ExCellThera to establish stem cell bioproduction facility creating up to 150 jobs thanks to Government of Canada support – Canada NewsWire

MONTRAL, Nov. 13, 2020 /CNW Telbec/ - Canada Economic Development for Quebec Regions (CED)

ExCellThera Inc., a company focusing on cellular and molecular medicine at the advanced clinical stage, will receive a repayable contribution of up to $4million from Canada Economic Development for Quebec Regions (CED) as part of its launch of commercial production activities. This funding was announced today by the Honourable Mlanie Joly, Minister of Economic Development and Official Languages, accompanied by Rachel Bendayan, Member of Parliament for Outremont and Parliamentary Secretary to the Minister of Small Business, Export Promotion and International Trade.

To realize its ambitions, ExCellThera will acquire state-of-the-art lab and production equipment (cytometer, orbital shaker, centrifuge system, CO2 incubator and automated cell processing equipment) with the aim of establishing commercial stem-cell bioproduction facilities. This project, which also includes the fitting-out of clean rooms, as well as related engineering and architectural services, could lead in time to the creation of 150 jobs and strengthen Montral's position as a nexus for cellular therapy and immunotherapy development.

The Government of Canada is committed to assisting Canadian businesses leveraging innovation. A veritable economic engine, innovation is the key to success as it generates growth in favour of businesses and communities. By supporting the launch of ExCellThera's commercial activities, the government is enabling the business to acquire the equipment it needs to develop novel technologies and processes, for the benefit of the life sciences sector and the health of all Canadians.

Quotes

"The COVID-19 crisis has demonstrated how crucial investments are in innovation in the life sciences sector. Thanks to Government of Canada financial support, ExCellThera will be able to acquire state-of-the-art equipment to pursue its high-potential scientific research activities. This investment will also ensure the business can expand its team. Canadians need good jobs they can count on, and the Government of Canada will always be here to support Canadian businesses with a promising future and that contribute to job creation. This is how we will ensure a strong economic recovery across the country."

The Honourable Mlanie Joly, Member of Parliament for Ahuntsic-Cartierville, Minister of Economic Development and Official Languages and Minister responsible for CED

"The Government of Canada is committed to stimulating innovation to enhance businesses' productivity and competitiveness over the long term. We are therefore proud to be able to offer this support to ExCellThera, whose project will help strengthen Montral's position as a nexus to develop life sciences, a forward-looking sector. In addition to enabling the creation of many quality jobs, it will help the business maintain its enviable position in research markets, including internationally."

RachelBendayan, Member of Parliament for Outremont and Parliamentary Secretary to the Minister of Small Business, Export Promotion and International Trade

"We are pleased to see the Government of Canada contribute to the development of a homegrown business working at the cutting edge of medical technology and with an international profile. This contribution will enable us to acquire specialized equipment to offer safe treatment to patients suffering from advanced cancers of the blood and other blood disorders, and to do so on a commercial scale."

GuySauvageau, Founder, Chief Executive Officer and Scientific Head, ExCellThera

Quick facts

Stay connected

Follow CED on social media Consult CED's news

SOURCE Canada Economic Development for Quebec Regions

For further information: Media Relations, Canada Economic Development for Quebec Regions, [emailprotected]; Catherine Mounier-Desrochers, Press Secretary, Office of the Minister of Economic Development and Official Languages, [emailprotected]

View original post here:
ExCellThera to establish stem cell bioproduction facility creating up to 150 jobs thanks to Government of Canada support - Canada NewsWire

Stanford coach’s quest to save his brother: ‘God, I hope this works’ – Scope

ESPN told the story of Stanford football coach David Shaw donating stem cells to save his brother, who had a rare form of lymphoma.

During a 2018 home game against Washington State University, David Shaw, Stanford's football coach, ambled slowly along the sideline, his joints aching.

Wanting to focus on the players and the game, he kept the reason for his lethargy to himself. But two years later, this past Saturday, the sports world learned the full story.

A College GameDay feature on ESPN revealed that the morning before the game, Shaw had been given stem-cell-inducing medication at Stanford Hospital. It was a first step in donating the cells to his brother, Eric Shaw, who was fighting a rare form of lymphoma.

In the opening of the six-minute video, Shaw says he thought, "'God, I hope this works, 'cause if it doesn't, I'm going to lose my brother.'"

Eric Shaw began noticing strange dark patches on his skin in 2011, the year his older brother became Stanford's head football coach. They were everywhere, from head to foot. Later, small tumors popped up all over his body.

"I would have itching attacks where I would end up actually tearing my skin," he says in the video. "I would still scratch at night and end up with bloody arms and legs."

Eric Shaw transferred his medical care to the Stanford Cancer Center in 2013. There, physicians told the financial services marketing professional that he needed to start radiation treatment immediately. It worked, but only briefly: Six months later, the cancer returned.

He was diagnosed with mycosis fungoides, a T cell lymphoma that affects fewer than four in a million people in the United States.

Shaw's physicians began discussing bone marrow transplant. David Shaw was tested as a donor, but he scored only 5 on a 10-point match scale. A worldwide search found closer matches, and Eric Shaw underwent radiation and chemotherapy to prepare for the transplant.

One attempt failed, then another.

"You think you've kind of pulled at the last thread, and there are no more threads, and all I could tell him was that I loved him and that I was there for him," David Shaw says in the video.

But the Stanford physicians had one last weapon: a haploidentical transplant. The recently developed technique uses stem cells, typically from a family member, that are less than a perfect match.

David Shaw underwent a five-day-long process at Stanford Hospital to donate the cells. He received medication that caused him to produce an abundance of stem cells, then gave blood from which the cells were extracted. Those cells were then transplanted into his brother.

This time, it worked.

After 52 days at Stanford Hospital, Eric Shaw finally went home on Nov. 25, 2018. The video shows him being wheeled out as medical staff members cheer him on.

Youn Kim, MD, who treated Eric and heads Stanford's multidisciplinary Cutaneous Lymphoma Clinic/Program, told ESPN: "If he didn't go for this risk, he wouldn't be here...He wouldn't be living."

As the article notes, Stanford physicians Wen-Kai Weng, MD, PhD, and Michael Khodadoust, MD, PhD, also were on the team treating Eric Shaw.

Today, nearly two years later, he remains cancer-free.

"Seven years of battling this disease, and it was over," he says in the video, tears running down his face. "A miracle."

David Shaw shares his brother's joy. As he told ESPN: "Every time I see him, I just smile, you know? Because he gets to be here."

Images of Eric Shaw, left, taken earlier this month, and his brother David Shaw, courtesy of the Shaw family, and Stanford Athletics

Infectious disease

From how to quarantine to how to monitor your oxygen levels, a Stanford physician offers tips on what to do if you have COVID-19.

Infectious disease

Stanford ENT surgeon discusses how viruses cause a loss of sense of smell, and what you should do about it in the era of the coronavirus pandemic.

