CRISPR Therapeutics Receives Grant to Advance In Vivo CRISPR/Cas9 Gene Editing Therapies for HIV – GlobeNewswire

December 14, 2020 08:00 ET | Source: CRISPR Therapeutics AG

-Funding from the Bill & Melinda Gates Foundation will support research to enable CRISPR/Cas9-based therapies for HIV that can benefit patients worldwide-

ZUG, Switzerland and CAMBRIDGE, Mass., Dec. 14, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics(Nasdaq: CRSP), a biopharmaceutical company focused on creating transformative gene-based medicines for serious diseases, today announced the receipt of a grant from the Bill & Melinda Gates Foundation to research in vivo gene editing therapies for the treatment of HIV.

While we have demonstrated the promise of CRISPR/Cas9 gene editing ex vivo in sickle cell disease and beta thalassemia, an in vivo approach to editing hematopoietic stem cells could allow the transformative benefit of CRISPR/Cas9 to reach a broader array of patients, including those in low resource settings that lack sufficient infrastructure for stem cell transplantation, said Tony Ho, M.D., Executive Vice President and Head of Research & Development at CRISPR Therapeutics. We look forward to working on new therapies that could contribute to the global effort to reduce the burden of HIV.

The grant builds upon CRISPR Therapeutics proprietary CRISPR/Cas9 gene editing technology and expertise in editing hematopoietic stem cells and contributes to efforts to accelerate transformative medicines for global health.

About CRISPR Therapeutics CRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic partnerships with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Forward-Looking Statement This press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements made by Dr. Ho in this press release, as well as regarding CRISPR Therapeutics expectations about any or all of the following: (i) the expected benefits of CRISPR Therapeutics research funded by the Bill & Melinda Gates Foundation and (ii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: uncertainties inherent in the initiation and completion of preclinical studies for CRISPR Therapeutics product candidates; availability and timing of results from preclinical studies; whether results from a preclinical trial will be favorable and predictive of future results of the future trials; uncertainties about regulatory approvals to conduct trials or to market products; that future competitive or other market factors may adversely affect the commercial potential for CRISPR Therapeutics product candidates; potential impacts due to the coronavirus pandemic, such as the timing and progress of preclinical studies; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, quarterly report on Form 10-Q, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

CRISPR THERAPEUTICS word mark and design logo are registered trademarks of CRISPR Therapeutics AG. All other trademarks and registered trademarks are the property of their respective owners.

Investor Contact: Susan Kim +1-617-307-7503 susan.kim@crisprtx.com

Media Contact: Rachel Eides WCG on behalf of CRISPR +1-617-337-4167 reides@wcgworld.com

See the original post:
CRISPR Therapeutics Receives Grant to Advance In Vivo CRISPR/Cas9 Gene Editing Therapies for HIV - GlobeNewswire

EdiGene Expands Management Team by Appointment of Head of US Subsidiary Dr. Bo Zhang and Head of Business Development Dr. Kehua Fan – Business Wire

BEIJING & CAMBRIDGE, Mass.--(BUSINESS WIRE)--EdiGene, Inc., which develops genome editing technologies to accelerate drug discovery and develop novel therapeutics for a broad range of diseases, today announced the appointment of Bo Zhang, Ph.D., as Head of the US Subsidiary, and Kehua Fan, M.D., as Head of Business Development. Both will report to Dr. Dong Wei, CEO of EdiGene.

Our company and R&D portfolio are entering into an exciting phase, as evidenced by the recent close of Series B financing and submission of the first gene editing product IND in China, said Dong Wei, Ph.D.CEO of EdiGene, Translating cutting-edge gene editing technologies into innovative solutions for patients requires deep internal R&D expertise as well as strong external partnerships. We are delighted to have Dr. Zhang and Dr. Fan join us at this significant stage of growth. Their extensive experience and proven track record in advancing innovative therapies, in addition to strong leadership skills, will help us to strengthen our portfolio and accelerate technology translation to help patients in need.

Dr. Zhang has around 20 years of experience in research and drug development in both industry and academia in the US. Prior to joining EdiGene, he was Vice President of KLUS Pharma and focused on cell therapy and new technologies. Before that, he was Director of Development at Cobalt Biomedicine leading CAR-T and other cell/gene therapy programs, and R&D Director at OvaScience developing stem cell-based products. Prior to that, he held various oncology research and development positions at Merrimack Pharmaceuticals and Archemix. Dr. Zhang completed his postdoctoral fellowship at Harvard Medical School/Boston Childrens Hospital. He received his B.S. degree from Henan Normal University, M.S. degree from Chinese Academy of Sciences and Ph.D. from University of New Hampshire.

Dr. Kehua Fan has over 15 years of Business Development, Clinical Development of innovative drugs and other healthcare industry experience with MNCs and biotech companies. Before EdiGene, she served as Head of Strategy and Partnership at Junshi Biosciences, in charge of pipeline development strategy focus on oncology, autoimmune and metabolic diseases along with external partnership. Before that, she held positions in business development, clinical development strategy and operation on various therapeutic areas at Quintiles, GSK, Sanofi and Pfizer. She started her career as a General Surgeon at Zhongshan Hospital of Chongqing. She received a masters degree in Cardiovascular Pharmacology from West China Medical Center of Sichuan University and a bachelors degree in Clinical Medicine from Soochow University.

About EdiGene, Inc EdiGene is a biotechnology company focused on leveraging the cutting-edge genome editing technologies to accelerate drug discovery and develop novel therapeutics for a broad range of genetic diseases and cancer. The company has established its proprietary ex vivo genome-editing platforms for hematopoietic stem cells and T cells, in vivo therapeutic platform based on RNA base editing, and high-throughput genome-editing screening to discover novel targeted therapies. Founded in 2015, EdiGene is headquartered in Beijing, with subsidiaries in Guangzhou, China and Cambridge, Massachusetts, USA. More information can be found at http://www.edigene.com.

See the article here:
EdiGene Expands Management Team by Appointment of Head of US Subsidiary Dr. Bo Zhang and Head of Business Development Dr. Kehua Fan - Business Wire

3D Cell Culture Market by Scaffold Format, Products, Application Areas, Purpose, and Key Geographical Regions : Industry Trends and Global Forecasts,…

December 11, 2020 08:41 ET | Source: ReportLinker

New York, Dec. 11, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "3D Cell Culture Market by Scaffold Format, Products, Application Areas, Purpose, and Key Geographical Regions : Industry Trends and Global Forecasts, 2020-2030" - https://www.reportlinker.com/p05995354/?utm_source=GNW However, over time, it has been demonstrated that such cultures are unable to accurately mimic the natural (in vivo) microenvironment. Moreover, cells cultured in monolayers are both morphologically and physiochemically different from their in vivo counterparts. This leads to differences in viability, growth rate, and function. Additionally, in adherent 2D culture systems, only 50% of the cell surface is exposed to the culture medium, which limits cell-to-cell and cell-to-medium interactions. In fact, a study reported that 95% of drugs that exhibited efficacy in 2D culture models failed in in vivo studies / human trials.

Advances in biotechnology and materials science have enabled the development of a variety of 3-dimensional (3D) cell culture models. These systems have been demonstrated to be capable of more accurately simulating the natural tissue microenvironment and, thereby, can help overcome most of the challenges associated with 2D systems. In addition, there are certain complex 3D cell culture models that are likely to soon replace animal models. In other words, 3D cell cultures are able to better simulate the natural tissue microenvironments, thereby, serving as better in vivo models for use in experimental research, including drug discovery / toxicity testing, development of regenerative medicine, tissue engineering, and stem cell research. This is anticipated to drive the adoption of such solutions in the foreseen future. Moreover, in a recent study, perfused 3D culture systems were used to emulate human bronchial tissue and airway cells, in order to study infectious respiratory diseases. Further, 3D cell cultures and organoid-based screening systems are being developed to facilitate the study of the pathogenesis of the novel coronavirus and support ongoing drug development efforts on this front. Based on the current trend of use, we are led to believe that the COVID-19 pandemic is likely to result in an increased demand for such solutions, presenting lucrative opportunities for companies engaged in this domain. In this context, the overall 3D cell culture market is anticipated to witness substantial growth in the coming years.

