After 3,000 years of science, the embryo is very different – Aeon

Fifty-four years ago, I did something extraordinary. I built myself. I was a single, round cell with not the slightest hint of my final form. Yet the shape of my body now the same body is dazzlingly complex. I am comprised of trillions of cells. And hundreds of different kinds of cells; I have brain cells, muscle cells, kidney cells. I have hair follicles, though tragically few still decorate my head.

But there was a time when I was just one cell. And so were you. And so were my cats, Samson and Big Mitch. That salmon I had for dinner last night and the last mosquito that bit you also started as a single cell. So did Tyrannosaurus rex and so do California redwoods. No matter how simple or complex, every organism starts as a single cell. And from that humble origin emerges what Charles Darwin called endless forms most beautiful.

Once youve come to terms with that mind-boggling fact, consider this: all organisms, including humans, build themselves. Our construction proceeds with no architects, no contractors, no builders; it is our own cells that build our bodies. Watching an embryo, then, is rather like watching a pile of bricks somehow make themselves into a house, to paraphrase the biologist Jamie Davies in Life Unfolding (2014).

This process of body sculpting is called embryonic development, and it is a symphony of cells and tissues conducted by genetics, biochemistry and mechanics. People who study this, like me, are called developmental biologists. And while you may not know it, our field is in a period of tremendous excitement, but also upheaval.

In the summer of 2022, I sat in the back of a lecture hall in Santa Cruz, California listening to a lecture from Magdalena ernicka-Goetz, professor of mammalian development and stem cell biology at the University of Cambridge, UK. She is a controversial figure and one of many scientists trying to push the limits of understanding human embryos. I heard, too, from Ruth Lehmann, director of MITs prestigious Whitehead Institute for Biomedical Research. Shed been in the news for firing a famous scientist for sexual harassment, but whats made her an international leader in biology for decades is her brilliant and creative study of developmental biology, in fruit flies.

This juxtaposition of fly and human embryos wasnt surprising; developmental biology is propelled by a whole zoo of embryos fruit flies, yes, but also sea urchins, worms, frogs, mice. Indeed, our great triumph in the 20th century was revealing the astonishing molecular similarity of all embryos; and, for precisely that reason, studies of animal embryos have garnered seven Nobel Prizes in the past 30 years alone. What surprised me in Santa Cruz was just how fast our collective understanding of animal embryos is making possible truly explosive advances in human embryology. So, while Lehmanns fascinating new work on cell migration in fly embryos kept the audience rapt, it was ernicka-Goetz who caught the medias attention.

Developmental biology is something society needs to understand. And dont we want to?

Together with Jacob Hannas lab in Israel, ernicka-Goetz was building what scientists call embryo models. These biological entities look a lot like embryos; they start as relatively few cells and few cell types, and they grow and elaborate over time. But theyre not made in the usual way. Eschewing both egg and sperm, embryo models are created by manipulating embryonic stem cells. Perhaps best known to the public for their promised miracle cures or as proxies for abortion debates, these cells display a remarkable power. They can be made to differentiate into essentially any cell type in the body. Now, it seems, we might even use them to make embryos.

When Hanna and ernicka-Goetz each published their findings after the meeting in Santa Cruz, The Washington Post wrote that the advances put the possibility of a complete human synthetic embryo on the horizon. That nomenclature was unfortunate, as these arent synthetic at all, but rather entirely biological. (Thats why scientists prefer the term embryo models.) But they were spot on about the implications. And about the timing: reports of embryo models made from human stem cells hit newspapers exactly a year later, in the summer of 2023.

This is no incremental change and, despite the flawed press narrative, ernicka-Goetz and Hanna arent the only or even the most important players in the game. Other influential biologists are making huge strides too, though their names arent often in the press. Some have even argued that the new advances challenge the current legal definitions of the embryo, which prompts the question: how should we define an embryo? And what do we do when, as they certainly will, scientists definitions differ from the general publics? As embryo models become more sophisticated, how will we know when that clump of tissue in the dish becomes an embryo?

Ive studied embryos for more than 30 years, and while it doesnt often catch the publics attention, developmental biology is something society needs to understand. And dont we want to? Isnt it just another way of framing that ancient and universal question: How did I get here?

Human contemplation of embryonic development is nearly as old as writing. In the Old Testament story, Job asks of God: Didst thou not pour me out like milk and curdle me like cheese? Half a world away, the Buddha uses the same dairy-based metaphor in the Garbhavakrantisutra, a 1st-century scripture. Some of the earliest cultures in Southern Mexico left no writing, but they made statues of human fetuses. Anywhere you go in the ancient world, you find embryos.

In ancient Greece, as light began to show in the cracks that separate religion, philosophy and science, a remarkable treatise appeared. To modern eyes, On the Nature of the Child attributed to Hippocrates is bent on explaining human development, though it does so largely by describing the development of a hens egg. Actually, not an egg but 20 eggs, each of which the author exhorts us to open on successive days, so we can observe development over time: You will find everything as I say in so far as a bird can resemble a man.

Aristotle rejected preformation, and argued instead for a progressive development

That ancient appreciation of time is critical, for it frames the first key question in the history of developmental biology: does an embryo acquire its complexity piece by piece, somehow progressively assembling itself? Or is that new organism already present in the egg or sperm, preformed, as it were, and needing only to be spurred somehow to grow? Some readers will be familiar with the iconic image of preformation a tiny human curled up inside a sperm. Its late-17th-century printing underscores just how long we struggled to resolve these two poles of thought, progressive versus preformed.

Aristotle himself was the first to weigh in. Consulting farmers and fishermen with the same enthusiasm with which he debated scholars, the philosopher described everything from the live births of dolphins to the size of elephant embryos. He compared the embryos of chickens, fish, insects and, yes, humans. He rejected preformation: our senses tell us plainly that this does not happen. He argued instead for a progressive development, and while it took 2,000 years to resolve, he was exactly right.

Just how this progression happens remains the core question of developmental biology. And as we begin to explore the truly uncharted morality of embryo models and their progressive development, what strikes me most about the concept is how neatly it parallels ancient thoughts about inchoate humanity.

In the modern debate over abortion, the doctrine that life begins at conception is now so constantly repeated that its often assumed to have an ancient, perhaps even scriptural origin. It does not.