More here:
Stanford coach's quest to save his brother: 'God, I hope this works' - Scope

The story of mRNA: From a loose idea to a tool that may help curb Covid – STAT

ANDOVER, Mass. The liquid that many hope could help end the Covid-19 pandemic is stored in a nondescript metal tank in a manufacturing complex owned by Pfizer, one of the worlds biggest drug companies. There is nothing remarkable about the container, which could fit in a walk-in closet, except that its contents could end up in the worlds first authorized Covid-19 vaccine.

Pfizer, a 171-year-old Fortune 500 powerhouse, has made a billion-dollar bet on that dream. So has a brash, young rival just 23 miles away in Cambridge, Mass. Moderna, a 10-year-old biotech company with billions in market valuation but no approved products, is racing forward with a vaccine of its own. Its new sprawling drug-making facility nearby is hiring workers at a fast clip in the hopes of making history and a lot of money.

In many ways, the companies and their leaders couldnt be more different. Pfizer, working with a little-known German biotech called BioNTech, has taken pains for much of the year to manage expectations. Moderna has made nearly as much news for its stream of upbeat press releases, executives stock sales, and spectacular rounds of funding as for its science.

advertisement

Each is well-aware of the other in the race to be first.

But what the companies share may be bigger than their differences: Both are banking on a genetic technology that has long held huge promise but has so far run into biological roadblocks. It is called synthetic messenger RNA, an ingenious variation on the natural substance that directs protein production in cells throughout the body. Its prospects have swung billions of dollars on the stock market, made and imperiled scientific careers, and fueled hopes that it could be a breakthrough that allows society to return to normalcy after months living in fear.

advertisement

Both companies have been frequently name-checked by President Trump. Pfizer reported strong, but preliminary, data on Monday, and Moderna is expected to follow suit soon with a glimpse of its data. Both firms hope these preliminary results will allow an emergency deployment of their vaccines millions of doses likely targeted to frontline medical workers and others most at risk of Covid-19.

There are about a dozen experimental vaccines in late-stage clinical trials globally, but the ones being tested by Pfizer and Moderna are the only two that rely on messenger RNA.

For decades, scientists have dreamed about the seemingly endless possibilities of custom-made messenger RNA, or mRNA.

Researchers understood its role as a recipe book for the bodys trillions of cells, but their efforts to expand the menu have come in fits and starts. The concept: By making precise tweaks to synthetic mRNA and injecting people with it, any cell in the body could be transformed into an on-demand drug factory.

But turning scientific promise into medical reality has been more difficult than many assumed. Although relatively easy and quick to produce compared to traditional vaccine-making, no mRNA vaccine or drug has ever won approval.

Even now, as Moderna and Pfizer test their vaccines on roughly 74,000 volunteers in pivotal vaccine studies, many experts question whether the technology is ready for prime time.

I worry about innovation at the expense of practicality, Peter Hotez, dean of the National School of Tropical Medicine at Baylor College of Medicine and an authority on vaccines, said recently. The U.S. governments Operation Warp Speed program, which has underwritten the development of Modernas vaccine and pledged to buy Pfizers vaccine if it works, is weighted toward technology platforms that have never made it to licensure before.

Whether mRNA vaccines succeed or not, their path from a gleam in a scientists eye to the brink of government approval has been a tale of personal perseverance, eureka moments in the lab, soaring expectations and an unprecedented flow of cash into the biotech industry.

It is a story that began three decades ago, with a little-known scientist who refused to quit.

Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.

Katalin Karik spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.

It all made sense on paper. In the natural world, the body relies on millions of tiny proteins to keep itself alive and healthy, and it uses mRNA to tell cells which proteins to make. If you could design your own mRNA, you could, in theory, hijack that process and create any protein you might desire antibodies to vaccinate against infection, enzymes to reverse a rare disease, or growth agents to mend damaged heart tissue.

In 1990, researchers at the University of Wisconsin managed to make it work in mice. Karik wanted to go further.

The problem, she knew, was that synthetic RNA was notoriously vulnerable to the bodys natural defenses, meaning it would likely be destroyed before reaching its target cells. And, worse, the resulting biological havoc might stir up an immune response that could make the therapy a health risk for some patients.

It was a real obstacle, and still may be, but Karik was convinced it was one she could work around. Few shared her confidence.

Every night I was working: grant, grant, grant, Karik remembered, referring to her efforts to obtain funding. And it came back always no, no, no.

By 1995, after six years on the faculty at the University of Pennsylvania, Karik got demoted. She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.

She was back to the lower rungs of the scientific academy.

Usually, at that point, people just say goodbye and leave because its so horrible, Karik said.

Theres no opportune time for demotion, but 1995 had already been uncommonly difficult. Karik had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which shed devoted countless hours was slipping through her fingers.

I thought of going somewhere else, or doing something else, Karik said. I also thought maybe Im not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.

In time, those better experiments came together. After a decade of trial and error, Karik and her longtime collaborator at Penn Drew Weissman, an immunologist with a medical degree and Ph.D. from Boston University discovered a remedy for mRNAs Achilles heel.

The stumbling block, as Kariks many grant rejections pointed out, was that injecting synthetic mRNA typically led to that vexing immune response; the body sensed a chemical intruder, and went to war. The solution, Karik and Weissman discovered, was the biological equivalent of swapping out a tire.

Every strand of mRNA is made up of four molecular building blocks called nucleosides. But in its altered, synthetic form, one of those building blocks, like a misaligned wheel on a car, was throwing everything off by signaling the immune system. So Karik and Weissman simply subbed it out for a slightly tweaked version, creating a hybrid mRNA that could sneak its way into cells without alerting the bodys defenses.

That was a key discovery, said Norbert Pardi, an assistant professor of medicine at Penn and frequent collaborator. Karik and Weissman figured out that if you incorporate modified nucleosides into mRNA, you can kill two birds with one stone.

That discovery, described in a series of scientific papers starting in 2005, largely flew under the radar at first, said Weissman, but it offered absolution to the mRNA researchers who had kept the faith during the technologys lean years. And it was the starter pistol for the vaccine sprint to come.

And even though the studies by Karik and Weissman went unnoticed by some, they caught the attention of two key scientists one in the United States, another abroad who would later help found Moderna and Pfizers future partner, BioNTech.

Derrick Rossi, a native of Toronto who rooted for the Maple Leafs and sported a soul patch, was a 39-year-old postdoctoral fellow in stem cell biology at Stanford University in 2005 when he read the first paper. Not only did he recognize it as groundbreaking, he now says Karik and Weissman deserve the Nobel Prize in chemistry.

If anyone asks me whom to vote for some day down the line, I would put them front and center, he said. That fundamental discovery is going to go into medicines that help the world.

But Rossi didnt have vaccines on his mind when he set out to build on their findings in 2007 as a new assistant professor at Harvard Medical School running his own lab.

He wondered whether modified messenger RNA might hold the key to obtaining something else researchers desperately wanted: a new source of embryonic stem cells.

In a feat of biological alchemy, embryonic stem cells can turn into any type of cell in the body. That gives them the potential to treat a dizzying array of conditions, from Parkinsons disease to spinal cord injuries.

But using those cells for research had created an ethical firestorm because they are harvested from discarded embryos.

Rossi thought he might be able to sidestep the controversy. He would use modified messenger molecules to reprogram adult cells so that they acted like embryonic stem cells.