SCOPE OF THE REPORT The 3D Cell Culture Market by Scaffold Format (Scaffold Based and Scaffold Free System), Products (Hydrogel / Extracellular Matrix (ECM), 3D Bioreactor, 3D Petri Dish, Hanging Drop Plate, Microfluidic System, Micropatterned Surface, Microcarrier, Organ-on-Chip, Solid Scaffold, and Suspension System), Application Areas (Cancer Research, Drug Discovery and Toxicology, Stem Cell Research, Tissue Engineering and Regenerative Medicine), Purpose (Research Use and Therapeutic Use), and Key Geographical Regions (North America, Europe, Asia-Pacific, Latin America, MENA and Rest of the World): Industry Trends and Global Forecasts (3rd Edition), 2020-2030 report features an extensive study of the current landscape and the likely future potential of 3D culture systems, over the next decade. The study also features an in-depth analysis, highlighting the capabilities of various industry stakeholders engaged in this field. In addition to other elements, the study includes: An insightful assessment of the current market landscape of companies offering various 3D cell culture systems, along with information on a number of relevant parameters, such as year of establishment, size of employee base, geographical presence, 3D cell culture format (scaffold based products, scaffold free products and 3D bioreactors), and type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, microcarriers, attachment resistant surfaces, suspension systems and microfluidic systems). In addition, the chapter provides information related to the companies providing 3D culture related services, and associated reagents / consumables. A detailed assessment of the overall landscape of scaffold based products, along with information on a number of relevant parameters, such as status of development (under development, developed not commercialized, and commercialized), type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, and microcarriers), source of 3D cultured cells (natural and synthetic), method used for fabrication (human based, animal based, plant based, and polymer based), and material used for fabrication. In addition, it presents details of the companies developing scaffold based products, highlighting year of establishment, size of employee base, and geographical presence. A detailed assessment of the overall landscape of scaffold free products, along with information on a number of relevant parameters, such as status of development (under development, developed and not commercialized, and commercialized), type of product (attachment resistant surfaces, suspension systems and microfluidic systems), source of 3D cultured cells (natural and synthetic), method used for fabrication (human based, animal based, plant based and polymer based), and material used for fabrication. In addition, it presents details of the companies developing scaffold free products, highlighting their year of establishment, size of employee base, and geographical presence. A detailed assessment of the overall landscape of 3D bioreactors, along with information on a number of relevant parameters, such as type of 3D bioreactor (single-use, perfusion, fed-batch, and fixed-bed), and typical working volume. In addition, it presents details of the companies developing 3D bioreactors, highlighting year of establishment, size of employee base, and geographical presence. An insightful analysis, highlighting the applications (cancer research, drug discovery and toxicology, stem cell research, tissue engineering and regenerative medicine) for which various 3D cell culture products are being developed / used. Elaborate profiles of prominent players (shortlisted based on number of products being offered) that are engaged in the development of 3D cell culture products. Each company profile features a brief overview of the company, along with information on year of establishment, number of employees, location of headquarters and key members of the executive team, details of their respective product portfolio, recent developments, and an informed future outlook. An analysis of the investments made in the period between 2015 and 2020, including seed financing, venture capital financing, debt financing, grants / awards, capital raised from IPOs and subsequent offerings, at various stages of development in small and mid-sized companies (established after 2005; with less than 200 employees) that are engaged in the development of 3D cell culture products. An analysis of the various partnerships related to 3D cell culture products, which have been established between 2015 and 2020 (till September), based on several parameters, such as year of agreement, type of partnership (product development / commercialization agreements, product integration / utilization agreements, product licensing agreement, research and development agreements, distribution agreements, acquisitions, joint venture and other agreements), 3D cell culture format (scaffold based products, scaffold free products and 3D bioreactor), type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, microcarriers, attachment resistant surfaces, suspension systems and microfluidic systems), and most active players. It also provides the regional distribution of players involved in the collaborations. An in-depth analysis of over 8,400 patents that have been filed / granted for 3D cell culture products, between 2015 and 2020, highlighting key trends associated with these patents, across type of patent, publication year, issuing authorities involved, CPC symbols, emerging focus areas, leading patent assignees (in terms of number of patents filed / granted), patent characteristics and geography. It also includes a detailed patent valuation analysis. An in-depth discussion on the classification of 3D cell culture systems, categorized as scaffold based systems (hydrogels / ECMs, solid scaffolds, micropatterned surfaces and microcarriers), scaffold free systems (attachment resistant surfaces, suspension systems and microfluidic systems) and 3D bioreactors. An elaborate discussion on the methods used for fabrication of 3D matrices and scaffolds, highlighting the materials used, the process of fabrication, merits and demerits, and the applications of different fabrication methods. Insights from an industry-wide survey, featuring inputs solicited from various experts who are directly / indirectly involved in the development of 3D cell culture products.

One of the key objectives of the report was to understand the primary growth drivers and estimate the future size of the 3D cell culture market. Based on multiple parameters, such as business segment, price of 3D cell culture products, and likely adoption of the 3D cell culture products, we have provided informed estimates on the likely evolution of the 3D cell culture systems market in the mid to long term, for the time period 2020-2030. Our year-wise projections of the current and future opportunity have further been segmented on the basis of [A] 3D cell culture scaffold (scaffold based systems, scaffold free systems, and 3D bioreactors), [B] type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, microcarriers, attachment resistant surfaces, suspension systems, and microfluidic systems), [C] area of application (cancer research, drug discovery / toxicity testing, stem cell research, and regenerative medicine / tissue engineering), [D] purpose (research use and therapeutic use), [E] key geographical regions (North America, Europe, Asia-Pacific, Latin America, MENA (Middle East and North Africa) and RoW (Rest of the World)), and [F] leading product developers. In order to account for future uncertainties and to add robustness to our model, we have provided three forecast scenarios, namely conservative, base and optimistic scenarios, representing different tracks of the industrys growth.

The opinions and insights presented in this study were also influenced by discussions held with senior stakeholders in the industry. The report features detailed transcripts of interviews held with the following industry and non-industry players: Brigitte Angres (Co-founder, Cellendes) Bill Anderson (President and CEO, Synthecon) Anonymous (President and CEO, Anonymous) Anonymous (Co-founder and Vice President, Anonymous) Scott Brush (Vice President, BRTI Life Sciences) Malcolm Wilkinson (Managing Director, Kirkstall) Ryder Clifford (Director, QGel) and Simone Carlo Rizzi (Chief Scientific Officer, QGel) Tanya Yankelevich (Director, Xylyx Bio) Jens Kelm (Chief Scientific Officer, InSphero) Walter Tinganelli (Group Leader, GSI) Darlene Thieken (Project Manager, Nanofiber Solutions)

All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.

RESEARCH METHODOLOGY The data presented in this report has been gathered via secondary and primary research. For all our projects, we conduct interviews with experts in the area (academia, industry, medical practice and other associations) to solicit their opinions on emerging trends in the market. This is primarily useful for us to draw out our own opinion on how the market will evolve across different regions and technology segments. Where possible, the available data has been checked for accuracy from multiple sources of information.

The secondary sources of information include Annual reports Investor presentations SEC filings Industry databases News releases from company websites Government policy documents Industry analysts views

While the focus has been on forecasting the market over the coming 10 years, the report also provides our independent view on various technological and non-commercial trends emerging in the industry. This opinion is solely based on our knowledge, research and understanding of the relevant market gathered from various secondary and primary sources of information.

KEY QUESTIONS ANSWERED Who are the leading industry players engaged in the development of 3D cell culture products? What are the most popular 3D cell culture products? What are the different applications for which 3D cell culture products are currently being developed? What are the key factors that are likely to influence the evolution of this market? What is the trend of capital investments in the 3D cell culture systems market? Which partnership models are commonly adopted by stakeholders in this industry? How is the COVID-19 pandemic likely to impact the 3D cell culture systems market? How is the current and future opportunity likely to be distributed across key market segments? What are the anticipated future trends related to 3D cell culture systems market?

CHAPTER OUTLINES Chapter 2 is an executive summary of the key insights captured in our research. It offers a high-level view on the current state of 3D cell culture systems market and its likely evolution in the short to mid-term and long term. Chapter 3 provides a general introduction to 3D culture systems, covering details related to the current and future trends in the domain. The chapter highlights the different types of cell cultures, the various methods of cell culturing and their application areas. The chapter also features a comparative analysis of 2D and 3D cultures, as well as highlights the current need and advantages of 3D culture systems.

Chapter 4 provides an overview of the classification of 3D culture systems, categorized as scaffold based systems (hydrogels / ECMs, solid scaffolds, micropatterned surfaces and microcarriers), scaffold free systems (attachment resistant surfaces, suspension systems and microfluidic systems) and 3D bioreactors. It also highlights, in detail, the underlying concepts, advantages and disadvantages of the aforementioned products.

Chapter 5 presents summaries of different techniques that are commonly used for fabrication of 3D matrices and scaffolds. It further provides information on the working principle, benefits and limitations associated with each method. In addition, the chapter features key takeaways from various research studies focused on matrices fabricated using the aforementioned methods.

Chapter 6 includes information on close to 160 industry players offering various 3D cell culture products. It features detailed analyses of these companies based on year of establishment, size of employee base, geographical presence, 3D cell culture format (scaffold based products, scaffold free products and 3D bioreactors), and type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, microcarriers, attachment resistant surfaces, suspension systems and microfluidic systems). In addition, the chapter provides information the companies that offer 3D culture related services and associated reagents / consumables. It also highlights the contemporary market trends in four schematic representations, which include [A] a heat map representation illustrating the distribution of developers based on type of 3D cell culture format and company size, [B] an insightful tree map representation of the developers, distributed on the basis of type of product and company size, and [C] a world map representation highlighting the regional distribution of developer companies.

Chapter 7 includes information on close to 150 scaffold based products that are either commercialized or under development. It features detailed analyses of these products based on status of development (under development, developed and not commercialized, and commercialized, type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, and microcarriers), source of 3D cultured cells (natural and synthetic), method used for fabrication (human based, animal based, plant based, and polymer based), and material used for fabrication. The chapter also highlights the contributions of various companies developing scaffold based products, presenting a detailed analysis based on their year of establishment, size of employee base and geographical presence.

Chapter 8 includes information on more than 60 scaffold free products that are either commercialized or under development. It features detailed analyses of these products based on status of development (under development, developed not commercialized, and commercialized, type of product (attachment resistant surfaces, suspension systems, and microfluidic systems), source of 3D cultured cells (natural and synthetic), method used for fabrication (human based, animal based, plant based, and polymer based), and material used for fabrication. The chapter also highlights the contributions of various companies developing scaffold free products, presenting a detailed analysis based on their year of establishment, size of employee base and geographical presence.

Chapter 9 includes information on more than 100 3D bioreactors that are either commercialized or under development. It features detailed analyses of these products based on the type of 3D bioreactor (single-use, perfusion, fed-batch, and fixed-bed), and typical working volume. The chapter also highlights the contributions of various companies developing 3D bioreactors, presenting a detailed analysis based on their year of establishment, size of employee base and geographical presence.

Chapter 10 presents a detailed overview and analysis on the most popular application areas, which include cancer research, drug discovery and toxicity screening, stem cell research, tissue engineering and regenerative medicine) for which various 3D cell culture products are being developed / used.

Chapter 11 features elaborate profiles of prominent players that are either engaged in the development or have developed popular scaffold based products (offering at least five hydrogel / ECM products). Each company profile features a brief overview of the company along with information on year of establishment, number of employees, location of headquarters and key members of the executive team, details of their respective product portfolio, recent developments and an informed future outlook.

Chapter 12 features elaborate profiles of prominent players that are either engaged in the development or have developed popular scaffold free products (offering at least three organ-on-chip products). Each company profile features a brief overview of the company along with information on year of establishment, number of employees, location of headquarters and key members of the executive team, details of their respective product portfolio, recent developments and an informed future outlook.

Chapter 13 features elaborate profiles of prominent players that are either engaged in the development or have developed 3D bioreactors (offering at least two bioreactors). Each company profile features a brief overview of the company along with information on year of establishment, number of employees, location of headquarters and key members of the executive team, details of their respective product portfolio, recent developments and an informed future outlook.

Chapter 14 features an analysis of the investments made in the period between 2015 and 2020, including seed financing, venture capital financing, debt financing, grants / awards, capital raised from IPOs and subsequent offerings, at various stages of development in small and mid-sized companies (established after 2005; with less than 200 employees) that are engaged in the development of 3D cell culture products, highlighting the growing interest of the venture capital community and other strategic investors, in this domain.

