Elixirgen Therapeutics planning to begin Phase I/II Clinical Trials of its COVID-19 Vaccine Candidate EXG-5003 at Fujita Health University | Vaccines…

Details Category: Vaccines Published on Tuesday, 01 September 2020 17:45 Hits: 64

BALTIMORE, MD, USA I September 1, 2020 I Elixirgen Therapeutics, Inc., a Baltimore-based biotechnology company focused on the discovery, development and commercialization of therapies for genetic diseases and vaccines, announced that Fujita Health University has received acontract from the Japan Agency for Medical Research and Development (AMED) to initiate Phase I/II clinical trials of the company's COVID-19 vaccine candidate, EXG-5003. Clinical trials are expected to begin at Fujita Health University Hospital in Aichi, Japan in Q1 2021.

EXG-5003 is a temperature-sensitive self-replicating RNA vaccine expressing the receptor binding domain of the SARS-CoV-2 spike protein. EXG-5003 was optimized for intradermal injection withpotential dose-sparing and safety benefits.

About Elixirgen Therapeutics, Inc.

Elixirgen Therapeutics, Inc. is a Baltimore-based biotechnology company, which is focused on curing humanity's ailments through innovations in gene and cell therapy, including stem cell therapy. Elixirgen Therapeutics, Inc. is now applying its RNA technology to the development of a COVID-19 vaccine.For more information visit http://www.ElixirgenTherapeutics.com

About Fujita Health University

Fujita Health University plays a major role in treating COVID-19 patients and conducting its clinical trials in Japan. For more information visit http://www.fujita-hu.ac.jp/en/

SOURCE: Elixirgen Therapeutics

Read the original:
Elixirgen Therapeutics planning to begin Phase I/II Clinical Trials of its COVID-19 Vaccine Candidate EXG-5003 at Fujita Health University | Vaccines...

How Groups of Cells Cooperate to Build Organs and Organisms – The Scientist

Efforts to use regenerative medicinewhich seeks to address ailments as diverse as birth defects, traumatic injury, aging, degenerative disease, and the disorganized growth of cancerwould be greatly aided by solving one fundamental puzzle: How do cellular collectives orchestrate the building of complex, three-dimensional structures?

While genomes predictably encode the proteins present in cells, a simple molecular parts list does not tell us enough about the anatomical layout or regenerative potential of the body that the cells will work to construct. Genomes are not a blueprint for anatomy, and genome editing is fundamentally limited by the fact that its very hard to infer which genes to tweak, and how, to achieve desired complex anatomical outcomes. Similarly, stem cells generate the building blocks of organs, but the ability to organize specific cell types into a working human hand or eye has been and will be beyond the grasp of direct manipulation for a very long time.

But researchers working in the fields of synthetic morphology and regenerative biophysics are beginning to understand the rules governing the plasticity of organ growth and repair. Rather than micromanaging tasks that are too complex to implement directly at the cellular or molecular level, what if we solved the mystery of how groups of cells cooperate to construct specific multicellular bodies during embryogenesis and regeneration? Perhaps then we could figure out how to motivate cell collectives to build whatever anatomical features we want.

New approaches now allow us to target the processes that implement anatomical decision-making without genetic engineering. In January, using such tools, crafted in my lab at Tufts Universitys Allen Discovery Center and by computer scientists in Josh Bongards lab at the University of Vermont, we were able to create novel living machines, artificial bodies with morphologies and behaviors completely different from the default anatomy of the frog species (Xenopus laevis) whose cells we used. These cells rebooted their multicellularity into a new form, without genomic changes. This represents an extremely exciting sandbox in which bioengineers can play, with the aim of decoding the logic of anatomical and behavioral control, as well as understanding the plasticity of cells and the relationship of genomes to anatomies.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking.

Deciphering how an organism puts itself together is truly an interdisciplinary undertaking. Resolving the whole picture will involve understanding not only the mechanisms by which cells operate, but also elucidating the computations that cells and groups of cells carry out to orchestrate tissue and organ construction on a whole-body scale. The next generation of advances in this area of research will emerge from the flow of ideas between computer scientists and biologists. Unlocking the full potential of regenerative medicine will require biology to take the journey computer science has already taken, from focusing on the hardwarethe proteins and biochemical pathways that carry out cellular operationsto the physiological software that enables networks of cells to acquire, store, and act on information about organ and indeed whole-body geometry.