He asked a postdoctoral fellow in his lab to explore the idea. In 2009, after more than a year of work, the postdoc waved Rossi over to a microscope. Rossi peered through the lens and saw something extraordinary: a plate full of the very cells he had hoped to create.

Rossi excitedly informed his colleague Timothy Springer, another professor at Harvard Medical School and a biotech entrepreneur. Recognizing the commercial potential, Springer contacted Robert Langer, the prolific inventor and biomedical engineering professor at the Massachusetts Institute of Technology.

On a May afternoon in 2010, Rossi and Springer visited Langer at his laboratory in Cambridge. What happened at the two-hour meeting and in the days that followed has become the stuff of legend and an ego-bruising squabble.

Langer is a towering figure in biotechnology and an expert on drug-delivery technology. At least 400 drug and medical device companies have licensed his patents. His office walls display many of his 250 major awards, including the Charles Stark Draper Prize, considered the equivalent of the Nobel Prize for engineers.

As he listened to Rossi describe his use of modified mRNA, Langer recalled, he realized the young professor had discovered something far bigger than a novel way to create stem cells. Cloaking mRNA so it could slip into cells to produce proteins had a staggering number of applications, Langer thought, and might even save millions of lives.

I think you can do a lot better than that, Langer recalled telling Rossi, referring to stem cells. I think you could make new drugs, new vaccines everything.

Langer could barely contain his excitement when he got home to his wife.

This could be the most successful company in history, he remembered telling her, even though no company existed yet.

Three days later Rossi made another presentation, to the leaders of Flagship Ventures. Founded and run by Noubar Afeyan, a swaggering entrepreneur, the Cambridge venture capital firm has created dozens of biotech startups. Afeyan had the same enthusiastic reaction as Langer, saying in a 2015 article in Nature that Rossis innovation was intriguing instantaneously.

Within several months, Rossi, Langer, Afeyan, and another physician-researcher at Harvard formed the firm Moderna a new word combining modified and RNA.

Springer was the first investor to pledge money, Rossi said. In a 2012 Moderna news release, Afeyan said the firms promise rivals that of the earliest biotechnology companies over 30 years ago adding an entirely new drug category to the pharmaceutical arsenal.

But although Moderna has made each of the founders hundreds of millions of dollars even before the company had produced a single product Rossis account is marked by bitterness. In interviews with the Globe in October, he accused Langer and Afeyan of propagating a condescending myth that he didnt understand his discoverys full potential until they pointed it out to him.

Its total malarkey, said Rossi, who ended his affiliation with Moderna in 2014. Im embarrassed for them. Everybody in the know actually just shakes their heads.

Rossi said that the slide decks he used in his presentation to Flagship noted that his discovery could lead to new medicines. Thats the thing Noubar has used to turn Flagship into a big company, and he says it was totally his idea, Rossi said.

Afeyan, the chair of Moderna, recently credited Rossi with advancing the work of the Penn scientists. But, he said, that only spurred Afeyan and Langer to ask the question, Could you think of a code molecule that helps you make anything you want within the body?

Langer, for his part, told STAT and the Globe that Rossi made an important finding but had focused almost entirely on the stem cell thing.

Despite the squabbling that followed the birth of Moderna, other scientists also saw messenger RNA as potentially revolutionary.

In Mainz, Germany, situated on the left bank of the Rhine, another new company was being formed by a married team of researchers who would also see the vast potential for the technology, though vaccines for infectious diseases werent on top of their list then.

A native of Turkey, Ugur Sahin moved to Germany after his father got a job at a Ford factory in Cologne. His wife, zlem Treci had, as a child, followed her father, a surgeon, on his rounds at a Catholic hospital. She and Sahin are physicians who met in 1990 working at a hospital in Saarland.

The couple have long been interested in immunotherapy, which harnesses the immune system to fight cancer and has become one of the most exciting innovations in medicine in recent decades. In particular, they were tantalized by the possibility of creating personalized vaccines that teach the immune system to eliminate cancer cells.

Both see themselves as scientists first and foremost. But they are also formidable entrepreneurs. After they co-founded another biotech, the couple persuaded twin brothers who had invested in that firm, Thomas and Andreas Strungmann, to spin out a new company that would develop cancer vaccines that relied on mRNA.

That became BioNTech, another blended name, derived from Biopharmaceutical New Technologies. Its U.S. headquarters is in Cambridge. Sahin is the CEO, Treci the chief medical officer.

We are one of the leaders in messenger RNA, but we dont consider ourselves a messenger RNA company, said Sahin, also a professor at the Mainz University Medical Center. We consider ourselves an immunotherapy company.

Like Moderna, BioNTech licensed technology developed by the Pennsylvania scientist whose work was long ignored, Karik, and her collaborator, Weissman. In fact, in 2013, the company hired Karik as senior vice president to help oversee its mRNA work.

But in their early years, the two biotechs operated in very different ways.

In 2011, Moderna hired the CEO who would personify its brash approach to the business of biotech.

Stphane Bancel was a rising star in the life sciences, a chemical engineer with a Harvard MBA who was known as a businessman, not a scientist. At just 34, he became CEO of the French diagnostics firm BioMrieux in 2007 but was wooed away to Moderna four years later by Afeyan.

Moderna made a splash in 2012 with the announcement that it had raised $40 million from venture capitalists despite being years away from testing its science in humans. Four months later, the British pharmaceutical giant AstraZeneca agreed to pay Moderna a staggering $240 million for the rights to dozens of mRNA drugs that did not yet exist.

The biotech had no scientific publications to its name and hadnt shared a shred of data publicly. Yet it somehow convinced investors and multinational drug makers that its scientific findings and expertise were destined to change the world. Under Bancels leadership, Moderna would raise more than $1 billion in investments and partnership funds over the next five years.

Modernas promise and the more than $2 billion it raised before going public in 2018 hinged on creating a fleet of mRNA medicines that could be safely dosed over and over. But behind the scenes the companys scientists were running into a familiar problem. In animal studies, the ideal dose of their leading mRNA therapy was triggering dangerous immune reactions the kind for which Karik had improvised a major workaround under some conditions but a lower dose had proved too weak to show any benefits.

Moderna had to pivot. If repeated doses of mRNA were too toxic to test in human beings, the company would have to rely on something that takes only one or two injections to show an effect. Gradually, biotechs self-proclaimed disruptor became a vaccines company, putting its experimental drugs on the back burner and talking up the potential of a field long considered a loss-leader by the drug industry.

Meanwhile BioNTech has often acted like the anti-Moderna, garnering far less attention.

In part, that was by design, said Sahin. For the first five years, the firm operated in what Sahin called submarine mode, issuing no news releases, and focusing on scientific research, much of it originating in his university lab. Unlike Moderna, the firm has published its research from the start, including about 150 scientific papers in just the past eight years.

In 2013, the firm began disclosing its ambitions to transform the treatment of cancer and soon announced a series of eight partnerships with major drug makers. BioNTech has 13 compounds in clinical trials for a variety of illnesses but, like Moderna, has yet to get a product approved.

When BioNTech went public last October, it raised $150 million, and closed with a market value of $3.4 billion less than half of Modernas when it went public in 2018.