Chapter 15 features in-depth analysis and discussion of the various partnerships inked between the players in this market, during the period, 2015 and 2020 (till September), based on several parameters, such as year of agreement, type of partnership (product development / commercialization agreements, product integration / utilization agreements, product licensing agreement, research and development agreements, distribution agreements, acquisitions, joint venture and other agreements), 3D cell culture format (scaffold based products, scaffold free products and 3D bioreactor), type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, microcarriers, attachment resistant surfaces, suspension systems and microfluidic systems), and most active players. It also provides the regional distribution of players involved in the collaborations.

Chapter 16 provides an in-depth patent analysis presenting an overview of how the industry is evolving from the R&D perspective. For this analysis, we considered over 8,400 patents that have been filed / granted for 3D cell culture products, since 2015, highlighting key trends associated with these patents, across type of patents, publication year, geographical location, type of applicants, issuing authorities involved, CPC symbols, emerging focus areas, leading players (in terms of number of patents granted / filed in the given time period), patent characteristics and geography. It also includes a detailed patent valuation analysis.

Chapter 17 presents an insightful market forecast analysis, highlighting the likely growth of 3D cell culture systems market, for the time period 2020-2030. In order to provide an informed future outlook, our projections have been segmented on the basis of [A] 3D cell culture scaffold (scaffold based systems, scaffold free systems, and 3D bioreactors), [B] type of product (hydrogels / ECMs, micropatterned surfaces, solid scaffolds, microcarriers, attachment resistant surfaces, suspension systems, and microfluidic systems), [C] area of application (cancer research, drug discovery / toxicity testing, stem cell research, and regenerative medicine / tissue engineering), [D] purpose (research use and therapeutic use), [E] key geographical regions (North America, Europe, Asia-Pacific, Latin America, MENA (Middle East and North Africa) and RoW (Rest of the World)), and [F] leading product developers.

Chapter 18 presents insights from the survey conducted for this study. We invited over 150 stakeholders involved in the development of 3D cell culture systems. The participants, who were primarily Founder / CXO / Senior Management level representatives of their respective companies, helped us develop a deeper understanding on the nature of their products / services and the associated commercial potential.

Chapter 19 summarizes the overall report, wherein we have mentioned all the key facts and figures described in the previous chapters. The chapter also highlights important evolutionary trends that were identified during the course of the study and are expected to influence the future of the 3D cell culture systems market.

Chapter 20 is a collection of transcripts of interviews conducted with various stakeholders in the industry. The chapter provides a brief overview of the companies and details of interviews held with Brigitte Angres (Co-founder, Cellendes), Bill Anderson (President and CEO, Synthecon), anonymous (President and CEO, Anonymous), anonymous (Co-founder and Vice President, Anonymous), Scott Brush (Vice President, BRTI Life Sciences), Malcolm Wilkinson (Managing Director, Kirkstall), Ryder Clifford (Director, QGel) and Simone Carlo Rizzi (Chief Scientific Officer, QGel), Tanya Yankelevich (Director, Xylyx Bio), Jens Kelm (Chief Scientific Officer, InSphero), Walter Tinganelli (Group Leader, GSI), and Darlene Thieken (Project Manager, Nanofiber Solutions) Chapter 21 is an appendix, which provides tabulated data and numbers for all the figures provided in the report.

Chapter 22 is an appendix, which contains the list of companies and organizations mentioned in the report. Read the full report: https://www.reportlinker.com/p05995354/?utm_source=GNW

About Reportlinker ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Originally posted here:
3D Cell Culture Market by Scaffold Format, Products, Application Areas, Purpose, and Key Geographical Regions : Industry Trends and Global Forecasts,...

Akari Therapeutics Reports Third Quarter 2020 Financial Results and Highlights Recent Clinical Progress – GlobeNewswire

December 11, 2020 09:00 ET | Source: Akari Therapeutics Plc

NEW YORK and LONDON, Dec. 11, 2020 (GLOBE NEWSWIRE) -- Akari Therapeutics, Plc (Nasdaq: AKTX), a late-stage biopharmaceutical company focused on innovative therapeutics to treat orphan autoimmune and inflammatory diseases where complement (C5) and/or leukotriene (LTB4) systems are implicated, today announced financial results for the third quarter ended September 30, 2020, as well as recent clinical progress.

With the imminent opening of our Phase III trial in pediatric patients with HSCT-TMA in Europe and a clear regulatory path in the U.S. and Europe for our Phase III study in patients with BP, we are now in the exciting position of progressing two Phase III programs in orphan diseases in which there are no approved treatments, said Clive Richardson, Chief Executive Officer of Akari Therapeutics.

Third Quarter 2020 and Recent Clinical Highlights

Akaris two lead programs in BP and HSCT-TMA are in Phase III development. The Company also has programs addressing lung and ophthalmology diseases.

Phase III clinical trial in patients with BP

Phase III clinical trial in pediatric patients with HSCT-TMA

Ophthalmology program

Lung program

PNH - long term data

Third Quarter 2020 Financial Results

COVID-19 Corporate Update

Akaris clinical trial sites are based in areas currently affected by the global outbreak of the COVID-19 pandemic, and public health epidemics such as this can adversely impact the Companys business as a result of disruptions, such as travel bans, quarantines, and interruptions to access the trial sites and supply chains, which could result in material delays and complications with respect to research and development programs and clinical trials. Moreover, as a result of the pandemic, there is a general unease of conducting unnecessary activities in medical centers. As a consequence, the Companys ongoing trials have been halted or disrupted. For example, the Phase I/II clinical trial in patients with AKC study has been halted and recruitment in the Phase III clinical trial in pediatric patients with HSCT-TMA has been and may continue to be delayed. It is too early to assess the full impact of the coronavirus outbreak on trials for nomacopan, but coronavirus is expected to affect Akaris ability to complete recruitment in the original timeframes. The extent to which the COVID-19 pandemic impacts operations will depend on future developments, which are highly uncertain and cannot be predicted with confidence, including the duration and continued severity of the outbreak, and the actions that may be required to contain the coronavirus or treat its impact. In particular, the continued spread of COVID-19 globally, could adversely impact the Companys operations and workforce, including research and clinical trials and the ability to raise capital, could affect the operations of key governmental agencies, such as the FDA, which may delay the development of the Companys product candidates and could result in the inability of suppliers to deliver components or raw materials on a timely basis or at all, each of which in turn could have an adverse impact on the Companys business, financial condition and results of operation.

About Akari Therapeutics

Akari is a biopharmaceutical company focused on developing inhibitors of acute and chronic inflammation, specifically for the treatment of rare and orphan diseases, in particular those where the complement (C5) or leukotriene (LTB4) systems, or both complement and leukotrienes together, play a primary role in disease progression. Akari's lead drug candidate, nomacopan (formerly known as Coversin), is a C5 complement inhibitor that also independently and specifically inhibits leukotriene B4 (LTB4) activity.

Cautionary Note Regarding Forward-Looking Statements

Certain statements in this press release constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. You should not place undue reliance upon the Companys forward looking statements. Except as required by law, the Company undertakes no obligation to revise or update any forward-looking statements in order to reflect any event or circumstance that may arise after the date of this press release. These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we have made. Although we believe that our plans, intentions, expectations, strategies and prospects as reflected in or suggested by those forward-looking statements are reasonable, we can give no assurance that the plans, intentions, expectations or strategies will be attained or achieved. Furthermore, actual results may differ materially from those described in the forward-looking statements and will be affected by a variety of risks and factors that are beyond our control. Such risks and uncertainties for our company include, but are not limited to: needs for additional capital to fund our operations, our ability to continue as a going concern; uncertainties of cash flows and inability to meet working capital needs; an inability or delay in obtaining required regulatory approvals for nomacopan and any other product candidates, which may result in unexpected cost expenditures; our ability to obtain orphan drug designation in additional indications; risks inherent in drug development in general; uncertainties in obtaining successful clinical results for nomacopan and any other product candidates and unexpected costs that may result therefrom; difficulties enrolling patients in our clinical trials; our ability to enter into collaborative, licensing, and other commercial relationships and on terms commercially reasonable to us; failure to realize any value of nomacopan and any other product candidates developed and being developed in light of inherent risks and difficulties involved in successfully bringing product candidates to market; inability to develop new product candidates and support existing product candidates; the approval by the FDA and EMA and any other similar foreign regulatory authorities of other competing or superior products brought to market; risks resulting from unforeseen side effects; risk that the market for nomacopan may not be as large as expected; risks associated with the impact of the COVID-19 pandemic; risks associated with theSECinvestigation; inability to obtain, maintain and enforce patents and other intellectual property rights or the unexpected costs associated with such enforcement or litigation; inability to obtain and maintain commercial manufacturing arrangements with third party manufacturers or establish commercial scale manufacturing capabilities; the inability to timely source adequate supply of our active pharmaceutical ingredients from third party manufacturers on whom the company depends; unexpected cost increases and pricing pressures and risks and other risk factors detailed in our public filings with theU.S. Securities and Exchange Commission, including our most recently filed Annual Report on Form 20-F filed with theSEC. Except as otherwise noted, these forward-looking statements speak only as of the date of this press release and we undertake no obligation to update or revise any of these statements to reflect events or circumstances occurring after this press release. We caution investors not to place considerable reliance on the forward-looking statements contained in this press release.

AKARI THERAPEUTICS, Plc

CONDENSED CONSOLIDATED BALANCE SHEETS As of September 30, 2020 and December 31, 2019 (in U.S. Dollars, except share data)

AKARI THERAPEUTICS, Plc

CONDENSED CONSOLIDATED STATEMENTS OF COMPREHENSIVE INCOME (LOSS) - UNAUDITED For the Three and Nine Months Ended September 30, 2020 and September 30, 2019 (in U.S. Dollars)

For more information Investor Contact:

Peter Vozzo Westwicke (443) 213-0505 peter.vozzo@westwicke.com

Media Contact:

Sukaina Virji / Lizzie Seeley Consilium Strategic Communications +44 (0)20 3709 5700 Akari@consilium-comms.com

Link:
Akari Therapeutics Reports Third Quarter 2020 Financial Results and Highlights Recent Clinical Progress - GlobeNewswire

Researchers identify the origin of a deadly brain cancer – McGill Newsroom

Finding could lead to potential therapies

Researchers at McGill University are hopeful that the identification of the origin and a specific gene needed for tumour growth could lead to new therapeutics to treat a deadly brain cancer that arises in teens and young adults. The discovery relates to a subgroup of glioblastoma, a rare but aggressive form of cancer that typically proves fatal within three years of onset. The findings are published in the latest issue of the journalCell.