In fact, in Catholic canon law, the doctrine dates precisely to 12 October 1869, when Pope Pius IX declared excommunication as the penalty for anyone involved in obtaining any abortion. For the nearly 2,000 years that had gone before, however, many Christian thinkers held the embryo to acquire its humanity only gradually. This concept, linked to the animation or ensoulment of the embryo, arose in laws first set down more than 3,000 years ago that imposed increasingly harsher penalties for causing the loss of a pregnancy as it progressed.

The idea was widely, if not uniformly, adopted by early Christian jurists. St Augustine held this view; St Basil was opposed. None wielded greater influence than St Thomas Aquinas, whose 13th-century rendering of Aristotles progressive acquisition of humanity in utero became a prominent, perhaps dominant concept in Western Christianity. It surfaced everywhere from Dantes poetry to Celtic law for 500 years.

The embryos of scientists are not the embryos of the public, or the Church

Of course, saints werent the only ones thinking about embryos. Leonardo da Vinci drew several in the 16th century, one now famous for its inaccuracy. When the modern university was being developed in a 16th-century Italy roiled by Protestant Reformation and Catholic Counter-Reformation, scholars on both sides cracked open chicken eggs to study embryos. A century later, a less divided group (all Royalists in the English civil wars) still hotly debated the chick embryo. And when modern science began to emerge in the 17th century, its founding figures had more than a passing interest in the embryo.

By the 19th century, the new scientists had reached consensus. The concept of progressive embryonic development of animal embryos was established once and for all. But then as now, the embryos of scientists are not the embryos of the public, or the Church. In an odd synchronicity, science and Church staked out opposite views at essentially the same time.

A mere 23 days separated Pope Piuss decision and an important lecture by the embryologist Wilhelm His. Propounding a new vision for understanding progressive development of the embryo, His would go on to publish The Form of Our Body and the Physiological Problem of Its Development (1874). It was despite the possessive in the title a thoroughgoing discussion of chicken embryos. But His said exactly what he meant. Soon after, he would combine lessons learned from chickens with a network of physicians, and become the first to comprehensively define, cogently describe, and accurately display the progressive development of human embryos.

Selections from the normal table of human development: the embryologist Wilhelm His et al produced the scientific conception of the human embryo in the 1870s using careful staging and illustration. From Anatomie menschlicher Embryonen (1880-85). Courtesy the Wellcome Library

As the Cambridge historian Nick Hopwood put it, His and others produced the very concept of the embryo as we know it. And, while embryos certainly exist as tangible, biological entities, this concept is so central to the work of developmental biologists that we rarely notice it. Were also slow to consider how others in society relate to it. And thats important, because, in the 20th century, the concept of the embryo changed radically yet again.

By the time the famous double helix structure of DNA was discovered in the early 1950s, fruit flies like Lehmanns had taught us that genes direct the inheritance of traits from one generation to the next; sea urchins showed us that genes reside on chromosomes in the cell nucleus; and bacteria and viruses revealed that genes were made of DNA. But the relationship between our genes and our development was still mostly a black box. When we first peeked in, it wasnt through the ascendant disciplines of genetics and biochemistry, but a more hands-on approach: transplantation. Not of organs, but of cellular bits.

In Nobel Prize-winning work, the British developmental biologist John Gurdon showed that if he destroyed the gene-containing nucleus of a one-cell frog embryo, normal development could be restored by transplanting the nucleus of some other cell. Fascinatingly, any cell nucleus might do the job, suggesting the tools needed to guide development of an entire organism are present in each and every one of its cells.

But there was a catch. Donor nuclei from early embryonic cells were far better at restoring development than those taken from later embryos. Such decreasing potency over time was a crucial revelation for understanding progressive development. The concept has its apotheosis in the British developmental biologist Conrad Waddingtons landscape, an iconic image depicting an early embryonic cell as a marble set to roll down a branching network of increasingly deep valleys. At the top, the marble might still roll into any number of valleys, but its inventory of potential shrinks with its descent. It cant roll back uphill.

Waddingtons landscape: in the iconic metaphor for progressive development, the marble represents a cell in an embryo; as the embryo develops, the cell rolls downhill. At the first decision point, the cell might choose one of two valleys, thus becoming one of two very general cell types, for example mesoderm or ectoderm. At the next branch, the cell will become one of two very specific cell types, and so on. From The Strategy of the Genes by C H Waddington (1957) George Allen & Unwin (London)

If the marble rolls down the valley biologists call mesoderm, it might roll further into clefts such as muscle or blood. But its cut off from the valleys of skin and brain, what we call ectoderm. Becoming an embryo, then, is the collective navigation of an ever-branching decision-tree by a constantly multiplying population of cells. So its tempting to think that some notion of sufficient complexity, a far-enough journey down the valleys, might help us divine precisely when its an embryo, and when its a human.

Edwards had studied the possibility of IVF in mice, then sheep, cows, pigs, monkeys

But, again, theres a catch. While most cells in the early embryo rush down the valleys, a privileged few will linger at the top of the landscape. Described first in rabbits by Waddingtons own pupil at the University of Edinburgh, Robert Edwards, we now call these embryonic stem cells, and by the turn of the 21st century they were as much a part of politics as of biology. But when first described in the early 1960s, neither Edwards nor anyone else capitalised on their potential. And, anyway, Edwards was busy with another project. The era of test-tube babies was upon us.

Late in 1977, Edwards wrote a note to one of his patients, Lesley Brown: [Y]ou might be in early pregnancy. So please take things quietly no skiing. Some weeks earlier, shed had one of her eggs laparoscopically inserted into her uterus; it had been fertilised in vitro with her husband Johns sperm. In 1978, Louise Brown, the first child conceived by IVF, was born.

The feat capped more than a decade of hard work. Edwards had studied the possibility of IVF in mice, then sheep, cows, pigs, monkeys. Eventually, human oocytes removed in a hospital in Oldham made the four-hour journey to Edwards lab in Cambridge. And, there, he was the first to glimpse the moment when the Church says life begins. Coming precisely a century after Pius IXs decision, his co-authored 1969 paper describing human fertilisation for the first time had been a watershed moment in the 3,000-year history of embryology. But it was also, well, just developmental biology: Penetration of spermatozoa into the perivitelline space was first seen in eggs examined 7-7.25 h after insemination.