Despite his role as CEO, Sahin has largely maintained the air of an academic. He still uses his university email address and rides a 20-year-old mountain bicycle from his home to the office because he doesnt have a drivers license.

Then, late last year, the world changed.

Shortly before midnight, on Dec. 30, the International Society for Infectious Diseases, a Massachusetts-based nonprofit, posted an alarming report online. A number of people in Wuhan, a city of more than 11 million people in central China, had been diagnosed with unexplained pneumonia.

Chinese researchers soon identified 41 hospitalized patients with the disease. Most had visited the Wuhan South China Seafood Market. Vendors sold live wild animals, from bamboo rats to ostriches, in crowded stalls. That raised concerns that the virus might have leaped from an animal, possibly a bat, to humans.

After isolating the virus from patients, Chinese scientists on Jan. 10 posted online its genetic sequence. Because companies that work with messenger RNA dont need the virus itself to create a vaccine, just a computer that tells scientists what chemicals to put together and in what order, researchers at Moderna, BioNTech, and other companies got to work.

A pandemic loomed. The companies focus on vaccines could not have been more fortuitous.

Moderna and BioNTech each designed a tiny snip of genetic code that could be deployed into cells to stimulate a coronavirus immune response. The two vaccines differ in their chemical structures, how the substances are made, and how they deliver mRNA into cells. Both vaccines require two shots a few weeks apart.

The biotechs were competing against dozens of other groups that employed varying vaccine-making approaches, including the traditional, more time-consuming method of using an inactivated virus to produce an immune response.

Moderna was especially well-positioned for this moment.

Forty-two days after the genetic code was released, Modernas CEO Bancel opened an email on Feb. 24 on his cellphone and smiled, as he recalled to the Globe. Up popped a photograph of a box placed inside a refrigerated truck at the Norwood plant and bound for the National Institute of Allergy and Infectious Diseases in Bethesda, Md. The package held a few hundred vials, each containing the experimental vaccine.

Moderna was the first drug maker to deliver a potential vaccine for clinical trials. Soon, its vaccine became the first to undergo testing on humans, in a small early-stage trial. And on July 28, it became the first to start getting tested in a late-stage trial in a scene that reflected the firms receptiveness to press coverage.

The first volunteer to get a shot in Modernas late-stage trial was a television anchor at the CNN affiliate in Savannah, Ga., a move that raised eyebrows at rival vaccine makers.

Along with those achievements, Moderna has repeatedly stirred controversy.

On May 18, Moderna issued a press release trumpeting positive interim clinical data. The firm said its vaccine had generated neutralizing antibodies in the first eight volunteers in the early-phase study, a tiny sample.

But Moderna didnt provide any backup data, making it hard to assess how encouraging the results were. Nonetheless, Modernas share price rose 20% that day.

Some top Moderna executives also drew criticism for selling shares worth millions, including Bancel and the firms chief medical officer, Tal Zaks.

In addition, some critics have said the government has given Moderna a sweetheart deal by bankrolling the costs for developing the vaccine and pledging to buy at least 100 million doses, all for $2.48 billion.

That works out to roughly $25 a dose, which Moderna acknowledges includes a profit.

In contrast, the government has pledged more than $1 billion to Johnson & Johnson to manufacture and provide at least 100 million doses of its vaccine, which uses different technology than mRNA. But J&J, which collaborated with Beth Israel Deaconess Medical Centers Center for Virology and Vaccine Research and is also in a late-stage trial, has promised not to profit off sales of the vaccine during the pandemic.

Over in Germany, Sahin, the head of BioNTech, said a Lancet article in January about the outbreak in Wuhan, an international hub, galvanized him.

We understood that this would become a pandemic, he said.

The next day, he met with his leadership team.

I told them that we have to deal with a pandemic which is coming to Germany, Sahin recalled.

He also realized he needed a strong partner to manufacture the vaccine and thought of Pfizer. The two companies had worked together before to try to develop mRNA influenza vaccines. In March, he called Pfizers top vaccine expert, Kathrin Jansen.

Read the rest here:
The story of mRNA: From a loose idea to a tool that may help curb Covid - STAT

Sobi’s Gamifant receives final rejection from CHMP for primary HLH – PMLiVE

The European Medicines Agencys (EMA) Committee for Medicinal Products for Human Use (CHMP) has given Sobis Gamifant a final negative opinion after re-examining its initial decision.

Sobi requested that the CHMP re-examine the application for Gamifant (emapalumab) as a treatment for of primary haemophagocytic lymphohistiocytosis (HLH) after the Committee initially rejected the drug in July.

Primary HLH is a genetic disease characterised by widespread destruction of blood cells, extremely high iron levels in the blood, coagulation problems and excessive growth of organs.

The condition can be passed on genetically by parents who are carriers of the disease, or can occur as a spontaneous mutation. It results in an over-expression of IFN gamma that causes an auto-immune-like syndrome.

Patients with primary HLH are limited to haematopoietic stem cell transplantation (HSCT), a procedure which requires individuals to undergo intense treatment first in order for it to be successful.

In its original decision, the CHMP ruled that the results of the study used to support Sobis application for Gamifant were not convincing enough to conclude that the drug is effective in the treatment of primary HLH.

In addition, the CHMP said that the study only involved a small number of patients, who were also receiving other medicines used to treat HLH. This, the Committee said, made it difficult to determine if the responses seen in some patients were due to Gamifant treatment.

The CHMP also called into question the data concerning the safety of Gamifant, saying in a statement that the design of the study made it difficult to collect data on the drugs side effects.

After re-examining the available data, as well as additional advice from a group of experts, the CHMP determined that although Sobi had addressed concerns over Gamifants safety profile, the other concerns still remained.

"This recommendation by the CHMP is disappointing given the significant unmet medical need which exists for patients with pHLH who have no approved therapies in Europe, said Ravi Rao, head of R&D and chief medical officer at Sobi

During the re-examination we worked extensively with physicians and patients and were able to resolve some but not all of the concerns raised by EMA.

"We are confident about the clinical profile of emapalumab and our focus is now on increasing access for patients in other regions and developing new indications for this medicine, he added.

Sobi, based in Stockholm, Sweden, acquired the global marketing rights to Gamifant from Novimmune in July 2018, and in June 2019 the company spent $518m to acquire the outstanding intellectual property and patents for the drug.

Gamifant was approved by the US Food and Drug Administration (FDA) for the treatment of primary HLH in November 2018. In the US, over 100 primary HLH patients have been treated with Gamifant, with the benefit/risk profile continuing to prove favourable according to Sobi.

Read more:
Sobi's Gamifant receives final rejection from CHMP for primary HLH - PMLiVE

Meeting Agenda Focuses on Increased Applications of Cellular Therapies in Hematologic Cancers – Targeted Oncology

There has been a surge in treatment advancements for multiple myeloma that have improved outcomes for patients in the front- and later-line disease settings, creating an eager need to keep abreast of these latest systemic therapy innovations. In an interview with Targeted Therapies in Oncology, Sagar Lonial, MD, program cochair for the upcoming 24th Annual International Congress on Hematologic Malignancies. hosted by Physicians Education Resource., LLC (PER.), detailed breakthroughs in the care of patients with multiple myeloma as well as other hematologic cancers, and offered a preview of what attendees might expect to hear at the meeting.