In the computer world, this transition from rewiring hardware to reprogramming the information flow by changing the inputs gave rise to the information technology revolution. This shift of perspective could transform biology, allowing scientists to achieve the still-futuristic visions of regenerative medicine. An understanding of how independent, competent agents such as cells cooperate and compete toward robust outcomes, despite noise and changing environmental conditions, would also inform engineering. Swarm robotics, Internet of Things, and even the development of general artificial intelligence will all be enriched by the ability to read out and set the anatomical states toward which cell collectives build, because they share a fundamental underlying problem: how to control the emergent outcomes of systems composed of many interacting units or individuals.

Many types of embryos can regenerate entirely if cut in half, and some species are proficient regenerators as adults. Axolotls (Ambystoma mexicanum) regenerate their limbs, eyes, spinal cords, jaws, and portions of the brain throughout life. Planarian flatworms (class Turbellaria), meanwhile, can regrow absolutely any part of their body; when the animal is cut into pieces, each piece knows exactly whats missing and regenerates to be a perfect, tiny worm.

The remarkable thing is not simply that growth begins after wounding and that various cell types are generated, but that these bodies will grow and remodel until a correct anatomy is complete, and then they stop. How does the system identify the correct target morphology, orchestrate individual cell behaviors to get there, and determine when the job is done? How does it communicate this information to control underlying cell activities?

Several years ago, my lab found that Xenopus tadpoles with their facial organs experimentally mixed up into incorrect positions still have largely normal faces once theyve matured, as the organs move and remodel through unnatural paths. Last year, a colleague at Tufts came to a similar conclusion: the Xenopus genome does not encode a hardwired set of instructions for the movements of different organs during metamorphosis from tadpole to frog, but rather encodes molecular hardware that executes a kind of error minimization loop, comparing the current anatomy to the target frog morphology and working to progressively reduce the difference between them. Once a rough spatial specification of the layout is achieved, that triggers the cessation of further remodeling.

The deep puzzle of how competent agents such as cells work together to pursue goals such as building, remodeling, or repairing a complex organ to a predetermined spec is well illustrated by planaria. Despite having a mechanistic understanding of stem cell specification pathways and axial chemical gradients, scientists really dont know what determines the intricate shape and structure of the flatworms head. It is also unknown how planaria perfectly regenerate the same anatomy, even as their genomes have accrued mutations over eons of somatic inheritance. Because some species of planaria reproduce by fission and regeneration, any mutation that doesnt kill the neoblastthe adult stem cell that gives rise to cells that regenerate new tissueis propagated to the next generation. The worms incredibly messy genome shows evidence of this process, and cells in an individual planarian can have different numbers of chromosomes. Still, fragmented planaria regenerate their body shape with nearly 100 percent anatomical fidelity.

Permanent editing of the encoded target morphology without genomic editing reveals a new kind of epigenetics.

So how do cell groups encode the patterns they build, and how do they know to stop once a target anatomy is achieved? What would happen, for example, if neoblasts from a planarian species with a flat head were transplanted into a worm of a species with a round or triangular head that had the head amputated? Which shape would result from this heterogeneous mixture? To date, none of the high-resolution molecular genetic studies of planaria give any prediction for the results of this experiment, because so far they have all focused on the cellular hardware, not on the logic of the softwareimplemented by chemical, mechanical, and electrical signaling among cellsthat controls large-scale outcomes and enables remodeling to stop when a specific morphology has been achieved.

Understanding how cells and tissues make real-time anatomical decisions is central not only to achieving regenerative outcomes too complex for us to manage directly, but also to solving problems such as cancer. While the view of cancer as a genetic disorder still largely drives clinical approaches, recent literature supports a view of cancer as cells simply not being able to receive the physiological signals that maintain the normally tight controls of anatomical homeostasis. Cut off from these patterning cues, individual cells revert to their ancient unicellular lifestyle and treat the rest of the body as external environment, often to ruinous effect. If we understand the mechanisms that scale single-cell homeostatic setpoints into tissue- and organ-level anatomical goal states and the conditions under which the anatomical error reduction control loop breaks down, we may be able to provide stimuli to gain control of rogue cancer cells without either gene therapy or chemotherapy.

