patients move out of intensive care in just a few days. As the researchers gain more knowledge and get closer to the solution, however, they encounter more challenging obstacles. Sawa, for instance, has found that grafted cells do not always beat in synchrony. Researchers are also split on how these grafts work. On the other hand, investigating the best way to deliver cells still remains a challenge in Taylors research.

Stem cell research in tissue engineering could save millions of lives around the world; therefore, Taylor believes that a coordinated approach among the researchers, clinicians, industry, regulatory bodies and, finally, society should be invigorated to catapult the field forward. For instance, the Twenty-first Century Cures Act can help advance her work by facilitating cooperation among experts and regulatory bodies, providing for accelerated approvals for therapeutic tools in regenerative medicine, and improving the regulation of biologics products. She also maintains that tissue engineering efforts remain poorly funded and believes that more resources must be allocated before her studies can come to life. There is a lot of dependence on societal benevolence, she said. In an interview with RedMedNet, she also said that intense collaboration on a national and an international level is crucial and should be a priority, even though it could be challenging due to scheduling issues and differences in time zones.

(Visited 118 times, 55 visits today)

See the rest here:
Breakthroughs in Stem Cell Based Treatment of Heart Disease - The Connecticut College Voice

Mount Sinai Cardiologist Awarded $2.9 Million NIH Grant to Advance Work with Stem Cells and Heart Repair after Heart Attack – Cath Lab Digest

Research may lead to identifying novel therapies for cardiac patients

(New York, NY November 19, 2020) Human placental stem cells may have the potential to regenerate heart tissue after a heart attack, according to Mount Sinai researchers who have received a $2.9 million grant from the National Institutes of Health to study them. Their findings could lead to new therapies for repairing the heart and other organs.

Hina W. Chaudhry, MD,Director of Cardiovascular Regenerative Medicine at the Icahn School of Medicine at Mount Sinai, is the Principal Investigator for this four-year award.

This is very exciting. These cells may represent the ideal cell type for heart repair, which has been very challenging because clinical trials of other cell types did not find much benefit, says Dr. Chaudhry. Weve never before seen a stem cell type that can be harvested from an adult organthe placentaand has the ability to travel through the circulation and not be attacked by the immune system.

Dr. Chaudhry and a team of investigators previously discovered thatmouse placental stem cells can help the hearts of mice recover from injury that could otherwise lead to heart failure. They identified a specific type of placental stem cells, called Cdx2 cells, as the most effective in making heart cells regenerate. They discovered this by inducing heart attacks in groups of male mice and then injecting the placental Cdx2 cells isolated from females into their bloodstream. Imaging showed that the mice with Cdx2 stem cell treatments had significant improvement in cardiac function and regeneration of healthy tissue in the heart. The mice without this stem cell therapy went into heart failure and their hearts had no evidence of regeneration.

This team also found that the mouse Cdx2 cells have all the proteins of embryonic stem cells, which are known to generate all organs of the body, but also additional proteins, giving them the ability to travel directly to the injury site, which is something embryonic stem cells cannot do, and the Cdx2 cells appear to avoid the host immune response.

The new grant allows the researchers to build upon this discovery by isolating human Cdx2 cells from human placentas and studying their ability to grow heart cells. They also plan to expand into other organs and tissues in the future.

This was a serendipitous discovery based on clinical observations of patients with peripartum cardiomyopathy. We surmised that stem cells originating from the placenta may be assisting in repair of the mothers heart and designed studies to identify the cell types involved. We then showed that they work very well in male mice also when isolated from female placentas and now we hope to design a human cell therapy strategy for heart regeneration with this grant. Given that these cells maintain all the stem properties of embryonic stem cells, we are hopeful to utilize them for other types of organ repair as well, adds Dr. Chaudhry.

The grant is being used in collaboration with the Departments of Obstetrics and Gynecology and Pathology at Cedars-Sinai Medical Center in Los Angeles.