The human embryo had become one of the scientists embryos and, in another remarkable synchronicity, the very same embryo had also exploded into the public consciousness. Not in a scientific journal, but in a glossy magazine.

The cover of Life magazine from 30 April 1965 is a startling artefact, filled by a colour photo of an 18-week human fetus. The essay inside produced the concept of human embryos for the public just as His did for scientists during the previous century. Read by millions, it forever changed our idea of what a living, developing, growing human embryo looks like. But it was just that, an idea. In reality, the fetus on the cover of Life magazine was dead.

Drama of life before birth: cover of Life magazine, 30 April 1965. Courtesy Photo12/Getty

The essay was filled with similarly lifelike photos, all but one of which actually show dead or dying embryos and fetuses, the results of either miscarriage or termination. This fact was ignored by anti-abortion activists who made these images ubiquitous; it suited their needs. Depicting these surgically removed embryos as somehow both alive and autonomous made it easy to ignore the mother, whose adult body is so essential for the embryos growth and development, and who is so at risk. Volumes have now been written about these images and their role in the US abortion debate.

Just 77 seconds of airtime for the entire essence of development as science knows it

But what strikes the developmental biologist in me is just how accurately the essay conveyed progressive human development. We see the fertilised egg, and we follow the changes of the largely unformed embryo at three, four, and six weeks. Only at eight weeks do we finally see its gradual transition to the more obviously human fetus.

Sadly, this narrative was lost when the images were packaged into a documentary film in 1982. Influenced perhaps by Louise Browns birth and that of the modern fertility industry The Miracle of Life runs for an hour, yet the first 41 minutes show only egg or sperm. Mostly sperm. By 48 minutes, weve seen fertilisation, but the embryo is still just a round clump, perhaps eight cells. Its only at 48:33 that we catch our first glimpse of the real action of development, the progressive emergence of form. And by 49:50, its all over. Suddenly, there are tiny fingers, eyes looking right at us. Just 77 seconds of airtime for the entire essence of development as science knows it. Shown on the BBC, PBS and outlets around the world, the award-winning documentary easily eclipsed the Life essay. The public human embryo had truly arrived and, besides a few seconds of embryonic development shown on fast-forward, it was a fully developed fetus.

Not long after, the joyful presentations of sonograms, with their beating heart or their shadow of a face, became a core ritual of pregnancy. But these very public fetuses are wildly at odds with the biological reality of embryos, the majority of which abort spontaneously at an early stage; this led an academic theologian to muse that, if life began at fertilisation, then it would appear that heaven is mostly populated by them [embryos] rather than by people who had actually been born.

Over a scant two decades, what we now call the human embryo went from a largely intangible entity to something scientists could routinely manipulate and the public thought they understood. As the 1980s dawned, august bodies of scientists, religious leaders, lawyers and philosophers unanimously settled on a progressive view of development.

They concluded that human embryos should be kept alive in vitro only for the most important, highly regulated reproductive or research purposes. Moreover, they must be kept alive only for 14 days. This time point, chosen on the advice of a developmental biologist, was at once appropriate and arbitrary. On the one hand, it marks the onset of a process called gastrulation, by which the embryo leaves behind its early ball-like form and begins to build an elongate body. Its also the last point at which twinning can occur, and so makes the embryo truly singular and unique. But gastrulation takes some time and embryos are variable. Only a true expert could glean the distinction between embryos at 13, 14 and 15 days. Yet, as any lawyer will tell you, laws (and even guidelines) must be specific to be meaningful, and The 14-Day Rule was both.

Their genesis in unused embryos of IVF patients and therapeutic terminations sparked a culture war

Those were exciting times for animal embryology too, given the Nobel Prize-winning work of Christiane Nsslein-Volhard, Eric Wieschaus and Edward Lewis. They showed that the entire zoo of animals wed studied for decades, centuries, even millennia all use a shockingly similar genetic toolkit to guide development. When chick embryos were first compared with humans in ancient Greece, it was exactly right.

A single genetic toolkit for development: flies with mutations in what scientists call homeobox genes display duplicated wings (above photo courtesy Nicolas Gompel). Mice with mutations in these genes display duplicated ribs (below, Daniel C McIntyre et al, Development [2007])

Around the same time, the biologist Gail Martin at the University of California, San Francisco made good on Edwardss abandoned project. Coining the term embryonic stem cells, she and her colleagues learned how to get these cells from mice, keep them alive in culture dishes, and make them differentiate into cartilage or even neuron-like cells. When the same was done with human embryonic stem cells in 1998, their genesis in unused embryos of IVF patients and therapeutic terminations sparked a culture war. But neither politics nor the resulting welter of regulations dented enthusiasm for their tremendous promise both real and as imagined by charlatans.

By tinkering with the genetic toolkit that developmental biologists discovered in animal embryos, the new stem cell scientists coaxed their wards down Waddington valleys of their choosing. Their arcane recipes recall ancient alchemy, but the ecosystems they conjured in little plastic dishes were entirely real. First, they made single human cell types, neurons, muscle, blood. Not long after, they devised functional, three-dimensional tissues, first eyes in a dish, then miniguts and minibrains, an array we collectively call organoids.

It was only a matter of time before the idea arose that we might construct whole embryos out of stem cells. Guided by a desire to understand human development (and in some cases, surely, by at least a little hubris), progress came with unnerving speed.

At the 2022 meeting on developmental biology in Santa Cruz, I was giddy, mesmerised by the confluence of developmental and stem cell biology. Lehmanns lecture on flies and my own about frogs joined others about fish and worms. There was even a lecture about jerboas, a strange hopping rodent from Mongolia. One talk really blew my mind: unable to study rhinoceros embryos, for obvious reasons, one group has convinced their stem cells to make rhino embryo models of a sort.

My joy, however, soon bled into dismay when The Washington Post, describing the mouse embryo models developed by Hanna and by ernicka-Goetz, noted rightly that human models were all but inevitable. Given that years of debate went into the 14-Day Rule in the 1980s, we might have expected that move to be cautious and deliberate. It wasnt. At a conference in Boston in June 2023, ernicka-Goetz claimed that we can create human embryo-like models by the reprogramming of [embryonic stem] cells, a statement The Guardian blasted out to the public the following day without any back-up from the peer review. Once the peer-reviewed paper appeared, it became clear that ernicka-Goetzs initial claim had been overstated. Hannas group reported more impressive human embryo models soon after, but these couldnt justify the media commentary either.