During morphogenesis, cells cooperate to reliably build anatomical structures. Many living systems remodel and regenerate tissues or organs despite considerable damagethat is, they progressively reduce deviations from specific target morphologies, and halt growth and remodeling when those morphologies are achieved. Evolution exploits three modalities to achieve such anatomical homeostasis: biochemical gradients, bioelectric circuits, and biophysical forces. These interact to enable the same large-scale form to arise despite significant perturbations.

N.R. FULLER, SAYO-ART, LLC

BIOCHEMICAL GRADIENTS

The best-known modality concerns diffusible intracellular and extracellular signaling molecules. Gene-regulatory circuits and gradients of biochemicals control cell proliferation, differentiation, and migration.

BIOELECTRIC CIRCUITS

The movement of ions across cell membranes, especially via voltage-gated ion channels and gap junctions, can establish bioelectric circuits that control large-scale resting potential patterns within and among groups of cells. These bioelectric patterns implement long-range coordination, feedback, and memory dynamics across cell fields. They underlie modular morphogenetic decision-making about organ shape and spatial layout by regulating the dynamic redistribution of morphogens and the expression of genes.

BIOMECHANICAL FORCES

Cytoskeletal, adhesion, and motor proteins inside and between cells generate physical forces that in turn control cell behavior. These forces result in large-scale strain fields, which enable cell sheets to move and deform as a coherent unit, and thus execute the folds and bends that shape complex organs.

The software of life, which exploits the laws of physics and computation, is enabled by chemical, mechanical, and electrical signaling across cellular networks. While the chemical and mechanical mechanisms of morphogenesis have long been appreciated by molecular and cell biologists, the role of electrical signaling has largely been overlooked. But the same reprogrammability of neural circuits in the brain that supports learning, memory, and behavioral plasticity applies to all cells, not just neurons. Indeed, bacterial colonies can communicate via ionic currents, with recent research revealing brain-like dynamics in which information is propagated across and stored in a kind of proto-body formed by bacterial biofilms. So it should really come as no surprise that bioelectric signaling is a highly tractable component of morphological outcomes in multicellular organisms.

A few years ago, we studied the electrical dynamics that normally set the size and borders of the nascent Xenopus brain, and built a computer model of this process to shed light on how a range of various brain defects arise from disruptions to this bioelectric signaling. Our model suggested that specific modifications with mRNA or small molecules could restore the endogenous bioelectric patterns back to their correct layout. By using our computational platform to select drugs to open existing ion channels in nascent neural tissue or even a remote body tissue, we were able to prevent and even reverse brain defects caused not only by chemical teratogenscompounds that disrupt embryonic developmentbut by mutations in key neurogenesis genes.

Similarly, we used optogenetics to stimulate electrical activity in various somatic cell types totrigger regeneration of an entire tadpole tailan appendage with spinal cord, muscle, and peripheral innervationand to normalize the behavior of cancer cells in tadpoles strongly expressing human oncogenes such as KRAS mutations. We used a similar approach to trigger posterior regions, such as the gut, to build an entire frog eye. In both the eye and tail cases, the information on how exactly to build these complex structures, and where all the cells should go, did not have to be specified by the experimenter; rather, they arose from the cells themselves. Such findings reveal how ion channel mutations result in numerous human developmental channelopathies, and provide a roadmap for how they may be treated by altering the bioelectric map that tells cells what to build.

We also recently found a striking example of such reprogrammable bioelectrical software in control of regeneration in planaria. In 2011, we discovered that an endogenous electric circuit establishes a pattern of depolarization and hyperpolarization in planarian fragments that regulate the orientation of the anterior-posterior axis to be rebuilt. Last year, we discovered that this circuit controls the gene expressionneeded to build a head or tail within six hours of amputation, and by using molecules that make cell membranes permeable to certain ions to depolarize or hyperpolarize cells, we induced fragments of such worms to give rise to a symmetrical two-headed form, despite their wildtype genomes. Even more shockingly, the worms continued to generate two-headed progeny in additional rounds of cutting with no further manipulation. In further experiments, we demonstrated that briefly reducing gap junction-mediated connectivity between adjacent cells in the bioelectric network that guides regeneration led worms to regenerate head and brain shapes appropriate to other worm species whose lineages split more than 100 million years ago.

My group has developed the use of voltage-sensitive dyes to visualize the bioelectric pattern memory that guides gene expression and cell behavior toward morphogenetic outcomes. Meanwhile, my Allen Center colleagues are using synthetic artificial electric tissues made of human cells and computer models of ion channel activity to understand how electrical dynamics across groups of non-neural cells can set up the voltage patterns that control downstream gene expression, distribution of morphogen molecules, and cell behaviors to orchestrate morphogenesis.