About the Mount Sinai Health System

The Mount Sinai Health System is New York City's largest academic medical system, encompassing eight hospitals, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai is a national and international source of unrivaled education, translational research and discovery, and collaborative clinical leadership ensuring that we deliver the highest quality carefrom prevention to treatment of the most serious and complex human diseases. The Health System includes more than 7,200 physicians and features a robust and continually expanding network of multispecialty services, including more than 400 ambulatory practice locations throughout the five boroughs of New York City, Westchester, and Long Island.Mount Sinai Heart at The Mount Sinai Hospital is within the nations No. 6-ranked heart center, and The Mount Sinai Hospital is ranked No. 14on U.S. News & World Report's "Honor Roll" of the Top 20 Best Hospitals in the country and the Icahn School of Medicine as one of the Top 20 Best Medical Schools in country. Mount Sinai Health System hospitals are consistently ranked regionally by specialty and our physicians in the top 1% of all physicians nationally by U.S. News & World Report.

For more information, visithttps://www.mountsinai.orgor find Mount Sinai on Facebook, Twitter and YouTube.

Read the rest here:
Mount Sinai Cardiologist Awarded $2.9 Million NIH Grant to Advance Work with Stem Cells and Heart Repair after Heart Attack - Cath Lab Digest

Stem Cell Therapy Global Market Report 2020-30: Covid 19 Growth and Change – Yahoo Finance UK

Bloomberg

(Bloomberg) -- As coronavirus infections in Japan spark increasing alarm, the government has left investors guessing on how much money it will pump into the economy through a third extra budget.This presents a huge challenge for the bond market trying to gauge how much additional debt will be issued in the current fiscal year through March, along with which maturities will be in focus and the likely impact on yields.Key meetings later Thursday between finance ministry officials, investors and primary bond dealers may provide more clarity. Ahead of this, here are some of the main scenarios seen by interest-rate strategists in Tokyo:Record IssuanceThe issuance pipeline for this fiscal year is already at a record 212.3 trillion yen ($2 trillion), which puts pressure on the government to limit additional sales, if it can.But the risk of a big jump is very real if virus infections increase significantly. Tokyo last week raised its Covid-19 alert to the highest of four levels amid a resurgence of the pathogen across the country -- a spike thats come after Prime Minister Yoshihide Suga called on officials to prepare the third extra budget.Wide RangeNew issuance could run from as low as 3 trillion yen to more than 10 trillion yen, according to the most likely scenarios sketched by strategists. The wide range reflects the lack of public guidance on the size of the supplementary budget itself, with the market coalescing around a figure of 10-15 trillion yen while media reports speculate on a number as high as 20 trillion yen and some members of the ruling party call for 30 trillion yen.To keep issuance toward the bottom of the range, the finance ministry could tap reserve funds of about 7 trillion yen that havent been used yet from its first two extra budgets, according to Shinji Ebihara at Barclays Securities.It is also ahead of schedule in refinancing debt that is coming due, providing another source of funds before selling more bonds.Daiwa Securities Co.s Kouji Hamada sees yet another potential scenario -- that the extra budget may bring another 15 trillion yen of issuance but that the calendar for sales remains largely unchanged if the same amount of debt is shelved in the governments fiscal investment and loan program.Further complicating efforts to narrow in on a consensus figure, the extra budget could be rolled out together with plans for next fiscal year, creating a 15-month budget. The budget for the fiscal year ahead is typically compiled and put to Cabinet for approval around mid- to late-December.Yield CurveEbihara is among those who expect a large chunk of the new issuance to come in the form of short-term debt, with three- to six-month bills seen as a likely focus.This would be consistent with Japans second extra budget and the trend in stimulus-related debt issuance globally during the pandemic. And it could also limit the impact on Japans yield curve, which has steepened this year.Yet the uncertainty is still fueling concern about the supply of super-long bonds.Citigroup Global Markets notes that while the government probably has the capacity to limit new issuance, 10-, 20- and 40-year bonds would be candidates for an increase if the third extra budget is unexpectedly large. Yield premiums that the 30-year bonds offer over 10-year notes have almost tripled to more than 60 basis points from a low of 24 basis points in March. Yields on the 40-year bond is hovering near 0.7%, a level last seen in March 2019.More than half of the 128.8 trillion yen issuance plan from the initial budget for the full fiscal year was made up of bonds maturing in 2 to 10 years, while super-long bonds of 20 years and longer and shorter-term bills were both at the low 20 trillion yen level.The first extra budget in April saw super-long debt increase modestly while bills jumped to 37 trillion yen. The second supplementary package in May brought another modest increase in the super-long sector while bills surged to 82.5 trillion yen.The finance ministry will meet bond investors at 10:30 a.m. Tokyo time and primary dealers at 4 p.m.(Adds yield curve widening in 15th paragraph, and timing of meetings in last paragraph)For more articles like this, please visit us at bloomberg.comSubscribe now to stay ahead with the most trusted business news source.2020 Bloomberg L.P.