Particularly in the era of COVID-19 [coronavirus disease 2019] where so much information is continuing to come out but the live meeting opportunities are limited, [this meeting] provides an opportunity to hear from leading experts in their fields [giving] you the moment to moment changes that are occurring, said Lonial, who is also a professor and the chair of the Department of Hematology and Medical Oncology at Emory University School of Medicine, as well as chief medical officer at Winship Cancer Institute of Emory University in Atlanta, Georgia. These changes are occurring so fast, its hard for the [community oncologist] to keep up.

Anti-BCMA Agents and Other Advances in Multiple Myeloma

Lonial detailed the FDAs August 2020 approval of the B-cell maturation antigen (BCMA) antibody-drug conjugate belantamab mafodotin-blmf (Blenrep; Bela-maf) for the treatment of patients with relapsed/refractory disease following at least 4 prior therapies, including an anti-CD38 monoclonal antibody, a proteasome inhibitor, and an immunomodulatory agent.1 This marks the first time a systemic therapy agent aimed at inhibiting BCMA received approval in the United States.

We have periods of time where a lot happens. Were seeing BCMA-targeted therapies really come to the forefront, Lonial said. Right now, [there are] 3 different ways to target BCMA. You can use the antibody-drug conjugate bela-maf, you can use a bispecific T-cell engager, or you can use a CAR [chimeric antigen receptor] T-cell therapy.

One of the advantages of targeting BCMA is that it is expressed exclusively on plasma cells, leading to fewer off-target affects, Lonial said. Additionally, BCMA activation has been shown to promote drug resistance,2 so inhibiting it may provide the dual benefit of suppressing tumor growth as well as overcoming drug resistance.

Regarding bispecific T-cell engager (BiTE) therapies, Lonial said clinicians may be familiar with this approach by looking at an established agent for the treatment of acute lymphoblastic leukemia (ALL), blinatumomab (Blincyto). Here, the bispecific CD19-directed T-cell engager binds to CD19 expressed on tumor cells and CD3 expressed on T cells,3 bringing them in close proximity with one another. I was skeptical that this approach would work in myeloma because I thought that T cells would be exhausted, and I wasnt sure youd be able to get them to work. But certainly, at higher doses, it appears that youre getting response [rates above] 65% to 70%.

Two notable BiTEs in clinical development that are aiming at BCMA for the treatment of multiple myeloma include teclistamab (JNJ-7957) and AMG 420, which have both been explored in phase 1 clinical trials (NCT03145181 and NCT02514239, respectively) with results presented at recent medical meetings.

In CAR T-cell therapy, a modality that Lonial said clinicians are familiar with due to recent successes in ALL and large B-cell lymphoma, there are multiple agents in development that target BCMA for the treatment of multiple myeloma. One of the advantages that has come to light over the CD19-directed agents is the lower rates of cytokine release syndrome and neurologic toxicity which account for the most troublesome adverse events of CAR T-cell therapy administration that lead to hospitalization. We dont know if thats a function of BCMA or of myeloma, Lonial said.

Of all BCMA-targeted CAR T-cell therapies, the most advanced in terms of FDA clearance is idecabtagene vicleucel (ide-cel; BB2121), which just earned priority review in September 2020. The Prescription Drug User Fee Act action date has been set as March 27, 2021.4

Other advances in multiple myeloma that Lonial mentioned included the development of the novel cereblon E3 ligase modulator (CELMoD) iberdomide, which has demonstrated response rates of up to 30% in patients with heavily pretreated multiple myeloma when used in conjunction with dexamethasone.5 Additionally, Lonial noted that the use of minimal residual disease (MRD) status as a patient selection tool will become more prominent as more agents are approved across settings.

If somebodys MRD positive, is that where you treat with a BCMA-directed therapy early to try and eliminate that? Those, I think, are really exciting questions were going to be able to answer.

Trends in Cellular Therapy and Other Topics

Lonial said that cellular therapy for the treatment of hematologic diseases by way of allogeneic stem cell transplants, in his view, represented the first time immunotherapy was used for the treatment of any malignancy. Moving into the modern treatment era, investigators are striving to refine these approaches and incorporate new modalities, such as CAR T-cell therapy, for the treatment of patients with hematologic cancers.

Another focus of the meeting will include looking at precision medicine techniques of the solid tumor world and applying those principles to cancers of the blood.

Using genetics and genomics to identify lymphoma subsets is getting us into both an immune era and a precision medicine era, Lonial said. The challenge for us in hematologic malignancies is marrying the 2 concepts together. How do you take both precision medicine and immune therapy and make it one treatment approach for a patient?

Lonial said the CAR T-cell therapy workshop which will be moderated by fellow meeting cochair Andre H. Goy, MD, who is physician in chief of Hackensack Meridian Health Oncology Care Transformation Service, chairman & chief Physician Officer of the John Theurer Cancer Center, Lydia Pfund Chair for lymphoma Academic Academic Chairman Oncology of Hackensack Meridian School of Medicine at Seton Hall University, and professor of medicine at Georgetown Universitymay be especially helpful for all clinicians hoping to learn more about this treatment modality, regardless of whether or not their centers are approved to administer it.

Knowing when to refer from the community [setting to an academic institution] for a CAR T-cell [administration] and what that can offer patients is critically important, he said. The advantage of CAR [T-cell therapy] from my perspective is it is a one-and-done therapy. And if that one-and-done really is done, then its a true victory. We dont want to limit [this only] to people who are seen in academic centers.

Finally, meeting cochair Jorge E. Cortes, MD, the director of Georgia Cancer Center and an Eminent Scholar of the Georgia Research Alliance at Augusta University in Georgia, will moderate sessions addressing the treatment of indolent non-Hodgkin lymphoma and myelodysplastic syndromes, among others.

Lonial concluded by describing what he hopes will be a broad overview for attendees who treat patients in the community and academic settings alike. You get experts in [the treatment of hematologic cancers]which I think is prone for rapid change, expansion, and discoveryto hear in one setting whats newest in lymphoma, whats newest in leukemia, whats newest in myeloma, and whats newest in CAR T-cell therapy. That opportunity is very important, and it provides people with a case-based learning approach.