To complete their study, the research team, led by McGills Dr. Nada Jabado, Professor of Pediatrics and Human Genetics and Dr. Claudia Kleinman, Assistant Professor of Human Genetics, assembled the largest collection of samples for this subgroup of glioblastoma and discovered new cancer-causing mutations in a gene called PDGFRA, which drives cell division and growth when it is activated.

The researchers noted that close to half of the patients at diagnosis and the vast majority at tumour recurrence had mutations in this gene, which was also unusually highly expressed in this subgroup of glioblastoma. We investigated large public datasets of both children and adult patients in addition to those we had generated from patients samples in the lab and came to the same conclusion, PDGFRA was unduly activated in these tumours. This led us to suspect this kinase plays a major role in tumour formation explains Dr Carol Chen, a postdoctoral fellow, and Shriya Deshmukh an MD-PhD candidate in the Jabado lab and the studys co-first authors.

Employing a big data resource generated by their team using new technologies that measure the levels of every gene in thousands of individual cells, they were able to discover that this brain tumour originates in a specific type of neuronal stem cell. We used single cell analyses to create an atlas of the healthy developing brain, identifying hundreds of cell types and their traits, explains Selin Jessa, a PhD student in the Kleinman lab and co-first author on this study. Since these brain tumours retain a memory, or footprint, of the cell in which they originated, we could then pinpoint the most similar cell type for these tumours in the atlas, in this case, inhibitory neuronal progenitors that arise during fetal development or after birth in specific structures of the developing brain, adds Dr. Kleinman who leads a computational research lab at the Lady Davis Institute at the Jewish General Hospital.

An unexpected finding

The researchers note that the PDGFRA gene is not usually turned on in this neuronal stem cell population. By using sequencing technologies that measure how a cells DNA is spatially organized in 3D, notes Djihad Hadjadj, a postdoctoral fellow in the Jabado lab and the studys co-first author, We found that, exquisitely in this neuronal stem cell, the DNA has a unique structure in the 3D dimension that allows the PDGFRA gene to become activated where it shouldnt be, ultimately leading to cancer.

The finding is also important in properly classifying the tumour. Previously, this tumour type was classified as a glioma, because under the microscope, it resembles glial cells, one of the major cell types in the brain, says Dr. Jabado, who holds a CRC Tier 1 in Pediatric Oncology in addition to being a clinician scientist at the Montreal Childrens Hospital and leading a research lab focused on studying brain tumours at the Research Institute of the McGill University Health Centre. Our work reveals that this is a case of mistaken identity. These tumours actually arise in a neuronal cell, not a glial cell.

A hope for potential treatment

PDGFRA is targetable by drugs that inhibit its activity, and there are, in fact already approved drugs that target it for other cancers for which mutations in this gene are responsible, such as gastrointestinal stromal tumours. This offers hope for work into finding targeted therapies for this group of deadly brain tumours, note the researchers.

The combined studies of the genome, including at the single cell level and the genomic architecture in 3D of the tumour compared to the normal developing brain, were crucial in this study. They helped identify the specific timepoints during development where the cell is vulnerable to the cancer-driver event in these gliomas, which were revealed to be neuronal tumours. Importantly, the authors unravel genetic events that could lead to targeted therapy in a deadly cancer. Our findings provide hope for improved care in the near future for this tumour entity as these exquisite vulnerabilities may pinpoint to treatments that would preferentially attack the bad cells, say Drs. Jabado and Kleinman, who have joined efforts in the fight against deadly brain tumour. Stalled development is at the root of many of these cancers. The same strategy will prove important to unravel the origin, identify and exploit specific vulnerabilities, and orient future strategies for earlier detection in other brain tumour entities affecting children and young adults.

This study was made possible in large part thanks to support from the Genome Canada LSARP project Tackling Childhood Brain Cancer at the root to improve survival and quality of life, which includes funding from Genome Canada, Genome Quebec, CIHR and other sources, as well as the Fondation Charles-Bruneau and the National Institutes of Health.

Histone H3.3G34-Mutant Interneuron Progenitors Co-optPDGFRAfor Gliomagenesis, by C. Chen, S. Deshmukh, S. Jessa, D. Hadjadj, C. Kleinman, N. Jabado, et al, was published in the journalCellon December 10, 2020. DOI:https://doi.org/10.1016/j.cell.2020.11.012

Read more here:
Researchers identify the origin of a deadly brain cancer - McGill Newsroom

Cancer Stem Cell Therapy Market Revenue, Global Forecast, Cost, Key Participants and Emerging Trends and Key Players-AVIVA BioSciences , AdnaGen – The…

Summary of the Cancer Stem Cell Therapy Market Report

Rise in R&D activities across the globe, increase in demand and growth across several application areas are some of the factors boosting the growth of the market.

Key Companies

AVIVA BioSciences AdnaGen Advanced Cell Diagnostics Silicon Biosystems

Cancer Stem Cell Therapy Market by Type

Autologous Stem Cell Transplants Allogeneic Stem Cell Transplants Syngeneic Stem Cell Transplants Others

Cancer Stem Cell Therapy Market by Application

Hospital Clinic Medical Research Institution

The major regional market covered under the scope of the study are APAC, North America, Europe, South & Central America, Africa and the Middle East. Singapore, Russia, Mexico, South America, Canada, France, the U.S., Germany, Africa, Italy, the United Kingdom, India, China, the Middle East, Central America, Japan, South America, Taiwan, and South Korea among others.

To know more about the report, visit @https://decisivemarketsinsights.com/cancer-stem-cell-therapy-market/58996063/request-sample

Cancer Stem Cell Therapy Market Overview, Key Trends Market Dynamics

Growth across various application areas and major geographies, growing R&D activities and rising demand are some of the key factors currently driving this market. The market would witness significant growth throughout the forecast period. Other factors are increasing the rate of adoption and improving the product that drives the demand at a fast pace. At present, i.e. 2020, the effect of COVID -19 can be seen; however, the market will soon recover in the coming years probably by 2021.

Regional Coverage of Global Cancer Stem Cell Therapy Market

Mexico, Canada, and the United States are the major countries covered under North America Italy, UK, Germany, Italy, UK, France, UK, Russia are covered under Europe Taiwan, India, China, South Korea, Singapore, Japan, and Others are covered under Asia Pacific Rest of the World (RoW) covers Africa, South America & Central America and the Middle East COVID -19 Impact Analysis

The report also offers a detailed insight of COVID -19 impact analysis:

Before COVID -19 Present Scenario Post recovery of COVID -19

Inquire Before Purchasing the report, visit @https://decisivemarketsinsights.com/cancer-stem-cell-therapy-market/58996063/pre-order-enquiry

Table of Content

Customization can be availed on Request:

Chapter 1: Introduction and Scope Chapter 2: Key Company Profiles Chapter 3: Remarks, Share and Forecast across type, application and geography Chapter 4: Market Remarks of Asia Pacific region Chapter 5: Market Remarks of Europe region Chapter 6: Market Remarks of Asia Pacific region Chapter 7: Market Remarks of North America region Chapter 8: Market Remarks of Middle East and Africa region Chapter 9: Key Important features of the market Chapter 10: Key trends of the market and the market Opportunities Chapter 11: Strategies to be adopted by the key players

Continued.

Key Pointers of the Report

For each and every segment and its sub-segment, market share and growth rate are given Estimation and forecast provided from 2020 to 2027 Data triangulation method has been followed to conclude the market The study also includes the strategies to be followed by the major players COVID -19 impact analysis was also covered under the framework of impact analysis

Supplementary Pointers of the Report:

Stated below are some of the added key points of the report:

SWOT Analysis Porters Five Analysis Value Chain Analysis Market Attractiveness Analysis PEST Analysis

To Inquire about the Discount available with the report, visit @https://decisivemarketsinsights.com/cancer-stem-cell-therapy-market/58996063/request-discount

Note: Year End Discount If you purchase the report this year Flat 15% instant discount 20% discount on 2nd report 1 Year consultation and 10 % free customization

Kindly contact us and our expert will get back to you within 30 minutes: Decisive Markets Insights Sunil Kumar Sales Head Email sales@decisivemarketsinsights.com US +18317045538 UK +44125663604

Follow this link:
Cancer Stem Cell Therapy Market Revenue, Global Forecast, Cost, Key Participants and Emerging Trends and Key Players-AVIVA BioSciences , AdnaGen - The...

Stem Cell therapist to visit Jefferson salon for special event – Marshall News Messenger

JEFFERSON Guests to Salon Rouge Spa in Jefferson next Friday will have a chance to consult with stem cell therapist Gail McBride and her team of doctors and specialists, Salon owner Brooke Bradley-LaFleur said Friday.

One of my employees heard her ad on the radio and has been having shoulder pain, LaFleur said. She looked into and realized that Gail was planning to have knee surgery after suffering knee pain for years but instead she had the stem cell injection and was able to avoid surgery. Gail brought me pictures of her x-rays before and after the stem cell injection and you could clearly see a huge difference. It was amazing.

LaFleur said after talking with McBride, who owns Longview Regeneration and Wellness Center, that Jeffersonians would enjoy a chance to learn about possible alternatives to surgery for issues like joint pain and skin rejuvenation through stem cell therapy.

What I really love is helping people avoid having to have surgery, LaFleur said. Gail and her team of specialists and doctors will come down and offer consultations and then decide how to proceed. Stem cell therapy can also be used for anti-aging against wrinkles. Some people need just one injection and others need more, depending on the location and severity of the issue they are treating.

The event with McBride at Salon Rouge is set for 5 to 7 p.m. on Friday.

LaFleur said masks will be worn and social distancing will be enforced to make sure guests remain safe during the event.

Refreshments will be served and gift certificates will be awarded during the event.

The rest is here:
Stem Cell therapist to visit Jefferson salon for special event - Marshall News Messenger

Stem Cell Exosomes Market: Increasing advanced applications of exosomes is expected to drive the market – BioSpace

Stem Cell Exosomes Market: Overview

Exosomes possesses the potential to be a carrier for drug delivery owing to their transportation properties. The stem cell exosomes have other properties of high biocompatibility and intrinsic long-term circulation, which are ideal for proteins, nucleic acids, and chemicals. Additionally, new researches showed results of exosomes possessing properties of mediators in intercellular communication and mRNA transcripts, delivering proteins, and many others. They have properties, which make them biocompatible and useful to become agents to provide treatment for various disorders.