Visit link:
Stem Cell Therapy Global Market Report 2020-30: Covid 19 Growth and Change - Yahoo Finance UK

Middle East & Africa Cell Therapy Instruments Market Forecast to 2027 – COVID-19 Impact and Regional Analysis By Product ; Cell Type ; Process ;…

NEW YORK, Nov. 25, 2020 /PRNewswire/ -- The Middle East and Africa cell therapy instruments market was valued at US$ 398.23 Million in 2019 and is projected to reach US$ 899.62 Million by 2027; it is expected to grow at a CAGR of 11.0% during the forecast period.

Read the full report: https://www.reportlinker.com/p05989550/?utm_source=PRN

The surge in the number of cell therapy transplantation procedures, growing research and development activities, and rising investments in building production facilities for cell and gene therapy products drive the growth of the Middle East and Africa cell therapy instruments market. However, the low success rate of cell therapies and the high cost of cell-based research is expected to restrain the market growth during the forecast period.

Cell therapy typically involves the administration of somatic cell preparations by injecting or grafting it into the patient's body for the treatment of diseases or traumatic damages.The procedure is used to cure diabetes, neurological disorders, related injuries, several cancer types, bones and joints, and genetic disorders.

Continuous research and development activities have led to unique cell therapeutic instruments for the improvement of immune system and efficient treatment of genetic disorders.Various market players provide several consumables such as reagent kits and enzymes as well as devices, equipment, and software to perform various cell therapy processes.

The cell therapy products are derived from animals or human cells and thus need to be protected from contamination.The instruments used in cell therapies help provide protection against contamination and allow scaling up of transplantation.

Companies such as Hitachi Chemical Advanced Therapeutics Solutions; Corning Incorporated; Thermo Fisher Scientific Inc.; MiltenyiBiotec, LLC; Invetech; and Cytiva (General Electric Company) have introduced various equipment and consumables for the cell therapy procedures.

Various US-based companies have their manufacturing units in the Middle East and African countries; the lockdown imposed in response to the COVID-19 pandemic in multiple countries has affected the supply of instruments in this region. Therefore, many organizations are collaborating with other companies to overcome the adverse effects of the pandemic by using cell therapies for the treatment of COVID 19.

The Middle East and Africa cell therapy instruments market, by product, is segmented into consumables, software, equipment, and systems.The consumables segment held the largest share of the market in 2019 and is expected to register the highest CAGR during the forecast period.

On the basis of cell type, the cell therapy instruments market is segmented into animal cells and human cells. The human cells segment held a larger share of the market in 2019 and is estimated to register a higher CAGR during the forecast period.

On the basis of process, the Middle East and Africa cell therapy instruments market is segmented into cell processing; cell preservation, distribution, and handling; and process monitoring and quality control.The cell processing segment held the largest share of the market in 2019 and is estimated to register the highest CAGR during the forecast period.

The Middle East and Africa cell therapy instruments market, based on end user, is segmented into life science research companies, research institutes, and other end users. The life science research companies segment accounted for the largest share of the market in 2019 and is anticipated to register the highest CAGR during the forecast period.

A few of the major primary and secondary sources associated with this report on the Middle East and Africa cell therapy instruments market are National Center for Biotechnology Information (NCBI); World Health Organization (WHO); Abu Dhabi Stem Cell Center(ADSCC); South African Stem Cell Institute (SASCI); and Global Institute of Stem Cell Therapy and Research (GIOSTAR).

Read the full report: https://www.reportlinker.com/p05989550/?utm_source=PRN

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________ Contact Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001

Read the original post:
Middle East & Africa Cell Therapy Instruments Market Forecast to 2027 - COVID-19 Impact and Regional Analysis By Product ; Cell Type ; Process ;...

