Allogene Therapeutics Presents Preclinical Data on ALLO-316 in Acute Myeloid Leukemia at the 62nd Meeting of the American Society of Hematology -…

December 06, 2020 10:00 ET | Source: Allogene Therapeutics, Inc.

SOUTH SAN FRANCISCO, Calif., Dec. 06, 2020 (GLOBE NEWSWIRE) -- Allogene Therapeutics, Inc. (Nasdaq: ALLO), a clinical-stage biotechnology company pioneering the development of allogeneic CAR T (AlloCAR T) therapies for cancer, today announced preclinical findings of ALLO-316, an AlloCAR T therapy targeting CD70, in models of acute myeloid leukemia (AML). Data were presented in a poster session today at the 62nd Annual Meeting of the American Society of Hematology.

The Company also announced that the U.S. Food and Drug Administration (FDA) has cleared an Investigational New Drug (IND) application for a Phase 1 trial of ALLO-316 for patients with advanced or metastatic clear cell renal cell carcinoma (RCC). The Companys first solid tumor trial is expected to begin enrolling patients in 2021.

We are very excited about the potential of ALLO-316, our fourth AlloCAR T investigational therapy, to treat patients with CD70 expressing malignancies across both hematologic and solid tumor indications, said Rafael Amado, M.D., Executive Vice President of Research & Development and Chief Medical Officer of Allogene. These preclinical results in AML, coupled with previous findings of ALLO-316 in RCC presented at the American Association for Cancer Research Annual Meeting in 2019, reinforce our belief that CD70 may become one of the more important targets across a broad spectrum of cancers.

CD70 is expressed in a number of malignancies ranging from solid tumors such as RCC, lung cancer and glioblastoma to hematologic cancers including AML, diffuse large B-cell lymphoma, multiple myeloma, and chronic lymphocytic leukemia.

In the preclinical studies presented at ASH, CD70 expression was detected on AML cell lines and primary AML samples from patients. No expression of CD70 was identified in hematopoietic stem cells. ALLO-316 demonstrated the ability to mediate efficient killing of leukemic cells in multiple models. This killing activity was specific to CD70 expression on the target cells as ALLO-316 did not kill AML cell lines in which CD70 was knocked out. The preclinical studies also showed that ALLO-316 can mask CD70 on the surface of CAR T cells thereby preventing fratercide and allowing scaled manufacturing of AlloCAR T cells.

AboutAllogene Therapeutics Allogene Therapeutics, with headquarters in South San Francisco, is a clinical-stage biotechnology company pioneering the development of allogeneic chimeric antigen receptor T cell (AlloCAR T) therapies for cancer. Led by a management team with significant experience in cell therapy, Allogene is developing a pipeline of off-the-shelf CAR T cell therapy candidates with the goal of delivering readily available cell therapy on-demand, more reliably, and at greater scale to more patients. For more information, please visit http://www.allogene.com, and follow @AllogeneTx on Twitter and LinkedIn.

Cautionary Note on Forward-Looking Statements This press release contains forward-looking statements for purposes of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. The press release may, in some cases, use terms such as "predicts," "believes," "potential," "proposed," "continue," "estimates," "anticipates," "expects," "plans," "intends," "may," "could," "might," "will," "should" or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Forward-looking statements include statements regarding intentions, beliefs, projections, outlook, analyses or current expectations concerning, among other things: timing and ability to progress a clinical trial of ALLO-316 in RCC; ability to manufacture ALLO-316; and the potential benefits of ALLO-316 and AlloCAR T therapy. Various factors may cause differences between Allogenes expectations and actual results as discussed in greater detail in Allogenes filings with the SEC, including without limitation in its Form 10-Q for the quarter ended September 30, 2020. Any forward-looking statements that are made in this press release speak only as of the date of this press release. Allogene assumes no obligation to update the forward-looking statements whether as a result of new information, future events or otherwise, after the date of this press release.

AlloCAR T is a trademark ofAllogene Therapeutics, Inc.

ALLO-316 utilizes TALEN gene-editing technology pioneered and owned by Cellectis. Allogene has an exclusive license to the Cellectis technology for allogeneic products directed at CD70 and holds all global development and commercial rights for this investigational candidate.

Allogene Media/Investor Contact: Christine Cassiano Chief Communications Officer (714) 552-0326 Christine.Cassiano@allogene.com

See the rest here:
Allogene Therapeutics Presents Preclinical Data on ALLO-316 in Acute Myeloid Leukemia at the 62nd Meeting of the American Society of Hematology -...

Data Evaluating Tafasitamab with and without Lenalidomide in Combination with R-CHOP in Patients with DLBCL Presented at ASH 2020 – Business Wire

WILMINGTON, Del. & PLANEGG/MUNICH, Germany--(BUSINESS WIRE)--Incyte (Nasdaq:INCY) and MorphoSys AG (FSE: MOR; Prime Standard Segment; MDAX & TecDAX; NASDAQ:MOR) announce that preliminary data from firstMIND, the ongoing Phase 1b, open-label, randomized study on the safety and efficacy of tafasitamab or tafasitamab plus lenalidomide in addition to R-CHOP for patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) were presented today during the 62nd American Society of Hematology Annual Meeting & Exposition (ASH). Additionally, a long-term subgroup analysis of the L-MIND study investigating tafasitamab combined with lenalidomide in patients with relapsed or refractory DLBCL was also presented at ASH.

The preliminary results of firstMIND indicate that tafasitamab plus lenalidomide in addition to R-CHOP shows an acceptable tolerability profile. Toxicities appear to be similar to what is expected with R-CHOP alone or in combination with lenalidomide. Serious or severe neutropenia and thrombocytopenia events (grade 3 or higher) were more frequent in the tafasitamab plus lenalidomide arm. The incidence of febrile neutropenia was comparable between both arms and the average relative dose intensity of R-CHOP was maintained in both arms. Interim response assessments after three cycles were available for 45 patients. In both arms combined, 41/45 (91.1%) of patients had an objective response as per Lugano 20141.

The preliminary data from this ongoing study in first-line DLBCL warrant further investigation. To that end, MorphoSys and Incyte plan to initiate frontMIND, a Phase 3 trial evaluating tafasitamab plus lenalidomide in combination with R-CHOP compared to R-CHOP alone as first-line treatment for patients with newly diagnosed DLBCL.

The initial results of the firstMIND study, shared today at ASH, as well as the long-term analyses from L-MIND, underscore the potential of tafasitamab as a combination therapeutic for patients with DLBCL, where there remains a significant unmet need. Along with our partners at MorphoSys, we are pleased to be moving forward with the initiation of a Phase 3 study in 2021, said Steven Stein, M.D., Chief Medical Officer at Incyte.

The preliminary firstMIND study results mark another important step as we explore the potential of tafasitamab as a backbone therapy, said Dr. Malte Peters, Chief Research and Development Officer at MorphoSys. Given the data available to date, including data from the L-MIND study, we believe that the mechanism of action, efficacy and safety profile of tafasitamab have the potential to make it a preferred combination partner as we seek to transform the standard of care in DLBCL. We are committed to developing innovative therapies to battle this aggressive disease for the benefit of patients with DLBCL, and look forward to beginning the planned frontMIND in the first half of 2021.

In addition to the firstMIND data presented today, the long-term L-MIND analyses showed that treatment with tafasitamab plus lenalidomide resulted in durable responses after 2 years of follow-up. At the time of analysis, patients with complete responses (CR) continued to experience durable treatment responses, including long duration of response (DoR) and overall survival (OS). The data also showed that tafasitamab plus lenalidomide taken for 12 cycles, followed by tafasitamab until progression, did not result in any unexpected safety signals2.

In July 2020, the FDA approved Monjuvi (tafasitamab-cxix), a humanized Fc-modified cytolytic CD19-targeting monoclonal antibody, in combination with lenalidomide for the treatment of adult patients with relapsed or refractory DLBCL not otherwise specified, including DLBCL arising from low grade lymphoma, and who are not eligible for autologous stem cell transplant (ASCT). This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s)3.