The work, while vetted and approved by the appropriate ethics committees, is a far cry from helping us frame the ethical considerations these embryo models will raise. Indeed, while the current embryo models cannot develop into a viable fetus, it sure looks like we will get to that point. And it doesnt help that the International Society for Stem Cell Research in 2021 relaxed the 14-Day Rule for research with human embryos made the old-fashioned way. Unlike the careful deliberation with stakeholders in the 1980s, the new decision was reached without public engagement. I think the entire field is obligated to bring more people into the conversation and to better articulate why the work is necessary why, in fact, we must make human embryos from scratch.

This science has always been a proxy, however imperfect, for understanding how our own bodies come to be

Its troubling, too, that the scientists getting the most attention dont always use their cachet to communicate the nuance, both ethical and biological. Instead, its left to others. Alfonso Martinez Arias, Nicolas Rivron and Kathy Niakan, for example, are among those who have provided thoughtful commentary on the complexities in scientific journals. And, while ernicka-Goetz in June 2023 told The New York Times that we do it to save lives, not create it, the medical applications are not at all clear to me. Exactly how will these models save lives? And exactly how do they compare with alternative solutions to the problem? Without such details, how can we weigh whats to be gained against our ethical and moral obligations?

By contrast, the decades of research with old-fashioned human embryos, all conducted within the confines of the 14-Day Rule, brought us a remarkably safe and effective fertility industry, as well as important advances in genetic diagnosis and prevention of diseases and birth defects. These advances continue, with benefits that are clear.

Weve pondered embryos for thousands of years, in part because they spark our inherent wonder; theirs is the ultimate emergent property. Across that long arc, its usually been animal embryos under our microscopes, organisms that assemble themselves just like we do but whose development we have fewer qualms about interrupting for the sake of knowledge. Like any basic science, animal embryos provide a glimpse of what is possible in this world, Lehmann writes. But this science has always been a proxy, however imperfect, for understanding how our own bodies come to be. And, quite suddenly now, we seem to have the tools and the appetite to get far more than just a glimpse at the human embryo.

Martinez Arias recently told me that when you put the word human there, you are talking to the whole of society. Its worth recalling, then, that this conversation is also thousands of years old. And history tells us that our collective decisions on issues of the human embryo will ultimately be influenced by both science and faith.

Science can tell us how the human embryo develops, and it is an undisputed certainty that embryos develop progressively, building complexity and identity only over time. But there is no scientific consensus on when during that progression life begins. Likewise, there is no consensus among faiths on when life begins. Certain Christian faiths now hold that life begins at conception, and these have an outsized influence. Yet, even within Christianity, that view is a recent stance, and one that reversed centuries of thought. Other Western religious traditions dont share Christianitys ambiguity. Cleaving to the ancient gradualist view of development, Islamic tradition generally holds the embryo to become human 120 days after fertilisation, though some use the 40-day mark; in most Jewish traditions, it happens only at birth.

We are 3,000 years deep in the adventure called developmental biology, yet the embryo remains in many ways just as mysterious as ever. As we enter a new era of explicitly human developmental biology, we should approach it with all the grace and humility we possibly can.

More here:
After 3,000 years of science, the embryo is very different - Aeon

Fetal Cells Can Be Traced Back to the First Day of Embryonic Development – Caltech

Though over 8 million babies have been born through in vitro fertilization (IVF), 70 percent of IVF implantations fail. As IVF is becoming a more common route to pregnancy in cases of infertility, there is a need for better understanding of embryonic development at this early stage.

Researchers in the laboratory of Caltech's Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering, study the biological processes underlying the earliest days of human development. Now, a new study from the Zernicka-Goetz lab demonstrates that when human embryos are composed of two cells, at just 1 day old, only one of these cells will create most of the fetal body cells in addition to placental cells, while the other will only create placental cells. The research changes the long-standing paradigm that the two cells at this stage both contribute equally to all parts of the developing embryo, suggesting that "specification"the phenomenon of cells having specific individual roleshappens much earlier in development than previously believed.

The findings have implications for how embryos intended for IVF implantation are assessed for abnormalities.

"Often, in an IVF clinic, a few placental cells from the outside of the 6-day-old embryo will be selected for a genetic diagnosis to determine if they have chromosomal abnormalities," says Zernicka-Goetz. "Our results show that, by extrapolation, those outside cells chosen are unlikely to be contributing to the fetal body. The genetic information from those cells may not be as informative as sampling the fetal cells themselves."

A paper describing the research appears on May 13 in the journal Cell.

The 1-day-old human embryo is composed of just two cells, each called a blastomere. Using embryos donated for research by IVF clinics, the team labeled blastomeres with a colored dye, then used time-lapse imaging to watch as the cells divided over the course of six days. New cells carried the same color dye as their parent cell. Through this process, the team determined that fetal body cells exclusively originated from a single blastomere, while placental cells came from both.

"In addition to being valuable information for improving IVF, our study is part of a large body of research into evolutionary processes within the body," says postdoctoral scholar Sergi Junyent, a co-first author on the new paper. "Studying how different cell lineages populate from original cells has implications for understanding what happens after mutations, how they lead to cancer, and so on."

The paper is titled "The first two blastomeres contribute unequally to the human embryo." Caltech's Junyent and Maciej Meglicki of the University of Cambridge are co-first authors. Additional Caltech co-authors are undergraduate Ekta M. Patel, scientific assistant Clare Reynell, and postdoctoral scholar Dong-Yuan Chen. Other co-authors are Catherine King and Lisa Iwamoto-Stohl of the University of Cambridge; Roman Vetter and Dagmar Iber of ETH Zurich and the Swiss Institute of Bioinformatics; Rachel Mandelbaum, Patrizia Rubino, and Richard J. Paulson of USC; and Nabil Arrach of Progenesis Inc. Funding was provided by the Human Frontier Science Program, NOMIS Foundation, Wellcome Trust, Open Philanthropy Project, and Curci and Weston Heavens Foundations. Magdalena Zernicka-Goetz is an affiliated faculty member with the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.