Global Cell Harvesting Market to Reach US$381,4 Million by the Year 2027 – PRNewswire

NEW YORK, Nov. 25, 2020 /PRNewswire/ --Amid the COVID-19 crisis, the global market for Cell Harvesting estimated at US$233.2 Million in the year 2020, is projected to reach a revised size of US$381.4 Million by 2027, growing at a CAGR of 7.3% over the period 2020-2027.Manual, one of the segments analyzed in the report, is projected to grow at a 7.9% CAGR to reach US$284.4 Million by the end of the analysis period. After an early analysis of the business implications of the pandemic and its induced economic crisis, growth in the Automated segment is readjusted to a revised 5.6% CAGR for the next 7-year period. This segment currently accounts for a 28.3% share of the global Cell Harvesting market.

Read the full report: https://www.reportlinker.com/p05798117/?utm_source=PRN

The U.S. Accounts for Over 30.9% of Global Market Size in 2020, While China is Forecast to Grow at a 10.4% CAGR for the Period of 2020-2027

The Cell Harvesting market in the U.S. is estimated at US$72 Million in the year 2020. The country currently accounts for a 30.86% share in the global market. China, the world second largest economy, is forecast to reach an estimated market size of US$34.9 Million in the year 2027 trailing a CAGR of 10.4% through 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 6.1% and 7% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately 6.6% CAGR while Rest of European market (as defined in the study) will reach US$34.9 Million by the year 2027.We bring years of research experience to this 5th edition of our report. The 226-page report presents concise insights into how the pandemic has impacted production and the buy side for 2020 and 2021. A short-term phased recovery by key geography is also addressed.

Competitors identified in this market include, among others,

Read the full report: https://www.reportlinker.com/p05798117/?utm_source=PRN

I. INTRODUCTION, METHODOLOGY & REPORT SCOPE I-1

II. EXECUTIVE SUMMARY II-1

1. MARKET OVERVIEW II-1 Cell Harvesting - A Prelude II-1 Impact of Covid-19 and a Looming Global Recession II-1 With Stem Cells Holding Potential to Emerge as Savior for Healthcare System Struggling with COVID-19 Crisis, Demand for Cell Harvesting to Grow II-1 Select Clinical Trials in Progress for MSCs in the Treatment of COVID-19 II-2 Lack of Antiviral Therapy Brings Spotlight on MSCs as Potential Option to Treat Severe Cases of COVID-19 II-3 Stem Cells Garner Significant Attention amid COVID-19 Crisis II-3 Growing R&D Investments & Rising Incidence of Chronic Diseases to Drive the Global Cell Harvesting Market over the Long-term II-3 US Dominates the Global Market, Asia-Pacific to Experience Lucrative Growth Rate II-4 Biopharmaceutical & Biotechnology Firms to Remain Key End-User II-4 Remarkable Progress in Stem Cell Research Unleashes Unlimited Avenues for Regenerative Medicine and Drug Development II-4 Drug Development II-5 Therapeutic Potential II-5