References:

1. FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma. FDA. Updated August 6, 2020. Accessed October 27, 2020. https://bit.ly/37M2UDd

2. Tai YT, Acharya C, An G, et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood. 2016;127(25):3225-3236. doi:10.1182/ blood-2016-01-691162

3. Blincyto. Prescribing information. Amgen; 2020. Accessed October 27, 2020. https://bit.ly/2TsOL5d

4. US Food and Drug Administration (FDA) accepts for priority review Bristol Bristol Myers Squibb and bluebird bio application for anti-BCMA CAR T cell therapy idecabtagene vicleucel (ide-cel, bb2121). News release. Bristol Myers Squibb. September 22, 2020. Accessed October 27, 2020. https://bit.ly/3kDhakH

5. Lonial S, Van de Donk N, Popat R, et al. A phase 1b/2a study of the CELMoD iberdomide (CC-220) in combination with dexamethasone in patients with relapsed/refractory multiple myeloma. Clin Lymphoma Myeloma Leuk. 2019;19(suppl 10):E52-E53. doi:10.1016/j.clml.2019.09.080

See the rest here:
Meeting Agenda Focuses on Increased Applications of Cellular Therapies in Hematologic Cancers - Targeted Oncology

Animal Stem Cell Therapy Market Projected to Witness Vigorous Expansion by 2027 – re:Jerusalem

Big Market Research, one of the worlds prominent market research firms has released a new report on GlobalAnimal Stem Cell Therapy Market, The report expertise includes assessing new opportunities & sizing, identifying and evaluating complex global value chains (including key drivers, restraints and winning strategies). The report will help the vendor to strategize its positioning in the Animal Stem Cell Therapy Market projects around the globe. The detailed competitor profiling helped identify and understand the key strategies and growth drivers of its competitors. The report includes detailed profile of key competitors, pre/post launch surveys, go-to-market research, supplier selection surveys, industry demand/pain point surveys, pricing analysis, product testing, effectiveness studies, and product positioning studies.

The Animal Stem Cell Therapy Market research report includes:

The Animal Stem Cell Therapy Market report explore:

The Animal Stem Cell Therapy Market includes identification of important potential market demand, expected sale of these devices in the next 5 years, various price and demand sensitive scenarios were built to ascertain on the profitability of investing, customer analysis, and future price analysis.

Ask pdf sample copy of this premium research on Animal Stem Cell Therapy with Figures, Graphs and Tocs:https://www.bigmarketresearch.com/request-sample/4083483?utm_source=PRL&utm_medium=MWA

The Animal Stem Cell Therapy Market is also characterized by a highly complex value chain involving product manufacturers, material suppliers, technology developers, and manufacturing equipment developers. Partnerships between research organizations and the industry players help in streamlining the path from the lab to commercialization. In order to also leverage the first mover benefit, companies need to collaborate with each other so as to develop products and technologies that are unique, innovative and cost effective.

Several existing Animal Stem Cell Therapy Industry manufacturers, new start-ups as well as research organizations and universities are constantly coming up with innovative ideas. The Animal Stem Cell Therapy Market is expected to grow exponentially over the next five years with the emergence of new applications and cost competitive products.

Market players have been discussed and profiles of leading players including Top Key Companies: Medivet Biologics LLC VETSTEM BIOPHARMA J-ARM U.S. Stem Cell, Inc VetCell Therapeutics Celavet Inc. Magellan Stem Cells Kintaro Cells Power Animal Stem Care Animal Cell Therapies Cell Therapy Sciences Animacel

Animal Stem Cell Therapy Market By Product Type 2019-2025: Dogs Horses Others

Based on type, the global market is segmented into the following sub-markets with annual revenue for 2015-2025 (historical and forecast) included in each section.

Animal Stem Cell Therapy Market By Application 2019-2025: Veterinary Hospitals Research Organizations

Based on application, the global market is segmented into the following sub-markets with annual revenue for 2019-2025 (historical and forecast) included in each section.

Talk to our Analyst / Ask for a discount on Animal Stem Cell Therapy:https://www.bigmarketresearch.com/request-for-discount/4083483?utm_source=PRL&utm_medium=MWA

The comprehensive competitive landscape section of the report contains detailed analysis of the trends in mergers and acquisitions, agreements and partnerships, new product launches and so on in the Animal Stem Cell Therapy Market. This information will be very useful for existing players as well as new entrants in any market.

Geographically,Animal Stem Cell TherapyMarket is further analyzed into regions and country level analysis:North America, Europe, Asia-Pacific, Latin America, Middle East & Africa

Conclusively, this report is a one stop reference point for the industrial stakeholders to get Animal Stem Cell Therapy market forecast of till 2025. This report helps to know the estimated market size, market status, future development, growth opportunity, challenges, and growth drivers of by analyzing the historical overall data of the considered market segments.

You May Also Like Our Other Top Trending Reports:

Read More:https://www.bigmarketresearch.com/report/3767216/global-x-ray-security-scanner-sale-insights-market?utm_source=PRL&utm_medium=MWA

About Us:

Big Market Researchhas a range of research reports from various domains across the world. Our database of reports of various market categories and sub-categories would help to find the exact report you may be looking for.

Contact us: Mr. Abhishek Paliwal 5933 NE Win Sivers Drive, #205, Portland, OR 97220 United States Direct:+1-971-202-1575 Toll Free:+1-800-910-6452 E-mail:help@bigmarketresearch.com

Visit link:
Animal Stem Cell Therapy Market Projected to Witness Vigorous Expansion by 2027 - re:Jerusalem

Rheumatoid Arthritis Stem Cell Therapy Market to Ride on Increased Prevalence of Rheumatoid Arthritis – TMR Research Blog

Rheumatoid arthritis refers to an inflammatory disease of the supportive tissues of the body and the condition generally affects fingers and toes of human beings. This inflammation is caused by an abnormal response of the body to the normal functioning tissues. This leads to acute pain and malformed joints. Novel cells that are produced by regenerative centers of the body are called stem cells. These cells can be changed into any other type of cell in the body with just the right kind of stimulant. The growth of the global rheumatoid arthritis stem cell therapy market is likely to observe growth in its ability to demonstrate profound healing activity. It also helps in checking the arthritic condition. In addition to that, this therapy is capable of regenerating and reversing joint tissue in many cases, which is likely to pave way for rapid growth of the global rheumatoid arthritis stem cell therapy market in the years to come.

Get SampleCopy of this Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=6864

Ability to Diminish Pain and Inflammation to Bolster Demand in the Market

In present times, human umbilical cord tissue (allogeneic mesenchymal stem cells), fat-derived or adipose stem cells, and bone marrow transplant are utilized for the purpose of the rheumatoid arthritis stem cell therapy. As the condition becomes worse, the body starts autoimmune response and keeps on attacking the cells of the body. The global rheumatoid arthritis stem cell therapy market is estimated to gather momentum from its growing importance and popularity in specialty clinics, ambulatory surgical centers, and hospitals. This therapy comes with the excellent healing capabilities that can treat the entire system causing inflammation and joint pain.

Extensive growth opportunities of the global rheumatoid arthritis stem cell therapy market are likely to be influenced by the multiple benefits offered by this therapy. However, this therapy comes with its own share of disadvantages as well and is not an infallible method for healing arthritis. All though, this therapy is capable of assisting in the stabilization of the body immune system and diminish inflammation.

Check Table of Contents of this Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=6864

Like Loading...