The rapidly increasing interest for advanced material to provide disease-based treatment in case of emergency is inducing more research and funding to explore stem cell exosomes. This is a key factor driving growth of the stem cell exosomes market from past few years and is estimated to be the same for next few years as well.

Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=80394

Stem Cell Exosomes Market: Notable Development

The stem cell exosomes market is identified as highly competitive without dominant players owing to many players operating in the market. Some of the key players in the market include Anjarium Biosciences, Codiak Biosciences, Capricor Therapeutics, Creative Medical Technology Holdings, Evox Therapeutics, Everkine Corporation, Exogenus Therapeutics, ReNeuron, Kimera Labs, and Unicyte AG.

The market is witnessing lucrative investments for adoption of newer and improving technologies. Such investments are on grounds of few acquisitions and mergers, tie ups, and to cater to global population.

Request for Analysis of COVID-19 Impact on Stem Cell Exosomes Market - https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=80394

Some of few developments observed in the market:

Pre Book Stem Cell Exosomes Market Report at https://www.transparencymarketresearch.com/checkout.php?rep_id=80394&ltype=S

Stem Cell Exosomes Market: Growth Factors

The factors impacting on growth of the market include increasing prevalence of cancer and advent of technological advancements in exosomes and its applications. Additionally, increasing advanced applications of exosomes coupled with increasing awareness about presence of improved medical techniques are propelling growth of the global stem cell exosomes market. The 2012 reports by World Health Organization (WHO), the number of patients is expected to increase by 70% in next two decade. Increase in patients may lead to increase in fatality due to cancer, which increase attention toward advanced medications. This factor is likely to boost demand for the exosomes in diagnosis and therapeutics.

However, number of technical difficulties are limiting its adoption globally and hindering growth of the global stem cell exosomes market. The other factors restraining market growth are stringent regulatory frameworks and commercialization of exosomes. Nonetheless, the factors such as increase in research coupled with funding for researches are estimated to open doors of opportunities for growth in coming future.

Read more information here:

https://www.transparencymarketresearch.com/stem-cell-exosomes-market.html

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.

Contact

Mr. Rohit Bhisey Transparency Market Research

State Tower,

90 State Street,

Suite 700,

Albany NY - 12207

United States

USA - Canada Toll Free: 866-552-3453

Email: sales@transparencymarketresearch.com

Website: https://www.transparencymarketresearch.com/

Here is the original post:
Stem Cell Exosomes Market: Increasing advanced applications of exosomes is expected to drive the market - BioSpace

3 Stocks That Are Giving Their Investors Coal in Their Stockings – The Motley Fool

No CEO should be evaluated on their company's stock performance in a single year. Strategies often take several years to play out. When a company's fortunes depend on drug development, the timeline can be even longer. That's why no investor should take it too hard that Galapagos NV (NASDAQ:GLPG), Sage Therapeutics (NASDAQ:SAGE), and bluebird bio (NASDAQ:BLUE) have had a rough year.

The stocks could have wildly different outcomes in 2021, although recent developments make it seem like they are as likely to stage a comeback as they are to throw in the towel. During the holiday season, parents often tell misbehaving kids that Santa won't bring them what they want for Christmas. With share prices down dramatically from all-time highs, let's find out why shareholders of these three biotechs are getting coal in their stockings this year.

Image source: Getty Images.

If you asked investors in July 2019, they probably would have been surprised to see Galapagos on a list like this one. Spirits were high at that time, as Gilead Sciences (NASDAQ:GILD) had just made a $5.1 billion investment in Galapagos for its research pipeline including filgotinib, the company's arthritis drug now marketed as Jyseleca. Although the drug was approved in Europe and Japan, the U.S. Food and Drug Administrationrejected it due to toxicity concerns and doubts about the risk/benefit profile at dosage levels in the study.

The FDA's action will push approval out at least a year -- that is -- if Gilead wants to keep up the effort. Even if the drug were to make it through the regulatory gauntlet, it would face stiff competition from AbbVie's (NYSE:ABBV) Rinvoq, which gained approval in 2019. Galapagos has run more tests to allay the concerns, and if successful, Gilead could refile for approval next year. But today's investors don't seem confident. Shares in Galapagos are down 42% this year.

Zuranolone, Sage's drug that helps treat depression, failed a phase 3 trial in 2017. That was strike one. Last December, shares fell nearly 60% in a day after the drug once again failed a clinical trial. That was strike two. At one point in 2020, shares of Sage were down 86% from their 2019 highs. Clearly not quitters, management restructured to conserve cash, and launched three new phase 3 studies of the drug as a treatment for major depressive disorder and postpartum depression. Then, a funny thing happened on the way to the results expected next year.

In November, Biogen (NASDAQ:BIIB) injected $1.5 billion into the company to jointly develop and commercialize zuranolone. Shares sold off on the news but still sit about where they began 2020. The stock is up 160% since the beginning of April. For its money, Biogen earns 50% of profits in the U.S., and shoulders the costs in most non-U.S. markets while paying royalties to Sage from any sales. While one analyst applauded Biogen for "getting the milk without having [to] buy the whole cow," Sage shareholders are on the other end of that colorful analogy. Three years after the first failure of zuranolone, the best shareholders can now hope for is to share any windfall with Biogen.

Bluebird bio is trying to cure sickle cell disease and beta thalassemia through gene therapy. Despite the company's LentiGlobin product showing promise in clinical trials, bluebird's stock is down 50% in 2020 and more than 80% from all-time highs in 2018. The therapy candidate is essentially a stem cell transplant that takes a functioning gene, inserts it into the patient's harvested stem cells, and then reinserts those stem cells into the body.

After receiving approval in Europe, as well as both fast-track and breakthrough designation from the FDA, progress has been slow due to pricing negotiations, COVID-19 constraints, and an FDA request for the company to prove it can scale up from clinical trials. Bluebird also ran afoul of the FDA in May for the same issue, when the agency refused to review the application for ide-cel -- a CAR-T therapy for multiple myeloma being developed with Bristol Myers Squibb (NYSE:BMY). Although bluebird still plans to file for approval of LentiGlobin in mid-2021, the delays are costing the company its head start in the race for a cure. CRISPR Therapeutics (NASDAQ:CRSP) and partner Vertex Pharmaceuticals(NASDAQ:VRTX) have received advanced therapy designation for their cure using gene editing to target the same diseases. If CRISPR and Vertex get there first, shareholders might as well forget next Christmas too.

Read the rest here:
3 Stocks That Are Giving Their Investors Coal in Their Stockings - The Motley Fool

Exploiting the diphtheria toxin internalization receptor enhances delivery of proteins to lysosomes for enzyme replacement therapy – Science Advances

Abstract

Enzyme replacement therapy, in which a functional copy of an enzyme is injected either systemically or directly into the brain of affected individuals, has proven to be an effective strategy for treating certain lysosomal storage diseases. The inefficient uptake of recombinant enzymes via the mannose-6-phosphate receptor, however, prohibits the broad utility of replacement therapy. Here, to improve the efficiency and efficacy of lysosomal enzyme uptake, we exploited the strategy used by diphtheria toxin to enter into the endolysosomal network of cells by creating a chimera between the receptor-binding fragment of diphtheria toxin and the lysosomal hydrolase TPP1. We show that chimeric TPP1 binds with high affinity to target cells and is efficiently delivered into lysosomes. Further, we show superior uptake of chimeric TPP1 over TPP1 alone in brain tissue following intracerebroventricular injection in mice lacking TPP1, demonstrating the potential of this strategy for enhancing lysosomal storage disease therapy.

Lysosomal storage diseases (LSDs) are a group of more than 70 inherited childhood diseases characterized by an accumulation of cellular metabolites arising from deficiencies in a specific protein, typically a lysosomal hydrolase. Although each individual disease is considered rare, LSDs have a combined incidence of between 1/5000 and 1/8000 live births, and together, they account for a substantial proportion of the neurodegenerative diseases in children (1). The particular age of onset for a given LSD varies depending on the affected protein and the percentage of enzymatic activity still present; however, in most cases, symptoms manifest early in life and progress insidiously, affecting multiple tissues and organs (2). In all but the mildest of cases, disease progression results in severe physical disability, possible intellectual disability, and a shortened life expectancy, with death occurring in late childhood or early adolescence.

As they are monogenic diseases, reintroducing a functional form of the defective enzyme into lysosomes is in principle a viable strategy for treating LSDs. Enzyme replacement therapy (ERT) is now approved for the treatment of seven LSDs, and clinical trials are ongoing for five others (3). However, delivering curative doses of recombinant lysosomal enzymes into lysosomes remains a major challenge in practice. ERT typically takes advantage of a specific N-glycan posttranslational modification, mannose-6-phosphorylation (M6P), which controls trafficking of endogenous lysosomal enzymes, as well as exogenous uptake of lysosomal enzymes from circulation by cells having the cation-independent M6P receptor (CIMPR) (4). Hence, a combination of factors including (i) the abundance of the M6P receptor in the liver, (ii) poor levels of CIMPR expression in several key target tissue types such as bone and skeletal muscle, (iii) incomplete and unpredictable M6P labeling of recombinant enzymes, and (iv) the highly variable affinity of recombinant lysosomal enzymes for CIMPR [viz., Kds (dissociation constants) ranging from low to mid micromolar (5, 6)] all contribute to diminishing the overall effectiveness of therapies using CIMPR for cell entry (3).

To improve the delivery of therapeutic lysosomal enzymes, we drew inspiration from bacterial toxins, which, as part of their mechanism, hijack specific host cellsurface receptors to gain entry into the endolysosomal pathway. While we and others have explored exploiting this pathway to deliver cargo into the cytosol (7, 8), here we asked whether this same approach could be used to enhance the delivery of lysosomal enzymes into lysosomes. We choose the diphtheria toxin (DT)diphtheria toxin receptor (DTR) system owing to the ubiquitous nature of the DTR, in particular its high expression levels on neurons.

Corynebacterium diphtheriae secretes DT exotoxin, which is spread to distant organs by the circulatory system, where it affects the lungs, heart, liver, kidneys, and the nervous system (9). It is estimated that 75% of individuals with acute disease also develop some form of peripheral or cranial neuropathy. This multiorgan targeting results from the fact that the DTR, heparin-binding EGF (epidermal growth factor)like growth factor (HBEGF), is ubiquitously expressed. The extent to which DT specifically targets difficult-to-access tissues such as muscle and bone, however, is not currently known.