2. FOCUS ON SELECT PLAYERS II-6 Recent Market Activity II-7 Innovations and Advancements II-7

3. MARKET TRENDS & DRIVERS II-8 Development of Regenerative Medicine Accelerates Demand for Cell Harvesting II-8 The Use of Mesenchymal Stem Cells in Regenerative Medicine to Drive the Cell Harvesting Market II-8 Rise in Volume of Orthopedic Procedures Boosts Prospects for Stem Cell, Driving the Cell Harvesting II-9 Exhibit 1: Global Orthopedic Surgical Procedure Volume (2010- 2020) (in Million) II-11 Increasing Demand for Stem Cell Based Bone Grafts: Promising Growth Ahead for Cell Harvesting II-11 Spectacular Advances in Stem Cell R&D Open New Horizons for Regenerative Medicine II-12 Exhibit 2: Global Regenerative Medicines Market by Category (2019): Percentage Breakdown for Biomaterials, Stem Cell Therapies and Tissue Engineering II-13 Stem Cell Transplants Drive the Demand for Cell Harvesting II-13 Rise in Number of Hematopoietic Stem Cell Transplantation Procedures Propels Market Expansion II-15 Growing Incidence of Chronic Diseases to Boost the Demand for Cell Harvesting II-16 Exhibit 3: Global Cancer Incidence: Number of New Cancer Cases in Million for the Years 2018, 2020, 2025, 2030, 2035 and 2040 II-17 Exhibit 4: Global Number of New Cancer Cases and Cancer-related Deaths by Cancer Site for 2018 II-18 Exhibit 5: Number of New Cancer Cases and Deaths (in Million) by Region for 2018 II-19 Exhibit 6: Fatalities by Heart Conditions: Estimated Percentage Breakdown for Cardiovascular Disease, Ischemic Heart Disease, Stroke, and Others II-19 Exhibit 7: Rising Diabetes Prevalence Presents Opportunity for Cell Harvesting: Number of Adults (20-79) with Diabetes (in Millions) by Region for 2017 and 2045 II-20 Ageing Demographics to Drive Demand for Stem Cell Banking II-20 Global Aging Population Statistics - Opportunity Indicators II-21 Exhibit 8: Expanding Elderly Population Worldwide: Breakdown of Number of People Aged 65+ Years in Million by Geographic Region for the Years 2019 and 2030 II-21 Exhibit 9: Life Expectancy for Select Countries in Number of Years: 2019 II-22 High Cell Density as Major Bottleneck Leads to Innovative Cell Harvesting Methods II-22 Advanced Harvesting Systems to Overcome Centrifugation Issues II-23 Sophisticated Filters for Filtration Challenges II-23 Innovations in Closed Systems Boost Efficiency & Productivity of Cell Harvesting II-23 Enhanced Harvesting and Separation of Micro-Carrier Beads II-24

4. GLOBAL MARKET PERSPECTIVE II-25 Table 1: World Current & Future Analysis for Cell Harvesting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-25

Table 2: World Historic Review for Cell Harvesting by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-26

Table 3: World 15-Year Perspective for Cell Harvesting by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2012, 2020 & 2027 II-27

Table 4: World Current & Future Analysis for Manual by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-28

Table 5: World Historic Review for Manual by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-29

Table 6: World 15-Year Perspective for Manual by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-30

Table 7: World Current & Future Analysis for Automated by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-31

Table 8: World Historic Review for Automated by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-32

Table 9: World 15-Year Perspective for Automated by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-33

Table 10: World Current & Future Analysis for Peripheral Blood by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-34

Table 11: World Historic Review for Peripheral Blood by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-35

Table 12: World 15-Year Perspective for Peripheral Blood by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-36

Table 13: World Current & Future Analysis for Bone Marrow by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-37

Table 14: World Historic Review for Bone Marrow by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-38

Table 15: World 15-Year Perspective for Bone Marrow by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-39

Table 16: World Current & Future Analysis for Umbilical Cord by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-40

Table 17: World Historic Review for Umbilical Cord by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-41

Table 18: World 15-Year Perspective for Umbilical Cord by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-42

Table 19: World Current & Future Analysis for Adipose Tissue by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-43

Table 20: World Historic Review for Adipose Tissue by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-44

Table 21: World 15-Year Perspective for Adipose Tissue by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-45

Table 22: World Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-46

Table 23: World Historic Review for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-47

Table 24: World 15-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-48

Table 25: World Current & Future Analysis for Biotech & Biopharma Companies by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-49

Table 26: World Historic Review for Biotech & Biopharma Companies by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-50

Table 27: World 15-Year Perspective for Biotech & Biopharma Companies by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-51

Table 28: World Current & Future Analysis for Research Institutes by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-52

Table 29: World Historic Review for Research Institutes by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-53

Table 30: World 15-Year Perspective for Research Institutes by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-54

Table 31: World Current & Future Analysis for Other End-Uses by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-55

Table 32: World Historic Review for Other End-Uses by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 II-56

Table 33: World 15-Year Perspective for Other End-Uses by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2012, 2020 & 2027 II-57