The FDA decision represented the first approval of a second-line treatment for adult patients with DLBCL who progressed during or after first-line therapy.

About Diffuse Large B-cell Lymphoma (DLBCL)

DLBCL is the most common type of non-Hodgkin lymphoma in adults worldwide4, characterized by rapidly growing masses of malignant B-cells in the lymph nodes, spleen, liver, bone marrow or other organs. It is an aggressive disease with about one in three patients not responding to initial therapy or relapsing thereafter5. In the United States each year, approximately 10,000 patients are diagnosed with relapsed or refractory DLBCL who are not eligible for autologous stem cell transplant (ASCT)6,7,8.

About firstMIND

The firstMIND (NCT04134936) trial is a Phase 1b, randomized study of tafasitamab + R-CHOP (Arm A) or tafasitamab + lenalidomide + R-CHOP (Arm B) in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL). The study includes a safety run-in phase and a main phase. In the safety run-in phase, 24 patients were enrolled. The primary objective is to assess safety; secondary objectives include objective response rate, PET negative complete response (PET-CR) rate at end of treatment, progression-free survival, event-free survival, long-term safety, pharmacokinetics and immunogenicity of tafasitamab.

About Tafasitamab

Tafasitamab is a humanized Fc-modified cytolytic CD19 targeting monoclonal antibody. In 2010, MorphoSys licensed exclusive worldwide rights to develop and commercialize tafasitamab from Xencor, Inc. Tafasitamab incorporates an XmAb engineered Fc domain, which mediates B-cell lysis through apoptosis and immune effector mechanism including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).

Monjuvi (tafasitamab-cxix) is approved by the U.S. Food and Drug Administration in combination with lenalidomide for the treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) not otherwise specified, including DLBCL arising from low grade lymphoma, and who are not eligible for autologous stem cell transplant (ASCT). This indication is approved under accelerated approval based on overall response rate. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s).

In January 2020, MorphoSys and Incyte entered into a collaboration and licensing agreement to further develop and commercialize tafasitamab globally. Monjuvi is being co-commercialized by Incyte and MorphoSys in the United States. Incyte has exclusive commercialization rights outside the United States.

A marketing authorization application (MAA) seeking the approval of tafasitamab in combination with lenalidomide in the EU has been validated by the European Medicines Agency (EMA) and is currently under review for the treatment of adult patients with relapsed or refractory DLBCL, including DLBCL arising from low grade lymphoma, who are not candidates for ASCT.

Tafasitamab is being clinically investigated as a therapeutic option in B-cell malignancies in a number of ongoing combination trials.

Monjuvi is a registered trademark of MorphoSys AG.

XmAb is a registered trademark of Xencor, Inc.

Important Safety Information

What are the possible side effects of MONJUVI?

MONJUVI may cause serious side effects, including:

The most common side effects of MONJUVI include:

These are not all the possible side effects of MONJUVI.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

Before you receive MONJUVI, tell your healthcare provider about all your medical conditions, including if you:

You should also read the lenalidomide Medication Guide for important information about pregnancy, contraception, and blood and sperm donation.

Tell your healthcare provider about all the medications you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

Please see the full Prescribing Information for Monjuvi, including Patient Information, for additional Important Safety Information.

About Incyte

Incyte is a Wilmington, Delaware-based, global biopharmaceutical company focused on finding solutions for serious unmet medical needs through the discovery, development and commercialization of proprietary therapeutics. For additional information on Incyte, please visit Incyte.com and follow @Incyte.

About MorphoSys

MorphoSys (FSE & NASDAQ: MOR) is a commercial-stage biopharmaceutical company dedicated to the discovery, development and commercialization of exceptional, innovative therapies for patients suffering from serious diseases. The focus is on cancer. Based on its leading expertise in antibody, protein and peptide technologies, MorphoSys, together with its partners, has developed and contributed to the development of more than 100 product candidates, of which 27 are currently in clinical development. In 2017, Tremfya, developed by Janssen Research & Development, LLC and marketed by Janssen Biotech, Inc., for the treatment of plaque psoriasis, became the first drug based on MorphoSys antibody technology to receive regulatory approval. In July 2020, the U.S. Food and Drug Administration (FDA) granted accelerated approval of MorphoSys proprietary product Monjuvi (tafasitamab-cxix) in combination with lenalidomide in patients with a certain type of lymphoma.

Headquartered near Munich, Germany, the MorphoSys group, including the fully owned U.S. subsidiary MorphoSys US Inc., has ~500 employees. More information at http://www.morphosys.com or http://www.morphosys-us.com.

Monjuvi is a registered trademark of MorphoSys AG.

Tremfya is a registered trademark of Janssen Biotech, Inc.

Incyte Forward-Looking Statements

Except for the historical information set forth herein, the matters set forth in this press release - including statements about: plans to initiate frontMIND, a Phase 3 trial evaluating tafasitamab plus lenalidomide in combination with R-CHOP compared to R-CHOP alone as first-line treatment for patients with newly diagnosed DLBC; whether the mechanism of action, efficacy and safety profile of tafasitamab have the potential to make it a preferred or ideal combination partner in the treatment of DLBCL and, whether it will change or become the standard of care for the treatment of DLBCL; whether and when, if ever, confirmatory trials of tafasitamab will result in the conditional FDA approval of tafasitamab in the conditionally approved indication described above becoming a final approval; whether and when, if ever, the EMA will approve the filed MAA for tafasitamab; and additional development of tafasitamab, including in B-cell malignancies - contain predictions, estimates and other forward-looking statements.

These forward-looking statements are based on the Incytes current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by the FDA or the EMA; clinical and commercial supply of products in development or being commercialized; Incytes dependence on its relationships with its collaboration partners; the efficacy or safety of Incytes products and the products of its collaboration partners; the acceptance of Incytes products and the products of its collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; and other risks detailed from time to time in Incytes reports filed with the Securities and Exchange Commission, including its quarterly report on Form 10-Q for the quarter ended September 30, 2020. Incyte disclaims any intent or obligation to update these forward-looking statements.

MorphoSys Forward-Looking Statements

This communication contains certain forward-looking statements concerning the MorphoSys group of companies, including the expectations regarding Monjuvis ability to treat patients with relapsed or refractory diffuse large B-cell lymphoma, the further clinical development of tafasitamab-cxix, including ongoing confirmatory trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi. The words anticipate, believe, estimate, expect, intend, may, plan, predict, project, would, could, potential, possible, hope and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. The forward-looking statements contained herein represent the judgment of MorphoSys as of the date of this release and involve known and unknown risks and uncertainties, which might cause the actual results, financial condition and liquidity, performance or achievements of MorphoSys, or industry results, to be materially different from any historic or future results, financial conditions and liquidity, performance or achievements expressed or implied by such forward-looking statements. In addition, even if MorphoSys' results, performance, financial condition and liquidity, and the development of the industry in which it operates are consistent with such forward-looking statements, they may not be predictive of results or developments in future periods. Among the factors that may result in differences are MorphoSys' expectations regarding risks and uncertainties related to the impact of the COVID-19 pandemic to MorphoSys business, operations, strategy, goals and anticipated milestones, including its ongoing and planned research activities, ability to conduct ongoing and planned clinical trials, clinical supply of current or future drug candidates, commercial supply of current or future approved products, and launching, marketing and selling current or future approved products, the global collaboration and license agreement for tafasitamab, the further clinical development of tafasitamab, including ongoing confirmatory trials, and MorphoSys ability to obtain and maintain requisite regulatory approvals and to enroll patients in its planned clinical trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi, MorphoSys' reliance on collaborations with third parties, estimating the commercial potential of its development programs and other risks indicated in the risk factors included in MorphoSys Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements. These forward-looking statements speak only as of the date of publication of this document. MorphoSys expressly disclaims any obligation to update any such forward-looking statements in this document to reflect any change in its expectations with regard thereto or any change in events, conditions or circumstances on which any such statement is based or that may affect the likelihood that actual results will differ from those set forth in the forward-looking statements, unless specifically required by law or regulation.