DT is a three-domain protein that consists of an N-terminal ADP (adenosine diphosphate)ribosyl transferase enzyme (DTC), a central translocation domain (DTT), and a C-terminal receptorbinding domain (DTR). The latter is responsible for both binding cell surface HBEGF with high affinity [viz., Kd = 27 nM (10)] and triggering endocytosis into early endosomes (Fig. 1A). Within endosomes, DTT forms membrane-spanning pores that serve as conduits for DTC to enter the cytosol where it inactivates the host protein synthesis machinery. The remaining portions of the toxin remain in the endosomes and continue to lysosomes where they are degraded (11, 12). We hypothesized that the receptor-binding domain, lacking any means to escape endosomes, would proceed with any attached cargo to lysosomes and, thus, serve as a means to deliver cargo specifically into lysosomes following high-affinity binding to HBEGF.

(A) DT intoxication pathway (left), DT domain architecture, and LTM structure (right). (B and C) DTK51E/E148K, LTM, mCherry-LTM, and LTM-mCherry compete with wild-type DT for binding and inhibit its activity in a dose-dependent manner with IC50 (median inhibitory concentration) values of 46.9, 10.1, 52.7, and 76.1 nM, respectively (means SD; n = 3). (D and E) C-terminal and N-terminal fusions of LTM to mCherry were immunostained (red) and observed to colocalize with the lysosomal marker LAMP1 (39). (F) Fractional co-occurrence of the red channel with the green channel (Manders coefficient M2) were calculated for mCherry-LTM and LTM-mCherry and were found to be 0.61 0.10 and 0.52 0.11, respectively (means SD; n = 6).

In this study, we generated a series of chimeric proteins containing the DTR-binding domain, DTR, with the goal of demonstrating the feasibility of delivering therapeutic enzymes into lysosomes through the DT-HBEGF internalization pathway. We showed that DTR serves as a highly effective and versatile lysosome-targeting moiety (LTM). It can be placed at either the N or C terminus of the cargo, where it retains its high-affinity binding to HBEGF and the ability to promote trafficking into lysosomes both in vitro and in vivo. On the basis of its advantages, over M6P-mediated mechanisms, we further investigated the utility of LTM for the lysosomal delivery of human tripeptidyl peptidase-1 (TPP1) with the long-term goal of treating Batten disease.

To evaluate whether the DTR-binding fragment could function autonomously to traffic cargo into lysosomes, we first asked whether the isolated 17-kDa DTR fragment could be expressed independently from DT holotoxin and retain its affinity for HBEGF. We cloned, expressed, and purified the receptor-binding fragment and evaluated its ability to compete with full-length DT for the DTR, HBEGF. Before treating cells with a fixed dose of wild-type DT that completely inhibits protein synthesis, cells were incubated with a range of concentrations of LTM or a full-length, nontoxic mutant of DT (DTK51E/E148K). LTM-mediated inhibition of wild-type DT-mediated toxicity was equivalent to nontoxic DT (Fig. 1B), demonstrating that the receptor-binding fragment can be isolated from the holotoxin without affecting its ability to fold and bind cell surface HBEGF. Next, we evaluated whether LTM had a positional bias (i.e., was able to bind HBEGF with a fusion partner when positioned at either terminus). To this end, we generated N- and C-terminal fusions of LTM to the model fluorescent protein mCherry (i.e., mCherry-LTM and LTM-mCherry). To determine binding of each chimera to HBEGF, we quantified the ability of each chimera to compete with wild-type DT on cells in the intoxication assay. Both constructs competed with wild-type DT to the same extent as LTM alone and DTK51E/E148K (Fig. 1C), demonstrating that LTM is versatile and autonomously folds in different contexts.

To evaluate intracellular trafficking, HeLa cells were treated with either LTM-mCherry or mCherry-LTM and then fixed and stained 4 hours later with an antibody against the lysosomal marker LAMP1. In both cases, we observed significant uptake of the fusion protein (Fig. 1, D and E). We calculated Manders coefficients (M2) to quantify the extent to which signal in the red channel (LTM-mCherry and mCherry-LTM) was localizing with signal in the green channel (LAMP1). The fraction of red/green co-occurrence was calculated to be 0.61 for mCherry-LTM and 0.52 for LTM-mCherry, indicating trafficking to the lysosomal compartments of the cells and no significant difference (P = 0.196) between the two orientations of chimera (Fig. 1F). Together, these results confirm that the LTM is capable of binding HBEGF and trafficking associated cargo into cells and that the LTM can function in this manner at either terminus of a fusion construct.

With minimal positional bias observed in the mCherry fusion proteins, we next screened LTM fusions to TPP1 to identify a design that maximizes expression, stability, activity, and, ultimately, delivery. TPP1 is a 60-kDa lysosomal serine peptidase encoded by the CLN2 gene, implicated in neuronal ceroid lipofuscinosis type 2 or Batten disease. Loss of function results in the accumulation of lipofuscin, a proteinaceous, autofluorescent storage material (13). Exposure to the low-pH environment of the lysosome triggers autoproteolytic activation of TPP1 and release of a 20-kDa propeptide that occludes its active site. From a design perspective, we favored an orientation in which the LTM was N terminal to TPP1, as autoprocessing of TPP1 would result in the release of the upstream LTM-TPP1 propeptide, liberating active, mature TPP1 enzyme in the lysosome (Fig. 2A). Given the need for mammalian expression of lysosomal enzymes, we generated synthetic genetic fusions of the LTM to TPP1, in which we converted the codons from bacterially derived DT into the corresponding mammalian codons. Human embryonic kidney (HEK) 293F suspension cells stably expressing recombinant TPP1 (rTPP1) and TPP1 with an N-terminal LTM fusion (LTM-TPP1) were generated using the piggyBac transposon system (14). A C-terminal construct (TPP1-LTM) was also produced; however, expression of this chimera was poor in comparison with rTPP1 and LTM-TPP1 (~0.4 mg/liter, cf. 10 to 15 mg/liter).

(A) Design of LTM-TPP1 fusion protein and delivery schematic. (B) Enzyme kinetics of rTPP1 and LTM-TPP1 against the synthetic substrate AAF-AMC are indistinguishable. Michaelis-Menten plots were generated by varying [AAF-AMC] at a constant concentration of 10 nM enzyme (means SD; n = 3). Plots and kinetic parameters were calculated with GraphPad Prism 7.04. (C) Maturation of TPP1 is unaffected by the N-terminal fusion of LTM. (D) LTM-TPP1 inhibits wild-type DT activity in a dose-dependent manner (IC50 of 17.2 nM), while rTPP1 has no effect on protein synthesis inhibition by DT (means SD; n = 3). (E) LTM and DTR-TPP1 bind HBEGF with apparent Kds of 13.3 and 19.1 nM, respectively. (F) LTM-TPP1 (39) colocalizes with LAMP1 staining (red).

The activity of rTPP1 and LTM-TPP1 against the tripeptide substrate Ala-Ala-Phe-AMC (AAF-AMC) was assessed to determine any effects of the LTM on TPP1 activity. The enzyme activities of rTPP1 and LTM-TPP1 were determined to be equivalent, as evidenced through measurements of their catalytic efficiency (Fig. 2B), demonstrating that there is no inference by LTM on the peptidase activity of TPP1. Maturation of LTM-TPP1 through autocatalytic cleavage of the N-terminal propeptide was analyzed by SDSpolyacrylamide gel electrophoresis (PAGE) (Fig. 2C). Complete processing of the zymogen at pH 3.5 and 37C occurred between 5 and 10 min, which is consistent with what has been observed for the native recombinant enzyme (15).

The ability of LTM-TPP1 to compete with DT for binding to extracellular HBEGF was first assessed with the protein synthesis competition assay. Similar to LTM, mCherry-LTM, and LTM-mCherry, LTM-TPP1 prevents protein synthesis inhibition by 10 pM DT with an IC50 (median inhibitory concentration) of 17.2 nM (Fig. 2D). As expected, rTPP1 alone was unable to inhibit DT-mediated entry and cytotoxicity. To further characterize this interaction, we measured the interaction between LTM and LTM-TPP1 and recombinant HBEGF using surface plasmon resonance (SPR) binding analysis (Fig. 2E). By SPR, LTM and LTM-TPP1 were calculated to have apparent Kds of 13.3 and 19.1 nM, respectively, values closely corresponding to the IC50 values obtained from the competition experiments (10.1 and 17.2 nM, respectively). Consistent with these results, LTM-TPP1 colocalizes with LAMP1 by immunofluorescence (Fig. 2F).

To study uptake of chimeric fusion proteins in cell culture, we generated a cell line deficient in TPP1 activity. A CRISPR RNA (crRNA) was designed to target the signal peptide region of TPP1 in exon 2 of CLN2. Human HeLa Kyoto cells were reverse transfected with a Cas9 ribonucleoprotein complex and then seeded at low density into a 10-cm dish. Single cells were expanded to colonies, which were picked and screened for TPP1 activity. A single clone deficient in TPP1 activity was isolated and expanded, which was determined to have ~4% TPP1 activity relative to wild-type HeLa Kyoto cells plated at the same density (Fig. 3A). The small residual activity observed is likely the result of another cellular enzyme processing the AAFAMC (7-amido-4-methlycoumarin) substrate used in this assay, as there is no apparent TPP1 protein being produced (Fig. 3B). Sanger sequencing of the individual alleles confirmed complete disruption of the CLN2 gene (fig. S1). In total, three unique mutations were identified within exon 2 of CLN2: a single base insertion resulting in a frameshift mutation and two deletions of 24 and 33 base pairs (bp), respectively.

(A) CLN2 knockout cells exhibit ~4% TPP1 activity relative to wild-type HeLa Kyoto cells (means SD; n = 3). (B) Western blotting against TPP1 reveals no detectable protein in the knockout cells. (C) (Left) In vitro maturation of pro-rTPP1 and LTM-TPP1 (16 ng) was analyzed by Western blot. (Right) TPP1 present in wild-type (WT) and TPP1/ cells, and TPP1/ cells treated with 100 nM rTPP1 and LTM-TPP1. (D) Uptake of rTPP1 and LTM-TPP1 into HeLa Kyoto TPP1/ cells was monitored by TPP1 activity (means SD; n = 4). (E) TPP1 activity present in HeLa Kyoto TPP1/ cells following a single treatment with 50 nM LTM-TPP1 (means SD; n = 3).