III. MARKET ANALYSIS III-1

GEOGRAPHIC MARKET ANALYSIS III-1

UNITED STATES III-1 Increasing Research on Stem Cells for Treating COVID-19 to drive the Cell Harvesting Market III-1 Rising Investments in Stem Cell-based Research Favors Cell Harvesting Market III-1 Exhibit 10: Stem Cell Research Funding in the US (in US$ Million) for the Years 2011 through 2017 III-2 A Strong Regenerative Medicine Market Drives Cell Harvesting Demand III-2 Arthritis III-3 Exhibit 11: Percentage of Population Diagnosed with Arthritis by Age Group III-3 Rapidly Ageing Population: A Major Driving Demand for Cell Harvesting Market III-4 Exhibit 12: North American Elderly Population by Age Group (1975-2050) III-4 Increasing Incidence of Chronic Diseases Drives Focus onto Cell Harvesting III-5 Exhibit 13: CVD in the US: Cardiovascular Disease* Prevalence in Adults by Gender & Age Group III-5 Rising Cancer Cases Spur Growth in Cell Harvesting Market III-5 Exhibit 14: Estimated Number of New Cancer Cases and Deaths in the US (2019) III-6 Exhibit 15: Estimated New Cases of Blood Cancers in the US (2020) - Lymphoma, Leukemia, Myeloma III-7 Exhibit 16: Estimated New Cases of Leukemia in the US: 2020 III-7 Market Analytics III-8 Table 34: USA Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-8

Table 35: USA Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-9

Table 36: USA 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-10

Table 37: USA Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-11

Table 38: USA Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-12

Table 39: USA 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-13

Table 40: USA Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-14

Table 41: USA Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-15

Table 42: USA 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-16

CANADA III-17 Market Overview III-17 Exhibit 17: Number of New Cancer Cases in Canada: 2019 III-17 Market Analytics III-18 Table 43: Canada Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-18

Table 44: Canada Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-19

Table 45: Canada 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-20

Table 46: Canada Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-21

Table 47: Canada Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-22

Table 48: Canada 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-23

Table 49: Canada Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-24

Table 50: Canada Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-25

Table 51: Canada 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-26

JAPAN III-27 Increasing Demand for Regenerative Medicine in Geriatric Healthcare and Cancer Care to Drive Demand for Cell Harvesting III-27 Exhibit 18: Japanese Population by Age Group (2015 & 2040): Percentage Share Breakdown of Population for 0-14, 15-64 and 65 & Above Age Groups III-27 Exhibit 19: Cancer Related Incidence and Deaths by Site in Japan: 2018 III-28 Market Analytics III-29 Table 52: Japan Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-29

Table 53: Japan Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-30

Table 54: Japan 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-31

Table 55: Japan Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-32

Table 56: Japan Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-33

Table 57: Japan 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-34

Table 58: Japan Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-35

Table 59: Japan Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-36

Table 60: Japan 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-37

CHINA III-38 Rising Incidence of Cancer Drives Cell Harvesting Market III-38 Exhibit 20: Number of New Cancer Cases Diagnosed (in Thousands) in China: 2018 III-38 Market Analytics III-39 Table 61: China Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-39

Table 62: China Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-40

Table 63: China 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-41

Table 64: China Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-42

Table 65: China Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-43

Table 66: China 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-44

Table 67: China Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-45

Table 68: China Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-46

Table 69: China 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-47

EUROPE III-48 Cancer in Europe: Key Statistics III-48 Exhibit 21: Cancer Incidence in Europe: Number of New Cancer Cases (in Thousands) by Site for 2018 III-48 Ageing Population to Drive Demand for Cell Harvesting Market III-49 Exhibit 22: European Population by Age Group (2016, 2030 & 2050): Percentage Share Breakdown by Age Group for 0-14, 15- 64, and 65 & Above III-49 Market Analytics III-50 Table 70: Europe Current & Future Analysis for Cell Harvesting by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 III-50

Table 71: Europe Historic Review for Cell Harvesting by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-51

Table 72: Europe 15-Year Perspective for Cell Harvesting by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2012, 2020 & 2027 III-52

Table 73: Europe Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-53

Table 74: Europe Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-54

Table 75: Europe 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-55

Table 76: Europe Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-56

Table 77: Europe Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-57

Table 78: Europe 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-58

Table 79: Europe Current & Future Analysis for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-59

Table 80: Europe Historic Review for Cell Harvesting by End-Use - Biotech & Biopharma Companies, Research Institutes and Other End-Uses Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-60

Table 81: Europe 15-Year Perspective for Cell Harvesting by End-Use - Percentage Breakdown of Value Sales for Biotech & Biopharma Companies, Research Institutes and Other End-Uses for the Years 2012, 2020 & 2027 III-61