1 Belada D, M.D., Ph.D., et al. A Phase 1b, Open-label, Randomized Study to Assess Safety and Preliminary Efficacy of Tafasitamab (MOR208) or Tafasitamab + Lenalidomide in Addition to R-CHOP in Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma: Analysis of the Safety Run-In Phase. 62nd American Society of Hematology Annual Meeting & Exposition (ASH). Abstract #3028.

2 Maddocks KJ, M.D., et al. Long-Term Subgroup Analyses from L-MIND, a Phase 2 Study of Tafasitamab (MOR208) Combined with Lenalidomide in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. 62nd American Society of Hematology Annual Meeting & Exposition (ASH). Abstract #3021.

3 Monjuvi (tafasitamab-cxix) Prescribing Information. Boston, MA, MorphoSys.

4 Sarkozy C, et al. Management of relapsed/refractory DLBCL. Best Practice Research & Clinical Haematology. 2018 31:20916. doi.org/10.1016/j.beha.2018.07.014.

5 Skrabek P, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Current Oncology. 2019 26(4): 253265. doi.org/10.3747/co.26.5421.

6 DRG Epidemiology data.

7 Kantar Market Research (TPP testing 2018).

8 Friedberg, Jonathan W. Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Hematology Am Soc Hematol Educ Program 2011; 2011:498-505. doi: 10.1182/asheducation-2011.1.498.

Go here to read the rest:
Data Evaluating Tafasitamab with and without Lenalidomide in Combination with R-CHOP in Patients with DLBCL Presented at ASH 2020 - Business Wire

Incyte Announces Parsaclisib Treatment Results in High Rate of Rapid and Durable Responses in Patients with Relapsed or Refractory B-Cell Non-Hodgkin…

WILMINGTON, Del.--(BUSINESS WIRE)--Incyte (Nasdaq:INCY) today announced data from three ongoing Phase 2 studies evaluating parsaclisib, a potent, highly selective, next-generation oral inhibitor of phosphatidylinositol 3-kinase delta (PI3K), for the treatment of patients with relapsed or refractory follicular (CITADEL-203), marginal zone (CITADEL-204) and mantle cell (CITADEL-205) lymphomas. These data were accepted for presentation at the 62nd American Society of Hematology Annual Meeting and Exposition (ASH 2020), held virtually from December 58, 2020.

The primary endpoint for the CITADEL-203, -204 and -205 studies is objective response rate (ORR); duration of response (DOR), progression-free survival (PFS), overall survival (OS), safety and tolerability are among the secondary endpoints. All radiology-based endpoints are based on independent review committee (IRC) assessment.

Eligible patients received parsaclisib 20 mg once daily for eight weeks followed by either 20 mg once weekly (weekly-dosing group [WG]) or 2.5 mg once daily (daily-dosing group [DG]). Subsequently, daily dosing was selected as the preferred regimen and patients initially enrolled in the WG were allowed to switch to DG. Data are presented for the DG and all patients.

Key results from the CITADEL studies include:

ORR (95% CI), %

mDOR (95% CI),

months

mPFS (95% CI),

months

mOS (95% CI),

months

CITADEL-203: R/R Follicular Lymphoma

DG (N=95)

75 (65-83)

14.7 (12.0-17.5)

15.8 (13.8-19.1)

-

All (N=118)

73 (64-81)

15.9 (12.0-NE)

15.8 (13.2-19.3)

-

CITADEL-204: R/R Marginal Zone Lymphoma

DG (N=72)

56.9 (44.7-68.6)

NR (8.1-NE)

NR (11.0-NE)

-

All (N=100)

57.0 (46.7-66.9)

12.0 (9.3-NE)

19.4 (13.7-NE)

-

CITADEL-205: R/R Mantle Cell Lymphoma (BTK Inhibitor Treatment Naive)

DG (N=77)

71 (60-81)

9.0 (6.7-14.7)

11.1 (8.3-NE)

NR (NE-NE)

All (N=108)

70 (61-79)

14.7 (7.7-NE)

11.1 (8.3-19.2)

NR (NE-NE)

CITADEL-205: R/R Mantle Cell Lymphoma (Previously Treated with Ibrutinib)

DG (N=41)

29 (16-46)

3.7 (1.9-NE)

3.7 (1.8-4.1)

11.2 (7.9-NE)

All (N=53)

25 (14-38)

3.7 (1.9-NE)

3.7 (1.8-3.9)

11.2 (7.9-17.1)

R/R: relapsed or refractory; ORR: objective response rate; mDOR: median duration of response (reported for responders); mPFS: median progression-free survival; mOS: median overall survival; DG: daily dosing group; BTK: Brutons tyrosine kinase.

Parsaclisib was generally well tolerated in all studies with a manageable safety profile.

Data from the CITADEL studies presented at ASH 2020 are very promising and they highlight the potential of parsaclisib to become a meaningful treatment for patients with relapsed or refractory follicular, marginal zone or mantle cell lymphomas, said Peter Langmuir, M.D., Group Vice President, Oncology Targeted Therapies, Incyte. We look forward to continuing our work as we seek to bring this medicine to patients.

Presentations are available on the ASH website at https://www.hematology.org/meetings/annual-meeting; #338 (Oral presentation, CITADEL-204), #2935 (Poster, CITADEL-203), #1121 (Poster, CITADEL-205), #2044 (Poster, CITADEL-205).

About Follicular, Marginal Zone and Mantle Cell Lymphomas

Non-Hodgkin lymphoma (NHL) is a type of cancer that starts in the lymphocytes, a type of white blood cell. Follicular lymphoma (FL), marginal zone lymphoma (MZL) and mantle cell lymphoma (MCL) are forms of B-Cell NHLs. FL and MZL are indolent or slow growing lymphomas; MCL is an aggressive or rapidly developing form. There is an unmet medical need for treatment options for patients who are relapsed or refractory to initial therapies.

About CITADEL

The CITADEL (Clinical Investigation of TArgeted PI3K-DELta Inhibition in Lymphomas) clinical trial program is evaluating parsaclisib in several ongoing studies as a treatment for adult patients with lymphomas, including:

Patients eligible for each trial were allocated to receive parsaclisib 20 mg once daily for eight weeks followed by either 20 mg once weekly (weekly-dosing group [WG]) or 2.5 mg once daily (daily-dosing group [DG]). Subsequently, daily dosing was selected as the preferred regimen and the WG patients were allowed to switch to DG. Prophylaxis for Pneumocystis jirovecii pneumonia (PJP) was required.

About Parsaclisib

Parsaclisib is a potent, highly selective, next-generation investigational novel oral inhibitor of phosphatidylinositol 3-kinase delta (PI3K). It is currently under evaluation as a monotherapy in several ongoing Phase 2 trials as a treatment for non-Hodgkin lymphomas (follicular, marginal zone and mantle cell); and autoimmune hemolytic anemia. Pivotal trials of parsaclisib in combination with ruxolitinib for the treatment of patients with myelofibrosis are underway; and there are plans to initiate a trial to evaluate parsaclisib in combination with tafasitamab for B-cell malignancies.

In December 2018, Innovent and Incyte entered into a strategic collaboration for three clinical-stage product candidates, including parsaclisib. Under the terms of the agreement, Innovent has received the rights to develop and commercialize parsaclisib and two other assets in Mainland China, Hong Kong, Macau and Taiwan.

Conference Call Information

Incyte will host an investor conference call and webcast at 10:00 a.m. ET (7:00 a.m. PT) today, December 7, 2020the call and webcast can be accessed via the Events and Presentations tab of the Investor section of Incyte.com and it will be available for replay for 90 days.

To access the conference call, please dial 877-407-3042 for domestic callers or +1 201-389-0864 for international callers. When prompted, provide the conference identification number, 13713399.