The emerging picture in this field is that anatomical software is highly modulara key property that computer scientists exploit as subroutines and that most likely contributes in large part to biological evolvability and evolutionary plasticity. A simple bioelectric state, whether produced endogenously during development or induced by an experimenter, triggers very complex redistributions of morphogens and gene expression cascades that are needed to build various anatomies. The information stored in the bodys bioelectric circuitscan be permanently rewritten once we understand the dynamics of the biophysical circuits that make the critical morphological decisions. This permanent editing of the encoded target morphology without genomic editing reveals a new kind of epigenetics, information that is stored in a medium other than DNA sequences and chromatin.

Recent work from our group and others has demonstrated that anatomical pattern memories can be rewritten by physiological stimuli and maintained indefinitely without genomic editing. For example, the bioelectric circuit that normally determines head number and location in regenerating planaria can be triggered by brief alterations of ion channel or gap junction activity to alter the animals body plan. Due to the circuits pattern memory, the animals remain in this altered state indefinitely without further stimulation, despite their wildtype genomes. In other words, the pattern to which the cells build after damage can be changed, leading to a target morphology distinct from the genetic default.

N.R. FULLER, SAYO-ART, LLC

First, we soaked a planarian in voltage-sensitive fluorescent dye to observe the bioelectrical pattern across the entire tissue. We then cut the animal to see how this pattern changes in each fragment as it begins to regenerate.

We then applied drugs or used RNA interference to target ion channels or gap junctions in individual cells and thus change the pattern of depolarization/hyperpolarization and cellular connectivity across the whole fragment.

As a result of the disruption of the bodys bioelectric circuits, the planarian regrows with two heads instead of one, or none at all.

When we re-cut the two-headed planarian in plain water, long after the initial drug has left the tissue, the new anatomy persists in subsequent rounds of regeneration.

Cells can clearly build structures that are different from their genomic-default anatomical outcomes. But are cells universal constructors? Could they make anything if only we knew how to motivate them to do it?

The most recent advances in the new field at the intersection of developmental biology and computer science are driven by synthetic living machines known as biobots. Built from multiple interacting cell populations, these engineered machines have applications in disease modeling and drug development, and as sensors that detect and respond to biological signals. We recently tested the plasticity of cells by evolving in silico designs with specific movement and behavior capabilities and used this information to sculpt self-organized growth of aggregated Xenopus skin and muscle cells. In a novel environmentin vitro, as opposed to inside a frog embryoswarms of genetically normal cells were able to reimagine their multicellular form. With minimal sculpting post self-assembly, these cells form Xenobots with structures, movements, and other behaviors quite different from what might be expected if one simply sequenced their genome and identified them as wildtype X. laevis.

These living creations are a powerful platform to assess and model the computations that these cell swarms use to determine what to build. Such insights will help us to understand evolvability of body forms, robustness, and the true relationship between genomes and anatomy, greatly potentiating the impact of genome editing tools and making genomics more predictive for large-scale phenotypes. Moreover, testing regimes of biochemical, biomechanical, and bioelectrical stimuli in these biobots will enable the discovery of optimal stimuli for use in regenerative therapies and bioengineered organ construction. Finally, learning to program highly competent individual builders (cells) toward group-level, goal-driven behaviors (complex anatomies) will significantly advance swarm robotics and help avoid catastrophes of unintended consequences during the inevitable deployment of large numbers of artificial agents with complex behaviors.

Understanding how cells and tissues make real-time anatomical decisions is central to achieving regenerative outcomes too complex for us to manage directly.

The emerging field ofsynthetic morphology emphasizes a conceptual point that has been embraced by computer scientists but thus far resisted by biologists: the hardware-software distinction. In the 1940s, to change a computers behavior, the operator had to literally move wires aroundin other words, she had to directly alter the hardware. The information technology revolution resulted from the realization that certain kinds of hardware are reprogrammable: drastic changes in function could be made at the software level, by changing inputs, not the hardware itself.

In molecular biomedicine, we are still focused largely on manipulating the cellular hardwarethe proteins that each cell can exploit. But evolution has ensured that cellular collectives use this versatile machinery to process information flexibly and implement a wide range of large-scale body shape outcomes. This is biologys software: the memory, plasticity, and reprogrammability of morphogenetic control networks.