FRANCE III-62 Table 82: France Current & Future Analysis for Cell Harvesting by Type - Manual and Automated - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-62

Table 83: France Historic Review for Cell Harvesting by Type - Manual and Automated Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-63

Table 84: France 15-Year Perspective for Cell Harvesting by Type - Percentage Breakdown of Value Sales for Manual and Automated for the Years 2012, 2020 & 2027 III-64

Table 85: France Current & Future Analysis for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-65

Table 86: France Historic Review for Cell Harvesting by Application - Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2012 through 2019 III-66

Table 87: France 15-Year Perspective for Cell Harvesting by Application - Percentage Breakdown of Value Sales for Peripheral Blood, Bone Marrow, Umbilical Cord, Adipose Tissue and Other Applications for the Years 2012, 2020 & 2027 III-67

See the rest here:
Global Cell Harvesting Market to Reach US$381,4 Million by the Year 2027 - PRNewswire

Global Stem Cell Banking Market to Get Expansion admist COVID 19, Scope With Advanced Technologies Top Key Players and Forecast 2020-2027 – The…

Databridgemarketresearch.com Present Global Stem Cell Banking Market Industry Trends and Forecast to 2027 new report to its research database. The report spread No of pages: 350 No of Figures: 60 No of Tables: 220 in it. This Global Stem Cell Banking Market report takes into consideration diverse segments of the market analysis that todays business ask for. The Global Stem Cell Banking Market report provides estimations of CAGR values, market drivers and market restraints about the industry which are helpful for the businesses in deciding upon numerous strategies. The base year for calculation in the report is taken as 2017 whereas the historic year is 2016 which will tell you how the Global Stem Cell Banking Market is going to perform in the forecast years by informing you what the market definition, classifications, applications, and engagements are. The report helps you to be there on the right track by making you focus on the data and realities of the industry.

The research studies of this Global Stem Cell Banking Market report helps to evaluate several important parameters that can be mentioned as investment in a rising market, success of a new product, and expansion of market share. Market estimations along with the statistical nuances included in this market report give an insightful view of the market. The market analysis serves present as well as future aspects of the market primarily depending upon factors on which the companies contribute in the market growth, crucial trends and segmentation analysis. This Global Stem Cell Banking Market research report also gives widespread study about different market segments and regions.

Global stem cell banking market is set to witness a substantial CAGR of 11.03% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. The increased market growth can be identified by the increasing procedures of hematopoietic stem cell transplantation (HSCT), emerging technologies for stem cell processing, storage and preservation. Increasing birth rates, awareness of stem cell therapies and higher treatment done viva stem cell technology.

Get Sample Report + All Related Graphs & Charts (with COVID 19 Analysis) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-stem-cell-banking-market&pm

Competitive Analysis:

Global stem cell banking market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of inflammatory disease drug delivery market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.

Key Market Competitors:

Few of the major competitors currently working in global inflammatory disease drug delivery market are: NSPERITE N.V, Caladrius, ViaCord, CBR Systems, Inc, SMART CELLS PLUS, LifeCell International, Global Cord Blood Corporation, Cryo-Cell International, Inc., StemCyte India Therapeutics Pvt. Ltd, Cordvida, ViaCord, Cryoviva India, Vita34 AG, CryoHoldco, PromoCell GmbH, Celgene Corporation, BIOTIME, Inc., BrainStorm Cell Therapeutics and others

Market Definition:Global Stem Cell Banking Market

Stem cells are cells which have self-renewing abilities and segregation into numerous cell lineages. Stem cells are found in all human beings from an early stage to the end stage. The stem cell banking process includes the storage of stem cells from different sources and they are being used for research and clinical purposes. The goal of stem cell banking is that if any persons tissue is badly damaged the stem cell therapy is the cure for that. Skin transplants, brain cell transplantations are some of the treatments which are cured by stem cell technique.

Cord Stem Cell Banking MarketDevelopment and Acquisitions in 2019

In September 2019, a notable acquisition was witnessed between CBR and Natera. This merger will develop the new chances of growth in the cord stem blood banking by empowering the Nateras Evercord branch for storing and preserving cord blood. The advancement will focus upon research and development of the therapeutic outcomes, biogenetics experiment, and their commercialization among the global pharma and health sector.