About Incyte

Incyte is a Wilmington, Delaware-based, global biopharmaceutical company focused on finding solutions for serious unmet medical needs through the discovery, development and commercialization of proprietary therapeutics. For additional information on Incyte, please visit Incyte.com and follow @Incyte.

Forward-Looking Statements

Except for the historical information set forth herein, the matters set forth in this press release, including statements about the potential of parsaclisib to provide a meaningful treatment for patients with non-Hodgkin lymphomas, including follicular lymphoma, marginal zone lymphoma and mantle cell lymphoma, the CITADEL clinical program and other development plans for parsaclisib, including in combination with tafasitamab and with ruxolitinib, and the safety and efficacy of parsaclisib in patients with non-Hodgkin lymphomas contain predictions, estimates and other forward-looking statements.

These forward-looking statements are based on the Companys current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by the FDA; the efficacy or safety of the Companys products; the acceptance of the Companys products and the products of the Companys collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; and other risks detailed from time to time in the Companys reports filed with the Securities and Exchange Commission, including its Form 10-Q for the quarter ended September 30, 2020. The Company disclaims any intent or obligation to update these forward-looking statements.

Link:
Incyte Announces Parsaclisib Treatment Results in High Rate of Rapid and Durable Responses in Patients with Relapsed or Refractory B-Cell Non-Hodgkin...

Enthera Pharmaceuticals Appoints Kazumi Shiosaki to Its Board of Directors and Lisa Olson to Its Scientific Advisory Board to Push Forward Company…

MILAN--(BUSINESS WIRE)--Enthera Pharmaceuticals (Enthera), a biotech company developing disease-modifying biologics to transform the therapeutic paradigm of specific autoimmune conditions by re-establishing stem cell capabilities in a non-traditional way, announces that it has appointed Kazumi Shiosaki to its Board of Directors, and Lisa Olson to its Scientific Advisory Board.

Kazumi brings experience as both an entrepreneur and an investor within the field of biotechnology. She is currently the CEO of Twentyeight-Seven, a biotech company focused on novel RNA biology that she co-founded alongside prominent Harvard investigators. Kazumi was also a co-founder and CEO of Mitobridge, a start-up company developing mitochondrial drugs for the treatment of muscle and kidney diseases, until its acquisition by Astellas Pharma in 2018. Prior to Mitobridge, she was a co-founder and start-up CEO of Epizyme (NASDAQ:EPZM), a leader in novel epigenetic therapeutics for cancer. She has also been a Managing Director at MPM Capital.

Lisa is a senior pharmaceutical executive with more than 20 years of experience in research and drug discovery. She is currently Chief Scientific Officer and Head of Research at Magenta Therapeutics, where she provides strategic direction, oversight and execution for research and discovery efforts. Lisa joined Magenta after 15 years in leadership positions at the AbbVie Bioresearch Center, most recently as Vice President, Immunology Discovery and Site Head, where she was responsible for all immunology discovery scientific and portfolio decisions. Prior to AbbVie, Lisa served as a Research Fellow and Group Leader in Inflammation & Immunology at Pfizer.

Kazumi and Lisa will work closely with the leadership team and other Board and Scientific Advisors to support the growth and development of Enthera.

Giovanni Amabile, CEO of Enthera, commented: The appointment of Kazumi Shiosaki and Lisa Olson will greatly benefit Enthera. Kazumi is a biotech veteran with an outstanding track record in corporate development and fundraising across both European and US markets, while Lisa brings extensive experience in drug discovery and development from roles at Magenta Therapeutics, AbbVie and Pfizer. The support of Kazumi and Lisa will be instrumental as we progress our pipeline and take Enthera to the next level.

Kazumi Shioshaki, newly appointed Board member of Enthera, stated: Enthera Pharmaceuticals is an exciting young biotech, with an innovative and unique approach to treating underserved autoimmune disorders. The recent Series A financing round was a great achievement, and I look forward to working with the Enthera team as we push onwards and use these funds to build a world-class international company with first-in-class therapeutics.

Lisa Olson, newly appointed Scientific Advisory Board member, added: I look forward to supporting Giovanni and the rest of the Enthera team in the progression of their clinical assets. The Companys lead product is a promising biologic candidate for type 1 diabetes and gastrointestinal diseases, with the wider pipeline offering potential treatments for several underserved autoimmune conditions.

Enthera recently closed a EUR 28 million funding, with investment from renowned investors Sofinnova Partners, AbbVie and JDRF T1D Fund. The funds will be used to accelerate the Companys lead program, Ent001, to clinical proof-of-concept.

Kazumi started her career at AbbVie (then Abbott Labs) and from there joined Millennium (now part of Takeda), where she worked in senior functions in both research and corporate development. She is also a Board member of the Sandford Burnham Prebys Institute. Kazumi holds a PhD in Synthetic Chemistry from UC Berkeley.

Lisa began her career as Assistant Professor at Washington University School of Medicine, following a post-doctoral cardiovascular fellowship at the University of Chicago. She holds a PhD from the University of Illinois at Urbana-Champaign, and a Bachelor of Science from Iowa State University.

ENDS

High-resolution photos of Kazumi Shiosaki and Lisa Olson are available upon request.

Notes to Editors

About Enthera

Enthera Srl is a biotech company developing first-in-class biologics to transform the treatment paradigm of specific autoimmune conditions by re-establishing stem cell capabilities in a non-traditional way. The Companys primary target indications are type 1 diabetes (T1D) and inflammatory bowel disease (IBD).

Enthera's pioneering approach capitalizes on the key discovery of the IGFBP3/TMEM219 pathway, which is involved in beta cell and stem cell apoptosis in pancreas and gut, respectively.

The Company is building a pipeline of inhibitory monoclonal antibodies (mAbs) and fusion proteins targeting the pathway via multiple angles. Its lead program Ent001 is the only drug in development with the potential to restore the endogenous pancreatic stem cell compartment in T1D as well as the original intestine structure in IBD, in order to re-stablish organ function.

Enthera is a private company headquartered in Milan, Italy and founded in 2016 by Prof Paolo Fiorina and Dr Francesca DAddio at BiovelocITA, an Italian biotech accelerator. The Company is backed by Sofinnova Partners and JDRF T1D fund. Entheras discovery engine and assets are protected by a broad portfolio of patents.

For more information, visit https://www.entherapharmaceuticals.com/

Connect with us on LinkedIn.

Read the rest here:
Enthera Pharmaceuticals Appoints Kazumi Shiosaki to Its Board of Directors and Lisa Olson to Its Scientific Advisory Board to Push Forward Company...

Meat-Tech Agrees to Acquire Cultured Fat Pioneer ‘Peace of Meat’ – PRNewswire

NESSZIONA,Israel, Dec. 8, 2020 /PRNewswire/ -- Meat-Tech 3D Ltd. (TASE: MEAT), today announced that it has signed an agreement to acquire 100% of the share capital of Peace of Meat PV, a pioneering Belgian producer of cultured avian products, for EUR 15 million in a combination of cash and Meat-Tech ordinary shares. The Company believes that it will be able to leverage Peace of Meat's technologies, including through novel hybrid food products, to expedite market entry while Meat-Tech develops an industrial process for cultivating and producing real meat using 3D bioprinting technology, without harming animals. The acquisition is expected to close in the coming weeks, subject to customary closing conditions.

Peace of Meat has developed a proprietary, stem-cell-based bioreactor technology for cultivating animal fats from chicken and ducks, without harming animals. It has conducted a number of taste tests, demonstrating the potential that its cultured fat has to enhance the taste of plant-based protein products. The technology's first expected application is in hybrid food products, combining plant-based protein with cultured animal fat, designed to provide meat analogues with qualities of "meatiness" (taste and texture) closer to that of conventional meat products. Meat-Tech estimates that the first hybrid products based on Peace of Meat technology could hit the market as early as 2022.