See the original post here:
Fetal Cells Can Be Traced Back to the First Day of Embryonic Development - Caltech

The First Two Cells in a Human Embryo Contribute Disproportionately to Fetal Development – The Scientist

In the early stages of human embryonic development, a zygote divides into two identical totipotent cells that eventually become eight cells.1 Cell fate decisions begin to differentiate this totipotent population into specific lineages, giving rise to the blastocyst.2 At least, this has been the working model. Now, a new study published in Cell suggests this may not be the full story.3

They are not identical, said Magdalena Zernicka-Goetz, a developmental and stem cell biologist at the California Institute of Technology and the University of Cambridge and study coauthor. Only one of the two cells is truly totipotent, meaning it can give rise to body and placenta, and the second cell gives rise mainly to placenta. The findings help elucidate what happens during the earliest periods in development.

I was always interested in how cells decide their fate, Zernicka-Goetz said. In the mouse developing embryo, she previously demonstrated a bias at the two-cell stage: one cell contributed more to fetal tissue and the other to the placenta.4

We know so little about the very early stages of human development, said Nicolas Plachta, a developmental biologist at the University of Pennsylvania who was not involved with the study.

Continue reading below...

To understand this process better, Zernicka-Goetz set out to investigate if human embryonic development resembled that of mice. She and her team first tracked cell lineage from the two-cell stage; they injected mRNA for green fluorescent protein (GFP) fused to a membrane trafficking sequence into one of the two cells of the zygote. Thus, they could determine the contribution of each cell to the development of two early structures: the trophectoderm (TE) that becomes the placenta and the inner cell mass (ICM) that eventually produces the epiblast, or fetal tissue, and the hypoblast, or the yolk sac.

When they tracked GFP expression, the team found that one population of cells dominated in either the ICM or the TE, but that this imbalance was greatest in the ICM. Within the ICM, progeny from one clone at the two-cell stage dominated the population of the epiblast, while the composition of the hypoblast was split between cells of the two originating clones. This means that at the two-cell stage we have a cell fate bias of these two cells, but it's not a deterministic process, said Zernicka-Goetz.

To further investigate the cell contribution to the ICM, the researchers labeled DNA and actin and, starting at the eight-cell stage, tracked cellular positions after division using live cell imaging. Asymmetric cell divisions (ACD) involve cells that intrude into the growing cell mass rather than remain on the surface, and these interior cells contribute to the ICM. The team observed that while ACD were less common overall, their composition resembled that of the ICM.

Continue reading below...

In mice, the two-cell stage clone that contributed more to the ICM divided faster than the second cell, so the team studied whether or not this pattern applied to human embryonic development.5 The team studied movies of actively dividing embryos and determined that in most of the embryos, one cell at the two-cell stage divided faster, and its progeny also inherited this feature. The team also noticed that the first cell to undergo ACD was one of these fast-dividing cells.

This is the first study to do some nice cell tracking in a human embryo at those early stages, said Platcha. However, he noted that the inherent variability in human embryos compared to established mouse models makes it difficult to draw conclusions in this research area. This is further complicated by the limited number of zygotes available for research because clinics typically preserve embryos at later developmental stages.

Next, Zernicka-Goetz aims to investigate the features and origins of the differences between clones at the two-cell stage.

Zernicka-Goetzs workwas nominated throughThe ScientistsPeer Profile Program submissions.

View original post here:
The First Two Cells in a Human Embryo Contribute Disproportionately to Fetal Development - The Scientist

Your Face May Have Been Shaped by Pressure in The Womb, Study Finds – ScienceAlert

Embryonic stem cells that play a critical role in determining our facial features during development can be hindered from growing when placed under increased pressure.

An international team of researchers took a look at the growth of mouse and frog embryos, as well as human embryoids (clusters of embryonic cells developed in the lab) to better understand how some cells tell others how to grow and differentiate.

They noticed that when an increase in hydrostatic pressure was applied externally to the embryo or embryoid, important cell signaling pathways in neural crest cells were disrupted.

The findings imply tissue development could be affected at crucial moments in an animal's development, placing them at risk of craniofacial malformations. These abnormalities are thought to be caused by a mix of genetic and environmental factors, including nutrient supply.

"Our findings suggest that facial malformations could be influenced not only by genetics but by physical cues in the womb such as pressure," says neurobiologist Roberto Mayor from University College London (UCL).

In what's known as embryonic induction, cells are sent along different biological paths during development by chemical signals from other nearby tissues. Scientists know about some, but not all, of the triggers that determine how stem cells interpret these cues.

In particular, the analysis looked at a fluid-filled cavity called the blastocoel, close to where the neural crest develops. Pressure on the blastocoel was shown to decrease the activity of a protein called Yap, which in turn impairs a group of signaling molecules known as Wnt, which are responsible for telling the neural crest how to develop.

While the study didn't investigate the causes of increased pressures inside the human uterus, the findings provide insight into mechanical influences on the embryo where most studies tend to focus on the influence of biochemical factors instead.

"When an organism is experiencing a change in pressure, all the cells including the embryo inside the mother are able to sense it," says Mayor.

The research gives scientists an important step forward in their understanding of how humans (and other vertebrates) form, right down to the individual molecules and signals involved in the earliest stages of development.

While it's clear pressure can cause neural crest signaling to become less efficient, it remains to be seen how particular changes in the uterine environment might give rise to specific outcomes in a developing human child.

"Our work shows that embryos are sensitive to pressure, but we do not know how sensitive they are," says Mayor. "For instance, will a change in the pressure inside the uterus be able to affect the embryo?"

"This will require further research to understand how changes inside the body as well as in environmental pressure might influence human embryo development."

The research has been published in Nature Cell Biology.

The rest is here:
Your Face May Have Been Shaped by Pressure in The Womb, Study Finds - ScienceAlert

Sketchy stem-cell treatments in Mexico led to drug-resistant infections – Livescience.com

Three people who traveled to Mexico for stem-cell injections that are not approved in the U.S. contracted difficult-to-treat, drug-resistant infections, a Morbidity and Mortality Weekly Report (MMWR) from the Centers for Disease Control and Prevention warned Thursday (May 9).

The infections were caused by Mycobacterium abscessus, a bacterium that's distantly related to the ones behind tuberculosis and leprosy. The microbe commonly lurks in soil, water and dust, and it's known to sometimes contaminate medications and medical devices and thus cause infections in health care settings.