Cord Stem Cell Banking MarketScope

Cord Stem Cell Banking Marketis segmented on the basis of countries into U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.

All country based analysis of the cord stem cell banking marketis further analyzed based on maximum granularity into further segmentation. On the basis of storage type, the market is segmented into private banking, public banking. On the basis of product type, the market is bifurcated into cord blood, cord blood & cord tissue. On the basis of services type, the market is segmented into collection & transportation, processing, analysis, storage. On the basis of source, market is bifurcated into umbilical cord blood, bone marrow, peripheral blood stem, menstrual blood. On the basis of indication, the market is fragmented into cerebral palsy, thalassemia, leukemia, diabetes, autism.

Cord stem cell trading is nothing but the banking of the vinculum plasma cell enclosed in the placenta and umbilical muscle of an infant. This ligament plasma comprises the stem blocks which can be employed in the forthcoming time to tackle illnesses such as autoimmune diseases, leukemia, inherited metabolic disorders, and thalassemia and many others.

Market Drivers

Increasing rate of diseases such as cancers, skin diseases and others Public awareness associated to the therapeutic prospective of stem cells Growing number of hematopoietic stem cell transplantations (HSCTs) Increasing birth rate worldwide

Market Restraint

High operating cost for the therapy is one reason which hinders the market Intense competition among the stem cell companies Sometimes the changes are made from government such as legal regulations

Key Pointers Covered in the Cord Stem Cell Banking MarketIndustry Trends and Forecast to 2026

Market Size Market New Sales Volumes Market Replacement Sales Volumes Market Installed Base Market By Brands Market Procedure Volumes Market Product Price Analysis Market Healthcare Outcomes Market Cost of Care Analysis Market Regulatory Framework and Changes Market Prices and Reimbursement Analysis Market Shares in Different Regions Recent Developments for Market Competitors Market Upcoming Applications Market Innovators Study

Key Developments in the Market:

In August, 2019, Bayer bought BlueRock for USD 600 million to become the leader in stem cell therapies. Bayer is paying USD 600 million for getting full control of cell therapy developer BlueRock Therapeutics, promising new medical area to revive its drug development pipeline and evolving engineered cell therapies in the fields of immunology, cardiology and neurology, using a registered induced pluripotent stem cell (iPSC) platform. In August 2018, LifeCell acquired Fetomed Laboratories, a provider of clinical diagnostics services. The acquisition is for enhancement in mother & baby diagnostic services that strongly complements stem cell banking business. This acquisition was funded by the internal accruals which is aimed to be the Indias largest mother & baby preventive healthcare organization.

For More Insights Get FREE Detailed TOC @https://www.databridgemarketresearch.com/toc/?dbmr=global-stem-cell-banking-market&pm

Research objectives

To perceive the most influencing pivoting and hindering forces in Cord Stem Cell Banking Market and its footprint in the international market. Learn about the market policies that are being endorsed by ruling respective organizations. To gain a perceptive survey of the market and have an extensive interpretation of the Cord Stem Cell Banking Market and its materialistic landscape. To understand the structure of Cord Stem Cell Banking Market by identifying its various sub segments. Focuses on the key global Cord Stem Cell Banking Market players, to define, describe and analyze the sales volume, value, market share, market competition landscape, SWOT analysis and development plans in next few years. To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market. To share detailed information about the key factors influencing the growth of the market (growth potential, opportunities, drivers, industry-specific challenges and risks). To project the consumption of Cord Stem Cell Banking Market submarkets, with respect to key regions (along with their respective key countries). To strategically profile the key players and comprehensively analyze their growth strategies To analyze the Cord Stem Cell Banking Market with respect to individual growth trends, future prospects, and their contribution to the total market.

Customization of the Report:

All segmentation provided above in this report is represented at country level All products covered in the market, product volume and average selling prices will be included as customizable options which may incur no or minimal additional cost (depends on customization)

Contact:

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Email @Corporatesales@databridgemarketresearch.com

About Data Bridge Market Research:

An absolute way to forecast what future holds is to comprehend the trend today! Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.

Original post:
Global Stem Cell Banking Market to Get Expansion admist COVID 19, Scope With Advanced Technologies Top Key Players and Forecast 2020-2027 - The...