Pursuant to the acquisition agreement, Meat-Tech will pay half of the consideration immediately, with the payment of the balance subject to Peace of Meat complying with preset technological milestones over a period of two years, that were designed to scale up cultured fat production capabilities in preparation for market entry. To that end, it was agreed that Peace of Meat's management will continue in place to lead the development process.

This acquisition is consistent with Meat-Tech's growth strategy, aiming to streamline development processes and expand the Company's product range to penetrate cultured meat technology markets as quickly as possible. Meat-Tech is working to create synergy and added value for food manufacturers in the advanced production of cultured meat, while sustaining animal welfare and meeting the growing global demand for meat.

Sharon Fima, Meat-Tech's CEO: "Meat-Tech's novel technology for producing meat using 3D printing is gaining increasing international recognition. Boosted by our acquisition strategy, we believe we can turn Meat-Tech into a leading global center and home for innovative and groundbreaking cell-based food solutions that are both healthy and environmentally friendly. The combination of Peace of Meat's human capital and technology make this acquisition a significant step in that direction. I am pleased that both management teams share a common vision and strategy, and can join forces to advance the development of cultured food products with the potential to create real alternatives in the global meat market."

David Brandes and Dirk von Heinrichshorst, Co-Founders of Peace of Meat:"In an industry that is working towards a kinder, more sustainable planet, joining forces makes us stronger together. Peace of Meat has developed a powerful system for upscaled cultured biomass production and together with Meat-Tech we intend to accelerate product development toward commercialization.

"While Peace of Meat's core activity remains focused on the production of tasty, cultured fat as a B2B ingredient for meat alternatives, we see tremendous opportunity in jointly building a leading food-tech enterprise with Meat-Tech, based on a cellular platform.

"As entrepreneurs, we are excited about this acquisition as it poses a novel way of building and growing a company while significantly increasing the prospects of launching our product into the market."

About Peace of Meat:

Peace of Meat was established in Belgium in 2019 and is developing cultured chicken fat directly from animal cells without the need to grow or kill animals. The company believes that its innovative technology has the potential to support an industrial process for the production of cultured chicken fat. Peace Of Meat has entered into a number of scientific and commercial collaborations, in the process of positioning itself as a future B2B provider, with the potential to cover the entire value chain and to accelerate research and production processes in the industry, and has conducted taste tests for hybrid products it has developed.

About Meat-Tech:

Meat-Tech is developing a novel biological printing process designed to create living, edible meat tissue using cellular agriculture. Meat-Tech is developing technologies, processes and machines for cultivating, producing, and printing cultured meat. The company believes that it was the first in the world to use edible biological inks to 3D-print living tissue made up of various cells of bovine origin. The Company has the technology, knowledge and experience in applying tissue engineering practices for producing fat and muscle tissue for food consumption, as well as the ability to print, using a 3D bioprinter, a combination of live animal cells, growth factors and biological materials to produce living tissues that mimic the characteristics of natural tissue.

Forward-Looking Statements:

This press release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this press release that do not relate to matters of historical fact should be considered forward-looking statements, including, but not limited to, statements regarding the Company's development of the next generation of cultured meat food products by leveraging 3D digital printing technology, Peace of Meat's development of cultured fat products, the expected closing of the Company's acquisition of Peace of Meat and the expected post-closing synergies of the combined companies. These forward-looking statements include information about possible or assumed future results of the Company's business, financial condition, results of operations, liquidity, plans and objectives. In some cases, you can identify forward-looking statements by terminology such as "believe," "may," "estimate," "continue," "anticipate," "intend," "should," "plan," "expect," "predict," "potential," or the negative of these terms or other similar expressions. Forward-looking statements are based on information the Company has when those statements are made or management's current expectation and are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in or suggested by the forward-looking statements. Actual results could differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent management's estimates as of the date of this press release. Except as required by law, the Company undertakes no obligation to update publicly any forward-looking statements after the date of this press release to conform these statements.

COMPANY / INVESTOR CONTACT:Eran Gabay, Partner, Director of Strategy Gelbart-Kahana Investor Relations: [emailprotected]

SOURCE Meat-Tech 3D Ltd.

Read the rest here:
Meat-Tech Agrees to Acquire Cultured Fat Pioneer 'Peace of Meat' - PRNewswire

Actinium Reports 67 Percent Overall Response Rate in First Cohort in Actimab-A Venetoclax Combination Trial in Relapsed and Refractory AML at ASH -…

NEW YORK, Dec. 8, 2020 /PRNewswire/ --Actinium Pharmaceuticals, Inc. (NYSE AMERICAN: ATNM) ("Actinium" or the "Company") today announced that first-in-human data from the first dose cohort of the Phase 1 portion of the Actimab-A venetoclax Phase 1/2 combination trial in patients with relapsed or refractory Acute Myeloid Leukemia (AML) were presented at the 62nd American Society of Hematology (ASH) annual meeting. The poster presentation highlighted results from the first three patients treated with the initial subtherapeutic dose level of 0.5 Ci/kg of Actimab-A and venetoclax.

The enrolled patients had a median of 2 prior therapies (range 2-3) and a median bone marrow blast percentage of 30% (range 20 - >60). All 3 patients had poor risk disease with adverse cytogenetics, and each patient had an additional high-risk marker (FLT3-ITD+, antecedent JAK2+ myelofibrosis, or TP53 mutation). One patient who had multiple genetic mutations including IDH2, RUNX1, TP53 and others, achieved a complete remission with incomplete blood count recovery (CRi) after the first cycle of Actimab-A and venetoclax. Next generation sequencing at the end of the first cycle showed that patient was negative for the known IDH2 and RUNX1 mutations. This patient has continued treatment receiving the second cycle and their bone marrow remains normocellular with no excess blasts. In addition, another patient achieved a partial response after one cycle of Actimab-A and venetoclax. There were no Actimab-A related dose limiting toxicities or nonhematologic Grade 3 or greater related AEs reported in the first cohort. The trial has advanced to the second dose cohort of 1.0 Ci/kg of Actimab-A and venetoclax with patient enrollment ongoing.

Sandesh Seth, Actinium's Chairman and Chief Executive Officer, commented, "This ASH meeting, we are excited to highlight the promising data emerging from both our combination trials with Actimab-A in the R/R AML setting, namely the Actimab-A venetoclax and Actimab-A CLAG-M trials. Particularly compelling is the complete response reported in a patient with complex mutations like TP53 with Actimab-A and venetoclax and the high MRD negativity rate with Actimab-A and CLAG-M. The results clearly demonstrate that a superior clinical effect without adding meaningful toxicity is achievable using Ac-225 ARC's to precisely deliver powerful internal radiation and elicit a potentiating and synergistic treatment effect with chemotherapy and targeted agents. With this clinical validation in hand, we look forward to expanding our ARC combinations with other therapeutic modalities in AML and into additional indications to further establish our leadership position in the field by leveraging our enhanced R&D capabilities including new research facilities and key hires."

Dr. Mark Berger, Actinium's Chief Medical Officer, said, "We were thrilled to report a complete response in the Actimab-A venetoclax combination trial, in addition to the partial response previously highlighted in the abstract. Both responses occurred after just one cycle of a subtherapeutic dose of Actimab-A. These initial results, the one complete response and safety profile to date, support the potential mechanistic synergy of Actimab-A with venetoclax. As a single agent, venetoclax has produced low response rates of 19% in patients with R/R AML1 so we are pleased with the results seen in our first dose cohort. In addition, the clinical data from Actimab-A and Iomab-B presented at this year's ASH demonstrates our strong commitment to addressing the unmet needs of patients with R/R AML with our ARCs as best in class therapeutics, bridge to transplant and targeted conditioning for potentially curable bone marrow transplant. With this in mind, we look forward to guidance on Iomab-B expected from the ad-hoc DMC meeting before year-end."