Next, we compared the delivery and activation of rTPP1 and LTM-TPP1 into lysosomes by treating TPP1/ cells with a fixed concentration of the enzymes (100 nM) and by analyzing entry and processing by Western blot (Fig. 3C). In both cases, most enzymes were present in the mature form, indicating successful delivery to the lysosome; however, the uptake of LTM-TPP1 greatly exceeded the uptake of rTPP1. As both rTPP1 and LTM-TPP1 receive the same M6P posttranslational modifications promoting their uptake by CIMPR, differences in their respective uptake should be directly attributable to uptake by HBEGF. To quantify the difference in uptake and lysosomal delivery, cells were treated overnight with varying amounts of each enzyme, washed, lysed, and assayed for TPP1 activity. The activity assays were performed without a preactivation step, so signal represents protein that has been activated in the lysosome. For both constructs, we observed a dose-dependent increase in delivery of TPP1 to the lysosome (Fig. 3D). Delivery of LTM-TPP1 was significantly enhanced compared with TPP1 alone at all doses, further demonstrating that uptake by HBEGF is more efficient than that by CIMPR alone. TPP1 activity in cells treated with LTM-TPP1 was consistently ~10 greater than that of cells treated with rTPP1, with the relative difference increasing at the highest concentrations tested. This may speak to differences in abundance, replenishment, and/or recycling of HBEGF versus CIMPR, in addition to differences in receptor-ligand affinity. Uptake of LTM-TPP1 and rTPP1 into several other cell types yielded similar results (fig. S2). To assess the lifetime of the delivered enzyme, cells were treated with LTM-TPP1 (50 nM) and incubated overnight. Cells were washed and incubated with fresh media, and TPP1 activity was assayed over the course of several days. Cells treated with LTM-TPP1 still retained measurable TPP1 activity at 1 week after treatment (Fig. 3E).

While the DT competition experiment demonstrated that HBEGF is involved in the uptake of LTM-TPP1 but not rTPP1 (Fig. 2D), it does not account for the contribution of CIMPR to uptake. Endoglycosidase H (EndoH) cleaves between the core N-acetylglucosamine residues of high-mannose N-linked glycans, leaving behind only the asparagine-linked N-acetylglucosamine moiety. Both rTPP1 and LTM-TPP1 were treated with EndoH to remove any M6P moieties, and delivery into Hela TPP1/ was subsequently assessed. While rTPP1 uptake is completely abrogated by treatment with EndoH, LTM-TPP1 uptake is only partially decreased (Fig. 4), indicating that while HBEGF-mediated endocytosis is the principal means by which LTM-TPP1 is taken up into cells, uptake via CIMPR still occurs. The fact that CIMPR uptake is still possible in the LTM-TPP1 fusion means that the fusion is targeted to two receptors simultaneously, increasing its total uptake and, potentially, its biodistribution.

Uptake of LTM-TPP1 via the combination of HBEGF and CIMPR was shown to be 3 to 20 more efficient than CIMPR alone in cellulo (fig. S2). To interrogate this effect in vivo, TPP1-deficient mice (TPP1tm1pLob or TPP1/) were obtained as a gift from P. Lobel at Rutgers University. Targeted disruption of the CLN2 gene was achieved by insertion of a neo cassette into intron 11 in combination with a point mutation (R446H), rendering these mice TPP1 null by both Western blot and enzyme activity assay (16). Prior studies have demonstrated that direct administration of rTPP1 into the cerebrospinal fluid (CSF) via intracerebroventricular or intrathecal injection results in amelioration of disease phenotype (17) and even extension of life span in the disease mouse (18). To compare the uptake of LTM-TPP1 and rTPP1 in vivo, the enzymes were injected into the left ventricle of 6-week-old TPP1/ mice. Mice were euthanized 24 hours after injection, and brain homogenates of wild-type littermates, untreated, and treated mice were assayed for TPP1 activity (Fig. 5A). Assays were performed without preactivation, and therefore, the results report on enzyme that has been taken up into cells, trafficked to the lysosome, and processed to the mature form.

(A) Assay schematic. (B) TPP1 activity in brain homogenates of 6-week-old mice injected with two doses (5 and 25 g) of either rTPP1 or LTM-TPP1 (5 g, P = 0.01; 25 g, P = 0.002). (C) TPP1 activity in brain homogenates following a single 25-g dose of LTM-TPP1, 1, 7, and 14 days postinjection. Data are presented as box and whisker plots, with whiskers representing minimum and maximum values from n 4 mice per group. Statistical significance was calculated using paired t tests with GraphPad Prism 7.04.

While both enzymes resulted in a dose-dependent increase in TPP1 activity, low (5 g) and high (25 g) doses of rTPP1 resulted in only modest increases of activity, representing ~6 and ~26% of the wild-type levels of activity, respectively (Fig. 5B). At the same doses, LTM-TPP1 restored ~31 and ~103% of the wild-type activity. To assess the lifetime of enzyme in the brain, mice were injected intracerebroventricularly with 25 g of LTM-TPP1 and euthanized either 1 or 2 weeks postinjection. Remarkably, at 1 week postinjection, ~68% of TPP1 activity was retained (compared with 1 day postinjection), and after 2 weeks, activity was reduced to ~31% (Fig. 5C).

ERT is a lifesaving therapy that is a principal method of treatment in non-neurological LSDs. Uptake of M6P-labeled enzymes by CIMPR is relatively ineffective due to variable receptor affinity (5, 6), heterogeneous expression of the receptor, and incomplete labeling of recombinantly produced enzymes (19). Despite its inefficiencies and high cost (~200,000 USD per patient per year) (20), it remains the standard of care for several LSDs, as alternative treatment modalities (substrate reduction therapy, gene therapy, and hematopoietic stem cell transplantation) are not effective, not as well developed, or inherently riskier (2125). Improving the efficiency and distribution of recombinant enzyme uptake may help address some of the current shortcomings in traditional ERT.

Several strategies have been used to increase the extent of M6P labeling on recombinantly produced lysosomal enzymes: engineering mammalian and yeast cell lines to produce more specific/uniform N-glycan modification (19, 26, 27), chemical or enzymatic modification of N-glycans posttranslationally (28), and covalent coupling of M6P (29). M6P-independent uptake of a lysosomal hydrolase by CIMPR has been demonstrated for both -glucuronidase (28) and acid -glucosidase (30, 31). In the latter work, a peptide tag (GILT) targeting insulin-like growth factor II receptor (IGF2R) was fused to recombinant alpha glucosidase, which enabled receptor-mediated entry into cells. CIMPR is a ~300-kDa, 15-domain membrane protein with 3 M6P-binding domains and 1 IGF2R domain. By targeting the IGF2R domain with a high-affinity (low nanomolar) peptide rather than the low-affinity M6P-binding domain, the authors were able to demonstrate a >20-fold increase in the uptake of a GAA-peptide fusion protein in cell culture and a ~5-fold increase in the ability to clear built-up muscle glycogen in GAA-deficient mice.

In this study, we have demonstrated efficient uptake and lysosomal trafficking of a model lysosomal enzyme, TPP1, via a CIMPR-independent route, using the receptor-binding domain of a bacterial toxin. HBEGF is a member of the EGF family of growth factors, and DT is its only known ligand. Notably, it plays roles in cardiac development, wound healing, muscle contraction, and neurogenesis; however, it does not act as a receptor in any of these physiological processes (32). Intracellular intoxication by DT is the only known process in which HBEGF acts as a receptor, making it an excellent candidate receptor for ERT, as there is no natural ligand with which to compete. Upon binding, DT is internalized via clathrin-mediated endocytosis and then trafficked toward lysosomes for degradation (33, 34). Acidification of endosomal vesicles by vacuolar ATPases (adenosine triphosphatases) promotes insertion of DTT into the endosomal membrane and subsequent translocation of the catalytic DTC domain into the cytosol. In the absence of an escape mechanism, the majority of internalized LTM should be trafficked to the lysosome, as we have demonstrated with our chimera (Figs. 2F and 3C). Uptake of LTM-TPP1 in vitro is robustly relative to rTPP1 (Fig. 3D and fig. S2), and TPP1 activity is sustained in the lysosome for a substantial length of time (Fig. 3E). We have also demonstrated that the increase in uptake efficiency that we observed in cell culture persists in vivo. TPP1 activity in the brains of CLN2-null mice was significantly greater in animals treated with intracerebroventricularly injected LTM-TPP1, as compared with those treated with TPP1 at two different doses (Fig. 5B), and, remarkably, this activity persists with an apparent half-life of ~8 days (Fig. 5C).

An important consideration for further development of the LTM platform for clinical development is the potential immunogenicity of using a bacterial fragment in this context. Previously, we demonstrated that the receptor-binding fragment of DT could be replaced with a human scFv (single-chain fragment variable) targeting HBEGF (8). With our demonstration of the potential for targeting HBEGF for LSDs, future efforts will focus on increasing the affinity and specificity of these first-generation humanized LTMs to develop high-affinity chimeras with greatly reduced immunogenicity for further development.

While the ability of LTM-TPP1 to affect disease progression has yet to be determined, recent positive clinical trial results (35) and the subsequent approval of rTPP1 (cerliponase alfa) for treatment of neuronal ceroid lipofuscinosis 2 (NCL2) provide support for this approach. In that clinical trial, 300 mg of rTPP1 was administered by biweekly intracerebroventricular injection to 24 affected children, and this was able to prevent disease progression. While this dose is of the same order of magnitude as other approved ERTs (<1 to 40 mg/kg) (36, 37), it represents a substantial dose, especially considering that it was delivered to a single organ. Improving the efficiency of uptake by targeting an additional receptor as we have done here, is expected to greatly decrease the dose required to improve symptoms, while at the same time decreasing costs and the chances of dose-dependent side effects.