As Head of Marketing at TMR Research, Rohit brings to the table over a decade of experience in market research and Internet marketing. His dedication, perseverance, and passion for perfection have enabled him to achieve immense success in his field. Rohit is an expert at formulating new business plans and strategies to help boost web traffic. His interests lie in writing news articles on technology,healthcare and business. View all posts by Rohit Bhisey

More:
Rheumatoid Arthritis Stem Cell Therapy Market to Ride on Increased Prevalence of Rheumatoid Arthritis - TMR Research Blog

The Canine Stem Cell Therapy Market To Move Away From Insipidness, Reach US$ 218.2 Mn – PRnews Leader

Market Report Summary

For Full Information -> Click Here

Read Full Press Release Below

Persistence Market Research (PMR) has published a new research report on canine stem cell therapy. The report has been titled, Canine Stem Cell Therapy Market: Global Industry Analysis 2016 and Forecast 20172026.Veterinary research has been used in regenerative and adult stem cell therapy andhas gained significant traction over the last decade.

Canine stem cell therapy products are identified to have gained prominence over the past five years, and according to the aforementioned research report, the market for canine stem cell therapy will expand at a moderate pace over the next few years.

Get Sample Copy of Report @ https://www.persistencemarketresearch.com/samples/15550

Company Profiles

Get To Know Methodology of Report @ https://www.persistencemarketresearch.com/methodology/15550

Though all animal stem cells are not approved by FDA, veterinary stem-cell manufacturers and university researchers have been adopting various strategies in order to meet regulatory approvals, and streamline and expedite the review-and-approval process. The vendors in the market are incessantly concentrating on research and development to come up with advanced therapy, in addition to acquiring patents.

In September 2017, VetStem Biopharma, Inc. received European patent granted to the University of Pittsburgh and VetStem received full license of the patent then. This patent will eventually provide the coverage for the ongoing commercial and product development programs of VetStem and might be also available for licensing to other companies who are rather interested in this field.

The other companies operating in the global market for canine stem cell therapy are VETherapy Corporation, Aratana Therapeutics, Inc., Regeneus Ltd, Magellan Stem Cells, Animal Cell Therapies, Inc., and Medrego, among others.

According to the Persistence Market Research report, the globalcanine stem cell therapy marketis expected to witness a CAGR of 4.2% during the forecast period 2017-2026. In 2017, the market was valued at US$ 151.4 Mn and is expected to rise to a valuation of US$ 218.2 Mn by the end of 2026.

Burgeoning Prevalence of Chronic Diseases in Dogs to Benefit Market

Adipose Stem Cells (ASCs) are the most prevalent and in-demand adult stem cells owing to their safety profile, ease of harvest, and use and the ability to distinguish into multiple cell lineages. Most early clinical research is focused on adipose stem cells to treat various chronic diseases such as arthritis, tendonitis, lameness, and atopic dermatitis in dogs.

A large area of focus in veterinary medicine is treatment of osteoarthritis in dogs, which becomes more prevalent with age. Globally, more than 20% dogs are suffering from arthritis, which is a common form of canine joint and musculoskeletal disease. Out of those 20%, merely 5% seem to receive the treatment.

However, elbow dysplasia in canine registered a prevalence rate of 64%, converting it into an alarming disease condition to be treated on priority. Thereby, with the growing chronic disorders in canine, the demand for stem cell therapy is increasing at a significant pace.

Access Full Report @ https://www.persistencemarketresearch.com/checkout/15550

Expensive Nature of Therapy to Obstruct Growth Trajectory

Expensive nature and limited access to canine stem cell therapy has demonstrated to be a chief hindrance forestalling its widespread adoption. The average tier II and tier III veterinary hospitals lack the facilities and expertise to perform stem cell procedures, which necessitates the referral to a specialty vet hospital with expertise veterinarians.

A trained veterinary physician charges high treatment cost associated with stem cell therapy for dogs. Generally, dog owners have pet insurance that typically covers maximum cost associated with steam cell therapy to treat the initial injury but for the succeeding measures in case of retreatment, the costs are not covered under the pet insurance. The stem cell therapy is thus cost-prohibitive for a large number of pet owners, which highlights a major restraint to the market growth. Stem cell therapy is still in its developmental stage and a positive growth outcome for the market cannot be confirmed yet.

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Ashish Kolte Persistence Market Research Address 305 Broadway, 7th FloorNew York City, NY 10007 United States U.S. Ph. +1-646-568-7751 USA-Canada Toll-free +1 800-961-0353 Sales[emailprotected] Website https://www.persistencemarketresearch.com

View post:
The Canine Stem Cell Therapy Market To Move Away From Insipidness, Reach US$ 218.2 Mn - PRnews Leader

Stem Cell Therapy Market Growth Analysis 2020 By Industry Top Manufacturers, Business Opportunities, Industry Growth, Size, Gross Margin, Regional…

Global Stem Cell Therapy Market Overview:

Comprehensive Stem Cell Therapy Research has recently been added by Adroit Market Research to its extensive database. In addition, the Stem Cell Therapy Market report has been aggregated by collecting informative data on various dynamics such as market factors, constraints and opportunities. In addition, this groundbreaking report uses SWOT, PESTLE and Porters Five Forces analysis to gain a deeper understanding of the Stem Cell Therapy market. In addition, the Stem Cell Therapy Market report offers an in-depth analysis of the latest industry developments and market trends affecting market growth. It is also a repository of statistical market research and market assessments for Stem Cell Therapys on a global and regional scale. The study examines the impact of various factors and constraints on the growth opportunities of the Stem Cell Therapy market over the forecast period.

Request Sample Copy of this Report @ https://www.adroitmarketresearch.com/contacts/request-sample/691?utm_source=bh

Global Stem Cell Therapy Market: Competitive Landscape

To gain a head start in a new market, every business must understand the competitive landscape and the ground rules that keep a particular market afloat. The Global Stem Cell Therapy Market Report reveals the secret ingredients competitors are using to meet the needs of their target audience. To specifically understand the need to balance invested capital with profit, organizations should use certain indicators. These indicators will not only help indicate growth, but also warn of impending threats in the near future. The right business plan and approach can guarantee a smooth path forward for every organization.

Browse Full Report with Facts and Figures of Stem Cell Therapy Market Report at @ https://www.adroitmarketresearch.com/industry-reports/stem-cell-therapy-market?utm_source=bh

If firms believe they are offering their potential clients a memorable experience, the Global Stem Cell Therapy Market report will be very helpful. Facts and figures are included in this investigation report to highlight the companys strengths and weaknesses. New technologies are being introduced daily and many new entrants have started their businesses in the market. So, to understand their approach to the market, there is a dedicated section in the Global Stem Cell Therapy Market report. From the financial to the legal aspect, the market report covers all the main points needed to study the market and implement a business plan. Not only that, the competitors added to the report can be changed according to the needs and expectations of the client. In addition, the Global Stem Cell Therapy Market report provides companies with an overview of actions that can propel businesses to emerald heights, both in terms of sales and customer acquisition, over the projected time frame (2020-2025).

Stem Cell Therapy Market Segmentation

Type Analysis of Stem Cell Therapy Market:

Based on cell source, the market has been segmented into,

Adipose Tissue-Derived Mesenchymal SCs Bone Marrow-Derived Mesenchymal SCs Embryonic SCs Other Sources

Applications Analysis of Stem Cell Therapy Market:

Based on therapeutic application, the market has been segmented into,

Musculoskeletal Disorders Wounds & Injuries Cardiovascular Diseases Gastrointestinal Diseases Immune System Diseases Other Applications

Scope of the Report:

This report provides detailed information on the Stem Cell Therapy market under close scrutiny. Research offers a look at the elements that can hinder business development. Since statistical research also refines the plan for advertising a new product, organizations have time to study the market and take appropriate action. In addition, organizations gain insight into external variables that cannot be controlled. From now on, market research helps measure elements and helps associations to clearly regulate their contribution to the business. Our group of passionate professionals analyzed the social, political and monetary components that affect the Stem Cell Therapy market. In this way, associations can adapt their organizations according to the latest models in order to benefit and create a new customer base.