This Phase 1/2 trial is a multicenter, open label trial of Actimab-A (lintuzumab-Ac225) added to venetoclax for patients with CD33 positive R/R AML. A Phase 2 trial studying Actimab-A as a single agent produced a 69% overall response rate in older unfit patients with newly diagnosed AML.In a poster presentation at the American Association of Cancer Research (AACR) Annual Meeting 2019, Actimab-A was shown to be synergistic with venetoclax in venetoclax resistant cell lines, by depleting MCL-1, a protein shown to mediate resistance to venetoclax. Further, the induction of direct AML cell death via double-stranded DNA breaks by Actimab-A provides a second mechanism for enhancing synergistic potency with venetoclax. Venetoclax is a B-Cell Lymphoma 2 (BCL-2) inhibitor that is jointly developed and marketed by AbbVie and Genentech and is approved for patients with AML, Chronic Lymphocytic Leukemia (CLL), and Small Lymphocytic Leukemia (SLL). Despite its approval in AML, venetoclax has produced low response rates of 19% as a single agent in R/R AML.1 This is due in part to the type of AML, risk factors, and cytogenetics of this patient population. The Phase 2 trial results, together with a synergistic mechanism of action with venetoclax demonstrated in pre-clinical studies, are driving this combination trial with an initial focus on the high unmet needs of R/R patients including those who have relapsed or do not respond to treatment with venetoclax based regimens.

1 Aldosset al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica2018.1888094.

About Actinium's CD33 Program

Actinium's CD33 program is evaluating the clinical utility of Actimab-A, an ARC comprised of the anti-CD33 mAb lintuzumab linked to the potent alpha-emitting radioisotope Actinium-225 or Ac-225. CD33 is expressed in the majority of patients with AML and myelodysplastic syndrome, or MDS, as well as patients with multiple myeloma. The CD33 development program is driven by data from over one hundred treated patients, including a Phase 1/2 trial where Actimab-A produced a remission rate as high as 69% as a single agent. This clinical data is shaping a two-pronged approach for the CD33 program, where at low doses the Company is exploring its use for therapeutic purposes in combination with other modalities and at high doses for use for targeted conditioning prior to bone marrow transplant. Actinium currently has multiple clinical trials ongoing including the Phase 1 Actimab-A CLAG-M and Phase 1/2 Actimab-A venetoclax combination trials and is exploring additional CD33 ARC combinations with other therapeutic modalities such as chemotherapy, targeted agents or immunotherapy.

About Actinium Pharmaceuticals, Inc. (NYSE: ATNM)

Actinium Pharmaceuticals, Inc. is a clinical-stage biopharmaceutical company developing ARCs or Antibody Radiation-Conjugates, which combine the targeting ability of antibodies with the cell killing ability of radiation. Actinium's lead application for our ARCs is targeted conditioning, which is intended to selectively deplete a patient's disease or cancer cells and certain immune cells prior to a BMT or Bone Marrow Transplant, Gene Therapy or Adoptive Cell Therapy (ACT) such as CAR-T to enable engraftment of these transplanted cells with minimal toxicities. With our ARC approach, we seek to improve patient outcomes and access to these potentially curative treatments by eliminating or reducing the non-targeted chemotherapy that is used for conditioning in standard practice currently. Our lead product candidate, I-131 apamistamab (Iomab-B) is being studied in the ongoing pivotal Phase 3 Study of Iomab-B in Elderly Relapsed or Refractory Acute Myeloid Leukemia (SIERRA) trial for BMT conditioning. The SIERRA trial is over seventy-five percent enrolled and positive single-agent, feasibility and safety data has been highlighted at ASH, TCT, ASCO and SOHO annual meetings. More information on this Phase 3 clinical trial can be found at http://www.sierratrial.com. I-131 apamistamab will also be studied as a targeted conditioning agent in a Phase 1 study with a CD19 CAR T-cell therapy and in a Phase 1/2 anti-HIV stem cell gene therapy with UC Davis. In addition, we are developing a multi-disease, multi-target pipeline of clinical-stage ARCs targeting the antigens CD45 and CD33 for targeted conditioning and as a therapeutic either in combination with other therapeutic modalities or as a single agent for patients with a broad range of hematologic malignancies including acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Ongoing combination trials include our CD33 ARC, Actimab-A, in combination with the salvage chemotherapy CLAG-M and the Bcl-2 targeted therapy venetoclax. Underpinning our clinical programs is our proprietary AWE (Antibody Warhead Enabling) technology platform. This is where our intellectual property portfolio of over 130 patents, know-how, collective research and expertise in the field are being leveraged to construct and study novel ARCs and ARC combinations to bolster our pipeline for strategic purposes. Our AWE technology platform is currently being utilized in a collaborative research partnership with Astellas Pharma, Inc. Website: https://www.actiniumpharma.com/

Forward-Looking Statements for Actinium Pharmaceuticals, Inc.

This press release may contain projections or other "forward-looking statements" within the meaning of the "safe-harbor" provisions of the private securities litigation reform act of 1995 regarding future events or the future financial performance of the Company which the Company undertakes no obligation to update. These statements are based on management's current expectations and are subject to risks and uncertainties that may cause actual results to differ materially from the anticipated or estimated future results, including the risks and uncertainties associated with preliminary study results varying from final results, estimates of potential markets for drugs under development, clinical trials, actions by the FDA and other governmental agencies, regulatory clearances, responses to regulatory matters, the market demand for and acceptance of Actinium's products and services, performance of clinical research organizations and other risks detailed from time to time in Actinium's filings with the Securities and Exchange Commission (the "SEC"), including without limitation its most recent annual report on form 10-K, subsequent quarterly reports on Forms 10-Q and Forms 8-K, each as amended and supplemented from time to time.

Contacts:

Investors: Clayton Robertson Actinium Pharmaceuticals, Inc. [emailprotected]

Hans Vitzthum LifeSci Advisors, LLC [emailprotected](617) 430-9758

SOURCE Actinium Pharmaceuticals, Inc.

http://www.actiniumpharma.com/

Excerpt from:
Actinium Reports 67 Percent Overall Response Rate in First Cohort in Actimab-A Venetoclax Combination Trial in Relapsed and Refractory AML at ASH -...

Tulane researcher shows enhanced therapeutic stem cell migration improves neurodegenerative disease – News from Tulane

Jean-Pyo Lee, PhD, assistant professor in the Department of Physiology at Tulane School of Medicine, in collaboration with colleagues at Sanford Burnham Prebys Medical Discovery Institute and the University of California San Diego, has shown for the first time that injection of a synthetic drug that attracts stem cell migration can improve neurological outcome in a mouse model of neurodegenerative disease. (Photo provided)

Stem cell therapy, especially neural stem cells, offers great promise in treating brain injury. Neural stem cells exhibit a broad repertoire of potentially multiple therapeutic actions including functional neural replacement and acute and chronic anti-inflammatory action via the delivery of therapeutic gene products synthesized inherently by the stem cells in the disease environment.

For optimal stem cell therapy, neural stem cells should migrate quickly and extensively to the site of injury and neurodegeneration.

Jean-Pyo Lee, PhD, assistant professor in the Department of Physiology at Tulane School of Medicine, in collaboration with colleagues at Sanford Burnham Prebys Medical Discovery Institute and the University of California San Diego, has shown for the first time that injection of a synthetic agonist (drug),that attracts stem cell migration can improve neurological outcome in a mouse model of neurodegenerative disease. The research was recently published by the Proceedings of the National Academy of Sciences of the United States of America and can be viewed here: https://www.pnas.org/content/early/2020/11/19/1911444117.

The study addresses the important nature of tropism of stem cell migration using neural stem cells, Lee said. Chemokines and chemokine receptors found inneural stem cells can mediate this activity.

In this study, human neural stem cells derived from induced pluripotent stem cells were used. Transplantation of human induced pluripotent stem cell-derived neural stem cells in a mouse model of a prototypical neurodegenerative disease improves neurological function and increases the life span of neurodegenerative mice.