Symptoms can include boils and pus-filled bubbles, in the case of skin infections, as well as fever, chills and muscle aches, when soft-tissue infections occur. Sometimes, the bacteria can invade the bloodstream. Treating the infection involves removing infected tissues and draining pus from the body, as well as giving antibiotics for a prolonged period.

For a given patient, doctors may have to test different drugs against samples of bacteria from their body, in order to find the most lethal combination against the drug-resistant bug.

All three patients who got stem-cell injections in Mexico underwent the procedures in 2022, and as of March 2024, they were still being treated for M. abscessus infection in U.S. hospitals, according to the MMWR.

Related: Dangerous 'superbugs' are a growing threat, and antibiotics can't stop their rise. What can?

"Providers and public health agencies need to be aware of the risk for M. abscessus infections from stem cell treatments for indications not approved by the Food and Drug Administration and maintain vigilance for similar cases," the report's authors wrote. "They also are advised to provide guidance for persons considering medical tourism."

Get the worlds most fascinating discoveries delivered straight to your inbox.

The only stem-cell products currently approved in the U.S. contain precursors to different cells in the blood, and they're cleared to treat disorders that affect the production of blood.

The first of the three cases involved a Colorado woman in her 30s, who in October 2022 had traveled to Baja California to get stem-cell injections in the tissues that surround the brain and spinal cord.

The injections were reportedly intended to treat the autoimmune disease multiple sclerosis, for which there are no approved stem-cell treatments in the U.S. After the injections, she developed headaches and fever, and at a hospital in the U.S., the fluid around her brain and spinal cord tested positive for M. abscessus. This indicated she had a serious infection called bacterial meningitis.

Two similar cases involved men in their 60s one from Arizona and one from Colorado. The Arizona man had developed an infection in his elbow after traveling to Baja California for treatment of psoriatic arthritis. He was treated at a different clinic than the Colorado woman was, and the clinics were 167 miles (269 kilometers) apart.

The Colorado man, meanwhile, had traveled to Guadalajara, Mexico, for treatment of osteoarthritis in his knees and then developed infections in both knees. The use of stem-cell injections for multiple sclerosis and arthritis are unproven, as potential stem-cell therapies for these conditions are still being investigated.

While treating the patients, a U.S. hospital obtained samples of the M. abscessus bacteria from the Colorado woman and Arizona man; samples from the Colorado man still need to be closely assessed, but they've been confirmed to be M. abscessus.

Genetic analyses revealed that the two patients' samples were a near-perfect match. Therefore, the investigators "suspect a common infected source" for these two patients, meaning the same products or equipment may have been contaminated in both cases.

However, authorities "attempted to contact clinics that performed the stem cell injections, but received no response," the MMWR notes, and "attempts to identify the product or gather details about its administration have been unsuccessful to date." Authorities in the U.S. and Mexico are continuing to investigate the three known cases and are looking for additional ones.

Medical tourism has been tied to M. abscessus infections in the past. For example, a Canadian man who underwent a hair transplant in Panama developed such an infection on his scalp. So these superbug infections can arise after both cosmetic procedures and therapies intended to treat disease.

This article is for informational purposes only and is not meant to offer medical advice.

Ever wonder why some people build muscle more easily than others or why freckles come out in the sun? Send us your questions about how the human body works to community@livescience.com with the subject line "Health Desk Q," and you may see your question answered on the website!

Read the original:
Sketchy stem-cell treatments in Mexico led to drug-resistant infections - Livescience.com

Mikkael Lamoca receives Fulbright scholarship to complete cutting-edge STEM cell research – Rochester Institute of Technology

Conducting hands-on research was a hallmark of the time Mikkael Lamoca 24 (biomedical engineering), 24 MS (science, technology, and public policy) spent at RIT. A Fulbright award presents him a new opportunity to conduct cutting-edge research at one of the top universities in Asia.

Lamocas award will fund a 10-month research experience in the BioIonic Currents Electromagnetic Pulsing Systems (BICEPS) Laboratory at the National University of Singapore. He is one of a record six Fulbright U.S. Student awardees this year from RIT.

His research focuses on age-related neurodegeneration, which can be seen in Alzheimers disease, dementia, and other conditions. There is previous research regarding how STEM cell injections can help with these conditions, but, according to Lamoca, there is contradicting information and evidence which indicates this method may not be the best approach.

Instead, Lamoca will explore how magnetic stimulation can induce secretome production to achieve therapeutic neuroprotective effects.

One of the biggest reasons I wanted to work with this lab is that I would be the first person there to do this type of research on neuroprotection, and that I would have access to work with the labs patented technology. This lab established all of the processes for magnetically induced secretome production, so Im going to use their methods to see if it can be applied to neuroprotection efforts, said Lamoca.

When looking for co-op opportunities during his second year at RIT, Lamoca, from Santa Clara, Calif., was introduced to RITs Tissue Regeneration and Mechanobiology Laboratory, led by Professor Karin Wuertz-Kozak. His friend, Iskender Mambertkadyrov 24 (biomedical engineering), 24 MS (science, technology, and public policy), recommended that he inquire about available opportunities in the lab and Lamoca flourished from there.

Coming into my first year, I didnt know much about research. My co-op with Professor Wuertz-Kozak was the first time I really started to dive into it. She was my first mentor. Working in her lab is where my love of research started, and Ive been interested in doing more ever since, said Lamoca.

After completing his 10-month tenure at the BICEPS laboratory in Singapore, Lamoca hopes to continue his graduate education by earning a Doctorate of Medicine and of Philosophy (MD-Ph.D.) so can practice medicine while conducting research.

Continue reading here:
Mikkael Lamoca receives Fulbright scholarship to complete cutting-edge STEM cell research - Rochester Institute of Technology

Novel technology positions ‘off-the-shelf’ cancer immunotherapy for the clinic – UCLA Newsroom

Immunotherapies have revolutionized cancer treatment by harnessing the bodys own immune system to attack cancer cells and halt tumor growth. However, these therapies often need to be tailored to each individual patient, slowing down the treatment process and resulting in a hefty price tag that could soar well into the hundreds of thousands of dollars per patient.

To tackle these limitations, UCLA researchers have developed a new, clinically guided method to engineer more powerful immune cells called invariant natural killer T cells, or iNKT cells, that can be used for an off-the-shelf cancer immunotherapy in which immune cells from a single cord-blood donor can be used to treat multiple patients.