DTK51E/E148K, LTM, LTM-mCherry, mCherry-LTM, and HBEGF constructs were cloned using the In-Fusion HD cloning kit (Clontech) into the Champion pET SUMO expression system (Invitrogen). Recombinant proteins were expressed as 6His-SUMO fusion proteins in Escherichia coli BL21(DE3)pLysS cells. Cultures were grown at 37C until an OD600 (optical density at 600 nm) of 0.5, induced with 1 mM IPTG (isopropyl--d-thiogalactopyranoside) for 4 hours at 25C. Cell pellets harvested by centrifugation were resuspended in lysis buffer [20 mM tris (pH 8.0), 160 mM NaCl, 10 mM imidazole, lysozyme, benzonase, and protease inhibitor cocktail] and lysed by three passages through an EmulsiFlex C3 microfluidizer (Avestin). Following clarification by centrifugation at 18,000g for 20 min and syringe filtration (0.2 m), soluble lysate was loaded over a 5-ml His-trap FF column (GE Healthcare) using an AKTA FPLC. Bound protein was washed and eluted over an imidazole gradient (20 to 150 mM). Fractions were assessed for purity by SDS-PAGE, pooled, concentrated, and frozen on dry ice in 25% glycerol for storage at 80C.

TPP1 cDNA was obtained from the SPARC BioCentre (The Hospital for Sick Children) and cloned into the piggyBac plasmid pB-T-PAF (J.M.R., University of Toronto) using Not I and Asc I restriction sites to generate two expression constructs (pB-T-PAF-ProteinA-TEV-LTM-TPP1 and pB-T-PAF-ProteinA-TEV-TPP1). Stably transformed expression cell lines (HEK293F) were then generated using the piggyBac transposon system, as described (14). Protein expression was induced with doxycycline, and secreted fusion protein was separated from expression media using immunoglobulin G (IgG) Sepharose 6 fast flow resin (GE Healthcare) in a 10-ml Poly-Prep chromatography column (Bio-Rad). Resin was washed with 50 column volumes of wash buffer [10 mM tris (pH 7.5) and 150 mM NaCl] and then incubated overnight at 4C with TEV (Tobacco Etch Virus) protease to release the recombinant enzyme from the Protein A tag. Purified protein was then concentrated and frozen on dry ice in 50% glycerol for storage at 80C.

Cellular intoxication by DT was measured using a nanoluciferase reporter strain of Vero cells (Vero NlucP), as described previously (8). Briefly, Vero NlucP cells were treated with a fixed dose of DT at EC99 (10 pM) and a serial dilution of LTM, LTM-mCherry, mCherry-LTM, DTK51E/E148K, LTM-TPP1, or rTPP1 and incubated overnight (17 hours) at 37C. Cell media was then replaced with a 1:1 mixture of fresh media and Nano-Glo luciferase reagent (Promega), and luminescence was measured using a SpectraMax M5e (Molecular Devices). Results were analyzed with GraphPad Prism 7.04.

SPR analysis was performed on a Biacore X100 system (GE Healthcare) using a CM5 sensor chip. Recombinant HBEGF was immobilized to the chip using standard amine coupling at a concentration of 25 g/ml in 10 mM sodium acetate (pH 6.0) with a final response of 1000 to 2500 resonance units (RU). LTM and LTM-TPP1 were diluted in running buffer [200 mM NaCl, 0.02% Tween 20, and 20 mM tris (pH 7.5)] at concentrations of 6.25 to 100 nM and injected in the multicycle analysis mode with a contact time of 180 s and a dissociation time of 600 s. The chip was regenerated between cycles with 10 mM glycine (pH 1.8). Experiments were performed in duplicate using two different chips. Binding data were analyzed with Biacore X100 Evaluation Software version 2.0.2, with apparent dissociation constants calculated using the 1:1 steady-state affinity model.

HeLa cells were incubated with LTM-mCherry (0.5 M), mCherry-LTM (0.5 M), or LTM-TPP1 (2 M) for 2 hours. Cells were washed with ice-cold phosphate-buffered saline (PBS), fixed with 4% paraformaldehyde, and permeabilized with 0.5% Triton X-100. mCherry constructs were visualized with a rabbit polyclonal antibody against mCherry (Abcam, ab16745) and anti-rabbit Alexa Fluor 568 (Thermo Fisher Scientific). LAMP1 was stained with a mouse primary antibody (DSHB 1D4B) and anti-mouse Alexa Fluor 488 (Thermo Fisher Scientific).

Colocalization was quantified using the Volocity (PerkinElmer) software package to measure Manders coefficients of mCherry signal with LAMP1 signal. The minimal threshold for the 488- and 568-nm channels was adjusted to correct the background signal. The same threshold for both channels was used for all the cells examined.

CLN2/ fibroblast 19494 were incubated with LTM-TPP1 (2 M) for 2 hours. Cells were washed with ice-cold PBS, fixed with 4% paraformaldehyde, and permeabilized with 0.5% Triton X-100. LTM-TPP1 was visualized with a mouse monoclonal against TPP1 (Abcam, ab54685) and anti-mouse Alexa Fluor 488 (Thermo Fisher Scientific). LAMP1 was stained with rabbit anti-LAMP1 and anti-rabbit Alexa Fluor 568 (Thermo Fisher Scientific).

TPP1 protease activity was measured using the synthetic substrate AAF-AMC using a protocol adapted from Vines and Warburton (38). Briefly, enzyme was preactivated in 25 l of activation buffer [50 mM NaOAc (pH 3.5) and 100 mM NaCl] for 1 hour at 37C. Assay buffer [50 mM NaOAc (pH 5.0) and 100 mM NaCl] and substrate (200 M AAF-AMC) were then added to a final volume of 100 l. Fluorescence (380 nm excitation/460 nm emission) arising from the release of AMC was monitored in real time using a SpectraMax M5e (Molecular Devices). TPP1 activity in cellulo was measured similarly, without the activation step. Cells in a 96-well plate were incubated with 25 l of 0.5% Triton X-100 in PBS, which was then transferred to a black 96-well plate containing 75 l of assay buffer with substrate in each well.

crRNA targeting the signal peptide sequence in exon 2 of CLN2 was designed using the Integrated DNA Technologies (www.idtdna.com) design tool. The gRNA:Cas9 ribonucleoprotein complex was assembled according to the manufacturers protocol (Integrated DNA Technologies) and reverse transfected using Lipofectamine RNAiMAX (Thermo Fisher Scientific) into HeLa Kyoto cells (40,000 cells in a 96-well plate). Following 48 hours of incubation, 5000 cells were seeded into a 10-cm dish. Clonal colonies were picked after 14 days and transferred to a 96-well plate. Clones were screened for successful CLN2 knockout by assaying TPP1 activity and confirmed by Sanger sequencing and Western blot against TPP1 antibody (Abcam, ab54385).

The pro-form of TPP1 was matured in vitro to the active form in 50 mM NaOAc (pH 3.5) and 100 mM NaCl for 1 to 30 min at 37C. The autoactivation reaction was halted by the addition of 2 Laemmli SDS sample buffer containing 10% 2-mercaptoethanol and boiled for 5 min. Pro and mature TPP1 were separated by SDS-PAGE and imaged on a ChemiDoc gel imaging system (Bio-Rad).

Proteins or cellular lysate were separated by 4 to 20% gradient SDS-PAGE before being transferred to a nitrocellulose membrane using the iBlot (Invitrogen) dry transfer system. Membranes were then blocked for 1 hour with a 5% milktris-buffered saline (TBS) solution and incubated overnight at room temperature with a 1:100 dilution of mouse monoclonal antibody against TPP1 (Abcam, ab54685) in 5% milk-TBS. Membranes were washed 3 5 min with 0.1% Tween 20 (Sigma-Aldrich) in TBS before a 1-hour incubation with a 1:5000 dilution of sheep anti-mouse IgG horseradish peroxidase secondary antibody (GE Healthcare) in 5% milk-TBS. Chemiluminescent signal was developed with Clarity Western ECL substrate (Bio-Rad) and visualized on a ChemiDoc gel imaging system (Bio-Rad).

rTTP1 and LTM-TPP1 were treated with EndoH (New England Biolabs) to remove N-glycan modifications. Enzymes were incubated at 1 mg/ml with 2500 U of EndoH for 48 hours at room temperature in 20 mM tris (pH 8.0) and 150 mM NaCl in a total reaction volume of 20 l. Cleavage of N-glycans was assessed by SDS-PAGE, and concentrations were normalized to native enzyme-specific activities.

Cryopreserved TPP1+/ embryos were obtained from P. Lobel at Rutgers University and rederived in a C57/BL6 background at The Centre for Phenogenomics in Toronto. Animal maintenance and all procedures were approved by The Centre for Phenogenomics Animal Care Committee and are in compliance with the CCAC (Canadian Council on Animal Care) guidelines and the OMAFRA (Ontario Ministry of Agriculture, Food, and Rural Affairs) Animals for Research Act.

TPP1/ mice (60 days old) were anesthetized with isoflurane (inhaled) and injected subcutaneously with sterile saline (1 ml) and meloxicam (2 mg/kg). Mice were secured to a stereotactic system, a small area of the head was shaved, and a single incision was made to expose the skull. A high-speed burr was used to drill a hole at stereotaxic coordinates: anteroposterior (A/P), 1.0 mm; mediolateral (M/L), 0.3 mm; and dorsoventral (D/V), 3.0 mm relative to the bregma, and a 33-gauge needle attached to a 10-l Hamilton syringe was used to perform the intracerebroventricular injection into the left ventricle. Animals received either 1 or 5 l of enzyme (5 g/l), injected at a constant rate. Isoflurane-anesthetized animals were euthanized by transcardial perfusion with PBS. Brains were harvested and frozen immediately, then thawed and homogenized in lysis buffer [500 mM NaCl, 0.5% Triton X-100, 0.1% SDS, and 50 mM Tris (pH 8.0)] using 5-mm stainless steel beads in TissueLyser II (Qiagen). In vitro TPP1 assay was performed, as described, minus the activation step.

Acknowledgments: We thank P. Lobel at Rutgers University for providing the TPP1-deficient mice. Funding: We are grateful to the Canadian Institutes of Health Research for funding. Author contributions: S.N.S.-M. devised and performed experiments and drafted the initial manuscript. G.L.B. provided materials and assisted in conceptualization and experimental design. X.Z., D.Z., and R.H. contributed to the experimental design and performed experiments. P.K.K. and B.A.M. contributed to the experimental design. J.M.R. contributed to the experimental design and revised the manuscript. R.A.M. assisted in conceptualization, contributed to the experimental design, and assisted in writing the manuscript. Competing interests: B.A.M. is a chief medical advisor at Taysha Gene Therapies. The authors declare that they have no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Read more:
Exploiting the diphtheria toxin internalization receptor enhances delivery of proteins to lysosomes for enzyme replacement therapy - Science Advances