The study also found that a synthetic chemokineanalog attracts these neural stem cellsand increases the beneficial impact of these stem cells on neurological disorders, Lee said. When this analog is co-administered with transplanted neural stem cells, the agonist (drug) enhanced stem cell migration, dissemination and integration into the diseased brains. Considering the prevalence of neurological diseases and current limitations of stem cell therapy, the findings will contribute to advancing the stem cell field and will be of great interest to further neurodegenerative disease research.

Excerpt from:
Tulane researcher shows enhanced therapeutic stem cell migration improves neurodegenerative disease - News from Tulane

Researchers restore lost sight in mice, offering clues to reversing aging – Science Magazine

Researchers reversed damage to the mouse eye (shown in a microscope image of a healthy animal, above) by genetically reprogramming neurons that make up the optic nerve.

By Kelly ServickDec. 2, 2020 , 5:30 PM

Do old and damaged cells remember what it was like to be young? Thats the suggestion of new study, in which scientists reprogrammed neurons in mouse eyes to make them more resistant to damage and able to regrow after injurylike the cells of younger mice. The study suggests that hallmarks of aging, and possibly the keys to reversing it, lie in the epigenome, the proteins and other compounds that decorate DNA and influence what genes are turned on or off.

The idea that aging cells hold a memory of their young epigenome is very provocative, says Maximina Yun, a regenerative biologist at the Dresden University of Technology who was not involved in the work. The new study supports that [idea], but by no means proves it, she adds. If researchers can replicate these results in other animals and explain their mechanism, she says, the work could lead to treatments in humans for age-related disease in the eye and beyond.

Epigenetic factors influence our metabolism, our susceptibility to various diseases, and even the way emotional trauma is passed through generations. Molecular biologist David Sinclair of Harvard Medical School, who has long been on the hunt for antiaging strategies, has also looked for signs of aging in the epigenome.

The big question was, is there a reset button? he says. Would cells know how to become younger and healthier?

In the new study, Sinclair and his collaborators aimed to rejuvenate cells by inserting genes that encode reprogramming factors,which regulate gene expressionthe reading of DNA to make proteins. The team chose three of the four factors scientists have used for more than 10 years to turn adult cells into induced pluripotent stem cells, which resemble the cells of an early embryo. (Exposing animals to all four factors can cause tumors.)

The team focused specifically on neurons at the back of the eye called retinal ganglion cells. These cells relay information from light-sensitive photoreceptors to the brain using long tendrillike structures called axons, which make up the optic nerve. Theres a stark divide between youth and age in these cells: An embryonic or newborn mouse can regenerate the optic nerve if it gets severed, but that ability vanishes with time.

To test whether their treatment could bring back some of that resilience, Sinclair and colleagues crushed the optic nerves of mice using forceps and injected a harmless virus into the eye carrying the genes for the three reprogramming factors. The injection prevented some damaged retinal ganglion cells from dying and even prompted some to grow new axons reaching back to the brain, the team reports today in Nature.

When the researchers looked at methylation patternsthe DNA location of chemical tags called methyl groups that regulate gene expressionthey found that changes caused by the injury resembled those in aging mouse cells. In certain parts of the genome, the treatment reversed those changes. The researchers also found that the benefits of the introduced genes depended on cells ability to alter their methylation patterns: Mice lacking certain enzymes necessary to remove methyl groups from DNA saw no benefit to the treatment.

Thats really something special, says Leonard Levin, a visual neuroscientist at McGill University. The experiments suggest how the famous and well-studied reprogramming factors restore cells. But big questions remain, he says: How do these factors cause methyl groups to be added or removed? How does that process help retinal ganglion cells?

Sinclairs team also tested the approach in mice with a condition meant to mimic glaucoma, a leading cause of age-related blindness in humans. In glaucoma, the optic nerve gets damaged, often by a buildup of pressure in the eye. Sinclair and his colleagues injected tiny beads into the animals eyes that prevented normal drainage and increased pressure, which damaged retinal ganglion cells.

Four weeks later, the animals visual acuity had declined by about 25%, as measured by a vision test in which mice move their heads to track the movement of vertical bars displayed on computer monitors. But after the genetic treatment, the animals gained back roughly half of their lost acuitythe first demonstration of restored vision in mice after this glaucomalike injury.

Still, the improvement in acuity was small, Levin notes. And, he says, the treated mice were in a relatively early stage of damage, not the state of near or total blindness that people experience when glaucoma goes untreated for years. So its too early to say whether this approach could benefit people who have lost much of their vision. Levin adds that there are already very good treatments for early-stage glaucoma to prevent vision loss with medicated eye drops or surgery to lower eye pressure.

In a final set of experiments, Sinclair and colleagues injected the reprogramming-factor genes into the eyes of 1-year-old healthy mice, roughly the mouse equivalent of middle-age. By this stage, the animals had visual acuity scores about 15% lower than their 5-month-old counterparts. Four weeks after treatment, older mice had similar acuity scores to younger ones. In their cells, the researchers saw patterns of DNA methylation and gene expression resembling those of younger animals.

In the three sets of experiments, Sinclair says, the cells seemed to respond to the reprogramming factors by fine-tuning their gene expression to match a youthful state. He sees that behavior as a hint that cells keep a record of their epigenetic past, even though its not clear how that record is stored. A company Sinclair cofounded, Life Biosciences, is developing treatments for diseases associated with aging, including glaucoma, and he says hes now planning to test the safety of this gene therapy approach in larger animals.

Yun says that as a strategy for reversing aging or treating disease, resetting the epigenome is a very difficult one. Reprogramming cells to an earlier state carries a risk of prompting uncontrolled growth and cancer.Future studies should test how the three factors affect other types of cells and tissues and confirm that reprogrammed cells maintain their youthful state long-term, she says. There are a lot of roads to be traveled.

Read more:
Researchers restore lost sight in mice, offering clues to reversing aging - Science Magazine

Fate Therapeutics Reports Positive Interim Data from its Phase 1 Study of FT516 in Combination with Rituximab for B-cell Lymphoma | DNA RNA and Cells…

Details Category: DNA RNA and Cells Published on Monday, 07 December 2020 09:38 Hits: 377

3 of 4 Patients Evaluable for Efficacy in Dose Escalation Cohorts 2 and 3 Show Objective Response, with 2 Patients Achieving Complete Response

No Observed Events of Any Grade of Cytokine Release Syndrome, Immune Effector Cell-Associated Neurotoxicity Syndrome, or Graft-vs-Host Disease

Six Doses of FT516 were Well-tolerated with No FT516-related Grade 3 or Greater Adverse Events Reported by Investigators

SAN DIEGO, CA, USA I December 04, 2020 I Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, today announced positive interim data from the Companys dose escalation Phase 1 study of FT516 in combination with rituximab for patients with relapsed / refractory B-cell lymphoma. FT516 is the Companys universal, off-the-shelf natural killer (NK) cell product candidate derived from a clonal master induced pluripotent stem cell (iPSC) line engineered with a novel high-affinity, non-cleavable CD16 (hnCD16) Fc receptor, which is designed to maximize antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells.

We are highly encouraged by these Phase 1 data, which clearly demonstrate that off-the-shelf, iPSC-derived NK cells can drive complete responses for cancer patients and that our proprietary hnCD16 Fc receptor can effectively synergize with and enhance the mechanism of action of tumor-targeted antibodies, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. Importantly, the safety profile of FT516 continues to suggest multiple doses of iPSC-derived NK cells can be administered in the outpatient setting, and supports potential use across multiple lines of therapy, including as part of early-line CD20-targeted monoclonal antibody regimens, for the treatment of B-cell lymphoma.

As of a November 16, 2020 data cutoff, three patients in the second dose cohort of 90 million cells per dose and one patient in the third dose cohort of 300 million cells per dose were available for assessment of safety and efficacy. All four patients were heavily pre-treated, having received at least two prior rituximab-containing regimens. Each patient received two 30-day treatment cycles, with each cycle consisting of fludarabine and cyclophosphamide lympho-conditioning followed by three once-weekly doses of FT516, IL-2 cytokine support, and rituximab.