This novel technology, described in a study published by Nature Biotechnology, marks a major step toward enabling the mass production of cell therapies like CAR-T cell therapy, making these life-saving treatments more affordable and accessible to a broader range of patients.

The studys senior author,Lili Yang, a professor of microbiology, immunology and molecular genetics and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and of theUCLA Health Jonsson Comprehensive Cancer Center, breaks down why this new system is poised to finally help a universal cell product advance to a clinical trial.

What are the key developments of this paper?

In 2021, our team reported amethod for producing large numbers of iNKT cellsusing blood stem cells. That system required the use of three-dimensional thymic organoids and supportive cells, which posed both a manufacturing and regulatory challenge that prevented that method from ever reaching clinical application.

Now, weve developed a technology that can produce large quantities of iNKT cells from blood stem cells in a feeder-free and serum-free manner. This update to the method eliminates the previous hurdles, bringing us closer than ever to delivering an off-the-shelf cancer immunotherapy to patients.

How did you reach these findings?

UCLA

Clockwise from top left: Senior author Lili Yang and co-first authors Yan-Ruide Li, Jiaji Yu and Yang Zhou.

Our team isolated the blood stem cells, which can self-replicate and produce all kinds of blood and immune cells, from 15 donor cord-blood samples representing diverse genetic backgrounds. We then genetically engineered each of those cells to develop into useful iNKT cells and estimate that one cord-blood donation can produce between 1,000 to 10,000 doses of a therapy making the system really well suited to create an off-the-shelf immunotherapy.

Next, our team equipped the iNKT cells with chimeric antigen receptors, or CARs, molecules that enable immune cells to recognize and kill a specific type of cancer, to target seven cancers that included both blood cancers and solid tumors. The CAR-iNKT cells showed a robust anti-tumor efficacy against all seven cancers, indicating their promising potential for treating a wide spectrum of cancers. Then in a multiple myeloma model, we demonstrated the CAR-iNKT cells ability to halt tumor growth without causing complications that can sometimes occur when donor cells are transplanted into a patient.

Why are iNKT cells so special?

We consider invariant natural killer T cells to be the special forces of the immune cells because theyre stronger and faster than conventional T cells and can attack tumors using multiple weapons. Its ideal to use iNKT cells as an off-the-self cancer immunotherapy because they dont carry the risk of graft-versus-host disease, a condition in which transplanted cells attack the recipients body and the reason most cell-based immunotherapies have to be created on a patient-specific basis.

What excites you about these developments?

No off-the-shelf cell therapy has ever been approved by the U.S. Food and Drug Administration. With this new technology, not only have we shown a high output of iNKT cells, but weve also proven that the CAR-equipped iNKT cells dont lose their tumor-fighting efficacy after being frozen and thawed, which is a key requirement for the widespread distribution of a universal cell product.

While CAR-T cell therapies have been a transformative treatment for certain blood cancers like leukemia and lymphoma, it has been challenging to develop a cancer immunotherapy for solid tumors. This is in part because solid tumors have an immunosuppressive tumor microenvironment, meaning the immune cell function is impaired in the environment. iNKT cells can change the tumor microenvironment by selectively and effectively depleting the most immunosuppressive cells in its surroundings giving them the unique opportunity to attack solid tumors. Were extremely excited that this technology has a potential broad application to target a range of blood cancers, solid tumors and other conditions such as autoimmune diseases.

Whats the biggest bottleneck in cancer immunotherapy?

The biggest bottleneck right now for immunotherapies, particularly cell therapies, is manufacturing. As of 2023, the FDA has approved six autologous CAR-T cell therapies with an average cost of around $300,000 per patient, per treatment. Using this novel technology to scale up iNKT cell production, theres a real possibility that the price per dose of immunotherapy can drop significantly to $5,000. By definition, an off-the-shelf product would be readily on hand in clinical settings, so my hope is that this new system will result in a reality where all patients who need the treatment will be able to receive it immediately.

What are the next steps in the study?

Our team is advancing this multiple myeloma model project into an IND-enabling study this year, which would result in a Phase 1, first-in-human clinical trial of this technology.

Since this flexible platform allows us to switch the CARs to target different cancers, our team has since adapted this same system to target ovarian cancer, one of the deadliest gynecologic cancers. This represents a big leap from targeting blood cancers to solid tumors, but were hopeful to bring this project to a clinical trial over the next couple of years.

Read the original:
Novel technology positions 'off-the-shelf' cancer immunotherapy for the clinic - UCLA Newsroom

How Exosome Therapy Gave Me the Skin of My Younger Self – Vogue

I never received compliments on my skin until beginning exosome therapy last fall. A few months prior, at the recommendation of Chioma Nnadiformer editor of Vogue.com and current head of editorial content at British VogueI took a consultation visit with practitioner Dr. Akis Ntonos, FNP, ND.

At the time, tackling hyperpigmentation was my main concern, so Ntonos emphasized that our course of action would include alleviating breakouts, balancing my skin's oil production, and reducing pore size. It all started with an in-office chemical peel, then a stem cell microneedling treatment. A few days after our first visit, he called to check in and ask a question: Would I like to participate in an exclusive skin study on skincare's next big ingredient, exosomes?

I didn't really know what exosomes were or how it could help me achieve my skin goals. I had so many questions. Exosomes, Ntonos tells me, are small vehicles released by all cells, including stem cells. In simple terms, exosomes are messengers that carry essential information and factors from one cell to another. By delivering these nanoparticles directly to the skin, one could receive better results. Per Ntonos, exosomes are preferred over actual stem cell applications because they are less contentious as they do not involve whole cells, mitigating the concerns of potential rejection or other complications.

Ntonos explains that exosomes are desirable in the aesthetic would because they enhance the skin's regenerative processes, which results in a more youthful appearance and better outcomes post-treatment. This improves skin quality and appearance, making them ideal for anti-aging and skin rejuvenation treatments. Wrinkles, skin laxity, uneven skin tone, and textural irregularities are all concerns exosomes target; it may also help prevent scarring, improve the appearance of old scars, and potentially treat inflammatory skin conditions. There are even ongoing studies that exosomes can improve hair restoration.