Regional outlook:

The Stem Cell Therapy market has been studied in various regions of the world such as North America, Latin America, the Middle East, Asia Pacific, Africa and Europe, based on different perspectives such as type, application, market size, etc. North America tops the Market in Stem Cell Therapy Market for the Forecast Period. In addition, the Asia Pacific region is seeing impressive growth in the Stem Cell Therapy market.

Reasons to purchase this report:

It provides market dynamics scenario along with growth opportunities in the forecast period. It determines upcoming opportunities, threats and obstacles that can have an effect on the industry. This report will help in making accurate and time bound business plans keeping in mind the economic shift. To interpret the market competitive advantages of the industry as well as internal competitors. To enhance the creation long term business plans. Regional and country level analysis. Segment wise market value and volume. SWOT, PEST analysis along with the strategies adopted by major players

Some Points from Table of Content:

Chapter 1 Introduction and Overview

Chapter 2 Industry Cost Structure and Economic Impact

Chapter 3 Rising Trends and New Technologies with Major key players

Chapter 4 Global Stem Cell Therapy Market Analysis, Trends, Growth Factor

Chapter 5 Stem Cell Therapy Market Application and Business with Potential Analysis

Chapter 6 Global Stem Cell Therapy Market Segment, Type, Application

Chapter 7 Global Stem Cell Therapy Market Analysis (by Application, Type, End User)

Chapter 8 Major Key Vendors Analysis of Stem Cell Therapy Market

Chapter 9 Development Trend of Analysis

Chapter 10 Conclusion

Make an Inquiry of the Stem Cell Therapy Market Report @ https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/691?utm_source=bh

About Us :

Adroit Market Research is an India-based business analytics and consulting company incorporated in 2018. Our target audience is a wide range of corporations, manufacturing companies, product/technology development institutions and industry associations that require understanding of a markets size, key trends, participants and future outlook of an industry. We intend to become our clients knowledge partner and provide them with valuable market insights to help create opportunities that increase their revenues. We follow a code Explore, Learn and Transform. At our core, we are curious people who love to identify and understand industry patterns, create an insightful study around our findings and churn out money-making roadmaps.

Contact Us :

Ryan Johnson Account Manager Global 3131 McKinney Ave Ste 600, Dallas, TX75204, U.S.A. Phone No.: USA: +1 972-362 -8199/ +91 9665341414

See the rest here:
Stem Cell Therapy Market Growth Analysis 2020 By Industry Top Manufacturers, Business Opportunities, Industry Growth, Size, Gross Margin, Regional...

Stem Cell Media Market 2020 Industry Analysis and Trends Forecast to 2026 Thermo Fisher, CellGenix, Lonza, STEMCELL Technologies, Corning – The Think…

Methodical research based conclusions drawn in the report presented by Orbis Pharma Reports on Stem Cell Media market is designed and articulated on the basis of thorough analytical study, extensive research endeavors as well as minute detail compilation, prolonged observation that eventually result in optimal comprehension as well as systematic decoding of the Stem Cell Media market. A thorough methodical research synopsis on the aforementioned Stem Cell Media market based on Orbis Pharma Reports expert analysts suggest that this well-orchestrated documentation is an output of high end research initiatives and an amalgamation and flawless evaluation of a series of elements, events, triggers that are obtained by various tools that gradually shape the growth curve in global Stem Cell Media market.

Get PDF Sample Copy of this Report to understand the structure of the complete report: https://www.orbispharmareports.com/sample-request/46734

This dedicated, well-planned report mindfully crafted by Orbis Pharma Reports is based on various market analytical tools such as PESTEL and SWOT analysis that thoroughly instigate strength and confidence in the potential marketing strategies that reciprocate and direct the Stem Cell Media market towards optimistic growth in global Stem Cell Media market.

Major Company Profiles operating in the Stem Cell Media Market:

Thermo Fisher CellGenix Lonza STEMCELL Technologies Corning Merck Millipore PromoCell Miltenyi Biotec GE Healthcare Takara HiMedia

By the product type, the market is primarily split into:

Pluripotent Stem Cell Culture Hematopoietic Stem Cell Culture Mesenchymal Stem Cell Culture Others

By the application, this report covers the following segments:

Scientific Research Industrial Production

A thorough review of drivers, restraints and challenges have been considered in detail to derive logical conclusions concerning future growth scope in the aforementioned market has also been pinned in this section of the report presented by Orbis Pharma Reports pertaining to Stem Cell Media market.

The current status of the Stem Cell Media market is thoroughly influenced by the current pandemic crisis of COVID-19 outbreak that has hit the market adversely, whereby several prominent economies are undergoing a massive transformation after having witnessed a sharp plummeting impact on growth prognosis in the past few months.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry [emailprotected] https://www.orbispharmareports.com/enquiry-before-buying/46734

This ready-to-refer market presentation elaborating on various touchpoints about the Stem Cell Media market is accurately designed and distributed by Orbis Pharma Reports highlighting prevalent market states and conditions, all in place to suit the best interests of the readers, such that enabling them to abandon previous notions and orchestrate new business deals, based on existing market status to ensure vigorous growth in Stem Cell Media market.

As the report makes judicious advances based on aforementioned inferences about Stem Cell Media market presented by Orbis Pharma Reports, backing upon best in industry practices, it carefully unfurls ample light on elements such as current, historic, as well as future growth rendering prospects characteristic to the market growth trends limited to Stem Cell Media market.

The report presented by Orbis Pharma also involves crucial evidence based references on various market circumstances as well as protuberant segments encompassing type and applications that increase high end growth and revenue generation in the global Stem Cell Media market in the forthcoming years.

Access Complete Report @ https://www.orbispharmareports.com/covid-19-impact-on-2020-2026-global-and-regional-stem-cell-media-industry-production-sales-and-consumption-status-and-prospects-professional-market-research-report-standard-version/

About Us :

At Orbispharma we curate the most relevant news stories, features, analysis and research reports on the important challenges undertaken by the pharmaceutical and related sectors. Our editorial philosophy is to bring you sharp, focused and informed perspective of industries, the end users and application of all upcoming trends into the pharma sector. Orbispharma believes in conversations that can bring a change in one of the most crucial economic sectors in the world. With these conversations we wish our customers to make sound business decisions with right business intelligence.

Contact Us :

4144N Central Expressway, Suite 600, Dallas, Texas 75204, U.S.A. +1 (972)-362-8199 [emailprotected]

Continued here:
Stem Cell Media Market 2020 Industry Analysis and Trends Forecast to 2026 Thermo Fisher, CellGenix, Lonza, STEMCELL Technologies, Corning - The Think...