Safety Data All four relapsed / refractory patients were administered FT516 in an outpatient setting with no requirement for inpatient monitoring. No dose-limiting toxicities, and no cases of any grade of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or graft-versus-host disease, were observed. The multi-dose, two-cycle treatment regimen was well-tolerated with no FT516-related grade 3 or greater adverse events reported by investigators. In addition, no evidence of anti-product T- or B-cell mediated host-versus-product alloreactivity was detected, supporting the potential to safely administer up to six doses of FT516 in the outpatient setting without patient matching. All grade 3 or greater treatment emergent adverse events were not related to FT516 and were consistent with lympho-conditioning chemotherapy and underlying disease.

Activity Data Three of four relapsed / refractory patients achieved an objective response, including two complete responses (CR), following the second FT516 treatment cycle as assessed by PET-CT scan per Lugano 2014 criteria. A CR was achieved in one patient with diffuse large B-cell lymphoma (DLBCL) who was most recently refractory to a rituximab-containing treatment regimen, and a CR was achieved in one patient with follicular lymphoma (FL) who had previously been treated with four rituximab-containing treatment regimens. Notably, in one patient for which an interim tumor assessment showed a partial response following the first FT516 treatment cycle, the response deepened to a CR following administration of the second FT516 treatment cycle, suggesting that additional FT516 treatment cycles can confer clinical benefit.

M = million; CR = Complete Response; PR = Partial Response; PD = Progressive Disease As of November 16, 2020 database entry. Data subject to cleaning and source document verification. 1 Day 29 of the second FT516 treatment cycle as assessed per Lugano 2014 criteria

Dose escalation is continuing in the current dose cohort of 300 million cells per dose in combination with rituximab, and a fourth dose cohort of 900 million cells per dose in combination with rituximab is planned. The Company previously reported that two patients treated in the first dose cohort of 30 million cells per dose in combination with rituximab showed a protocol-defined response assessment of progressive disease. No events of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or graft-versus-host disease were observed in either patient.

About Fate Therapeutics iPSC Product Platform The Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that can be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely capable of overcoming numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 300 issued patents and 150 pending patent applications.

About FT516 FT516 is an investigational, universal, off-the-shelf natural killer (NK) cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line engineered to express a novel high-affinity 158V, non-cleavable CD16 (hnCD16) Fc receptor, which has been modified to prevent its down-regulation and to enhance its binding to tumor-targeting antibodies. CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells. ADCC is dependent on NK cells maintaining stable and effective expression of CD16, which has been shown to undergo considerable down-regulation in cancer patients. In addition, CD16 occurs in two variants, 158V or 158F, that elicit high or low binding affinity, respectively, to the Fc domain of IgG1 antibodies. Scientists from the Company have shown in a peer-reviewed publication (Blood. 2020;135(6):399-410) that hnCD16 iPSC-derived NK cells, compared to peripheral blood NK cells, elicit a more durable anti-tumor response and extend survival in combination with anti-CD20 monoclonal antibodies in an in vivo xenograft mouse model of human lymphoma. Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for the 158V variant, which is present in only about 15% of patients, have improved clinical outcomes. FT516 is being investigated in an open-label, multi-dose Phase 1 clinical trial as a monotherapy for the treatment of acute myeloid leukemia and in combination with CD20-targeted monoclonal antibodies for the treatment of advanced B-cell lymphoma (NCT04023071). Additionally, FT516 is being investigated in an open-label, multi-dose Phase 1 clinical trial in combination with avelumab for the treatment of advanced solid tumor resistant to anti-PDL1 checkpoint inhibitor therapy (NCT04551885).

About Fate Therapeutics, Inc. Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for cancer and immune disorders. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology product candidates include natural killer (NK) cell and T-cell cancer immunotherapies, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens with chimeric antigen receptors (CARs). The Companys immuno-regulatory product candidates include ProTmune, a pharmacologically modulated, donor cell graft that is currently being evaluated in a Phase 2 clinical trial for the prevention of graft-versus-host disease, and a myeloid-derived suppressor cell immunotherapy for promoting immune tolerance in patients with immune disorders. Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

SOURCE: Fate Therapeutics

Read the original here:
Fate Therapeutics Reports Positive Interim Data from its Phase 1 Study of FT516 in Combination with Rituximab for B-cell Lymphoma | DNA RNA and Cells...

Bayer and Atara Biotherapeutics in CAR T-cell therapy deal – BioPharma-Reporter.com

Atara is a pioneer in allogeneic T-cell immunotherapy with industry-leading allogeneic cell manufacturing processes and CAR T technologies.

Under the terms of the deal, that San Francisco-based innovator will receive an upfront payment of US60m, and up to a total of US$610m for development, regulatory and commercialization milestones, plus tiered royalties up to low double-digit percentage of net sales.

The collaboration will focus on Ataras off-the-shelf allogeneic T-cell immunotherapy, ATA3271, for high mesothelin-expressing tumors, and its autologous version, ATA2271, for high mesothelin-expressing tumors such as malignant pleural mesothelioma and non-small-cell lung cancer.Both therapies were developed in conjunction with Memorial Sloan Kettering Cancer Center (MSK).

Mesothelin is a tumor-specific antigen that is commonly expressed at high levels on the cell surface in many aggressive solid tumors and is an attractive target for immune-based therapies, including CAR T therapy.

Both ATA2271 and ATA3271 are engineered for use in solid tumors as they incorporate Ataras novel inclusion of both a PD-1 DNR construct to overcome checkpoint inhibition and a 1XX costimulatory domain on the CAR (chimeric antigen receptor) to enhance expansion and functional persistence of the CAR T cells.

ATA3271, the allogeneic version of this CAR T, leverages Ataras EBV T-cell platform and is currently in IND-enabling studies. ATA2271, the autologous version, has enrolled the first patient in an open-label, single-arm Phase 1 clinical study in November 2020.

Bayer said the deal is a fundamental element of its new cell and gene therapy strategy. It strengthens our development portfolio through allogeneic cell therapies and consolidates our emerging leadership in the field, said Wolfram Carius, head of the pharma giants CGT unit.

We look forward to collaborating with Atara to develop off-the-shelf CAR T-cell therapies for patients with difficult-to-treat cancers, he added.

Pascal Touchon, CEO of Atara, said Bayers proven track record in oncology global development and commercialization, and growing presence in cell and gene therapy, enhances Ataras capabilities and complements its leading allogeneic T-cell platform.

Atara is to lead the Investigational New Drug (IND)-enabling studies and process development for ATA3271 while Bayer will be responsible for submitting the IND and subsequent clinical development and commercialization. Atara will also continue to be responsible for the ongoing ATA2271 phase 1 study, for which an IND filing has been accepted and the clinical trial initiated.

As part of the deal, Atara will also provide translational and clinical manufacturing services to be reimbursed by Bayer. In addition, for a limited period of time, Bayer has a non-exclusive right to negotiate a license for additional Atara CAR T product candidates.

In order to build up its presence in the CGT sphere, Bayer said it is focused on strengthening its internal capabilities in that respect.

In parallel, it says it is pursuing external strategic collaborations, technology acquisitions and licensing. The goal is to build robust platforms with broad application across different therapeutic areas.

It outlined selected areas of CGT for its strategic focus including stem cell therapies with an emphasis on induced pluripotent cells or iPSCs - gene augmentation, gene editing and allogeneic cell therapies in different indications.

Leveraging external innovation together with the expertise of the teams at Bayer represents a key value-driver, especially in the highly dynamic and competitive field of CGT. Bayers operating model for CGT, where partners operate autonomously and are fully accountable to develop and progress their portfolio and technology, is essential for preserving their entrepreneurial culture and positions Bayer as a partner of choice.

Visit link:
Bayer and Atara Biotherapeutics in CAR T-cell therapy deal - BioPharma-Reporter.com