In 2020, Resilille discovered how to harvest many exosomes from a single umbilical cord per batch. Or Age Zero exosomes, as they call them, are derived from Wharton Jelly stem cells which are known for their therapeutic qualities; and, thus primed to achieve an improvement in skin texture, firmness, pore size, and radiance per Resilille CEO Erin Crowley. This innovation helps the ingredients be readily available for aesthetic treatments.

View post:
How Exosome Therapy Gave Me the Skin of My Younger Self - Vogue

Colorado patients among those infected after stem-cell treatments in Mexico – 9News.com KUSA

The treatments were given at clinics in the Mexico border state of Baja California, according to the CDC report issued Thursday.

MEXICO CITY, Mexico The U.S. Centers for Disease Control and Preventionissued a report Thursday about three cases of infections two of them in Colorado patients apparently linked to stem-cell treatments American patients received in Mexico.

The CDC issued the report Thursday on infections of Non-Tuberculous Mycobacteria (NTM), which it described as difficult-to-treat and intrinsically drug-resistant and rapidly growing.

All three patients, two of them from Colorado, remain in treatment. The infections were apparently acquired during stem-cell injections carried out at two clinics in the Mexican border state of Baja California, located 167 miles apart.

In the past, Americans and Mexicans have been infected apparently because some doctors in Mexico were taking multiple doses of anesthetics from a single vial due to shortages or other problems, though it was not clear whether that was a possible cause in the most recent outbreak reported Thursday.

The first case was reported in late 2022, in a woman who had embryonic stem-cell treatment in October 2022 for multiple sclerosis. The woman from Colorado was in her 30s, and experienced headaches and fevers consistent with meningitis.

In spring 2023, two male patients in their 60s one from Colorado and one from Arizona were found to have infections in their joints after receiving stem-cell treatments in Baja California for forms of arthritis. The Colorado man developed knee infections after receiving stem-cell injections in both knees in Guadalajara, Mexico.

The CDC report said vigilance for similar cases and guidance for persons considering medical tourism are advised.

In the past, local problems with the availability of morphine and fentanyl led some anesthesiologists in Mexico to acquire their own supplies, carry the vials around with them and administer multiple doses from a single vial to conserve their supply.

In 2022, anesthetics contaminated by those practices caused a meningitis outbreak in the northern state of Durango that killed about three dozen people, many of whom were pregnant women given epidurals. Several Americans died because of a similar outbreak after having surgery at clinics in the Mexican border city of Matamoros in 2023.

More 9NEWS health coverage:

SUGGESTED VIDEOS: Health

Visit link:
Colorado patients among those infected after stem-cell treatments in Mexico - 9News.com KUSA

Parkinson’s patient moves freely again after world-first implant of lab-grown cells into his brain – Euronews

Parkinsons patient Thomas Matsson was the first in the world to receive 7 million lab-grown brain cells in 2023. Today, he can smell and play sports.

Researchers at Lund University in Sweden have successfully implanted 7 million lab-grown brain cells into a patient to treat Parkinson's disease.

Swedish resident Thomas Matsson was the first in the world to test the method about a year ago.

Matsson was diagnosed with Parkinson's when he was 42. For the last 17 years, he felt like he was walking through a syrup, he says.

Mister P, the disease, would pull my neck one way when I was going the other, said Matsson.

Today, Matsson recognises smells again and plays sports.

The syrup is gone. Ive got my 7 million cells and they are starting to work now, said Matsson.

Ive reduced my medication for Parkinsons. Before, everything was slow and everything was difficult, he added.

Matsson says he is hitting golf shots that he hasnt been able to hit in 10 years.

I do long-distance skating, slalom, cross-country skiing, padel tennis, and, above all, golf, he said.

To be able to skate when youve had Parkinsons for 20 years, not many people do that I think. And then 28 days in Spain where I played 25 rounds in 28 days, you cant really do that when youre healthy most of the time. Something happened. Something very good.

Parkinsons disease is a neurodegenerative disorder that affects movement primarily due to the loss of cells that produce dopamine, which helps transmit signals that control movement and coordination as a neurotransmitter.

The cell therapy devised by researchers at Lund University involves exposing stem cells from fertilised eggs - called embryonic stem cells - to growth factors and signals they would normally receive during embryo development to direct them to become immature dopamine cells.

The cells are then implanted into a 4 mm area in the centre of the patient's brain, closest to the brain stem to replace the dopamine cells Parkinsons patients have lost.

After a few months, they start sending out nerve fibres and producing dopamine.

The vision is that it could be given as a one-time treatment and the hope is that the patients can reduce their medication, avoid side effects of the drug treatment and get a long-term good motor effect from the cells for life, Gesine Paul-Visse, a senior physician in neurology at Skne University Hospital and adjunct professor at Lund University, told Swedish broadcast SVT in 2023 when the first trials started.

Matsson did not feel well immediately when he woke up from the 13-hour procedure. He suffered a psychosis for 10 days.

Among other things, I escaped from the ward twice. The second time it was the police who drove me back. Its not something I want to experience again. Absolutely not, Matsson said.

Whether it was an effect of the long exposure to anaesthesia or whether it had to do with his brain adjusting to the new brain cells is unknown.

So far, five subjects have undergone surgery using the researchers' lab-grown cells.

Soon three additional patients will receive a double dose, with 14 million brain cells each.

Theres always a theoretical risk of tumours forming, which is likely to increase if you have a higher number of implanted brain cells, Paul-Visse said.

Then there is a risk of over-medication, that you produce too much dopamine in the brain. I think this risk is extremely low, she added.

If all goes well with the first eight patients, the research team will continue with larger studies in collaboration with a pharmaceutical company.

The interest from patients has been incredible. There are even patients living abroad who would have liked to move to Sweden to participate in this study. And we had to inform all patients that the recruitment for this study was closed, said Paul-Visse.

Matsson says he is 110 per cent certain that the research team will succeed.

I am absolutely convinced, 110 per cent! And I hope that these scientists will eventually get their just rewards, he added.

The hope is that the cultured cells will be available as a medicine worldwide in seven to ten years.

There is absolutely hope. Absolutely there is! said Paul-Visse as a message to people living with Parkinsons disease.

For more on this story, watch the video in the media player above.

See the original post:
Parkinson's patient moves freely again after world-first implant of lab-grown cells into his brain - Euronews