The coming decades will be an extremely exciting time for multidisciplinary efforts in developmental physiology, robotics, and basal cognition to understand how individual cells merge together into a collective with global goals not belonging to any individual cell. This will drive the creation of new artificial intelligence platforms based not on copying brain architectures, but on the multiscale problem-solving capacities of cells and tissues. Conversely, the insights of cognitive neurobiology and computer science will give us a completely new window on the information processing and decision-making dynamics in cellular collectives that can very effectively be targeted for transformative regenerative therapies of complex organs.

Michael Levinis the director of the Allen Discovery Center at Tufts University and Associate Faculty at Harvard Universitys Wyss Institute. Email him atmichael.levin@tufts.edu. M.L. thanks Allen Center Deputy DirectorJoshua Finkelsteinfor suggestions on the drafts of this story.

More here:
How Groups of Cells Cooperate to Build Organs and Organisms - The Scientist

Keio University gets OK for iPS-based heart cell transplant plan – The Japan Times

A health ministry panel on Thursday approved a Keio University clinical research project to transplant heart muscle cells made from induced pluripotent stem (iPS) cells into heart disease patients.

The research will be carried out by a team led by Prof. Keiichi Fukuda for three people between 20 and 74 suffering from dilated cardiomyopathy, which lowers the hearts power to pump blood. The first transplant will be conducted by the end of this year at the earliest.

The team will use iPS cells made by Kyoto University from the blood of a person who has a special immunological type with less risk of rejection.

The team will transform the iPS cells into heart muscle cells and inject about 50 million of them into the heart using a special syringe. Immunosuppressive drugs will be used for about half a year, and the team will spend a year checking to see whether the treatment leads to the development of tumors and irregular heartbeat or whether it restores heart function.

In January, Osaka University conducted the worlds first transplant of heart muscle cells made from iPS cells. The heart muscle cells were made into sheets and pasted on the surface of the patients heart so that a substance they emit can help regenerate the heart muscles. The cells themselves, however, disappear quickly.

Meanwhile, Keio University has confirmed in an experiment on monkeys that cells colonize after a transplant and heart function improves.

The university expects that transplanted cells will colonize over a long period also in the upcoming clinical research project.

According to the team, there are about 25,000 dilated cardiomyopathy patients in Japan.

A startup led by Fukuda is planning a clinical trial aimed at commercializing the iPS-derived cells, hoping they will also be used for the treatment of other cardiac diseases.

Original post:
Keio University gets OK for iPS-based heart cell transplant plan - The Japan Times

Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications – The Scarlet

The global Stem Cell-Derived Cells market study presents an all in all compilation of the historical, current and future outlook of the market as well as the factors responsible for such a growth. With SWOT analysis, the business study highlights the strengths, weaknesses, opportunities and threats of each Stem Cell-Derived Cells market player in a comprehensive way. Further, the Stem Cell-Derived Cells market report emphasizes the adoption pattern of the Stem Cell-Derived Cells across various industries.

The Stem Cell-Derived Cells market report examines the operating pattern of each player new product launches, partnerships, and acquisitions has been examined in detail.

Request Sample Report @ https://www.persistencemarketresearch.co/samples/28780

key players in stem cell-derived cells market are focused on generating high-end quality cardiomyocytes as well as hepatocytes that enables end use facilities to easily obtain ready-made iPSC-derived cells. As the stem cell-derived cells market registers a robust growth due to rapid adoption in stem cellderived cells therapy products, there is a relative need for regulatory guidelines that need to be maintained to assist designing of scientifically comprehensive preclinical studies. The stem cell-derived cells obtained from human induced pluripotent stem cells (iPS) are initially dissociated into a single-cell suspension and later frozen in vials. The commercially available stem cell-derived cell kits contain a vial of stem cell-derived cells, a bottle of thawing base and culture base.

The increasing approval for new stem cell-derived cells by the FDA across the globe is projected to propel stem cell-derived cells market revenue growth over the forecast years. With low entry barriers, a rise in number of companies has been registered that specializes in offering high end quality human tissue for research purpose to obtain human induced pluripotent stem cells (iPS) derived cells. The increase in product commercialization activities for stem cell-derived cells by leading manufacturers such as Takara Bio Inc. With the increasing rise in development of stem cell based therapies, the number of stem cell-derived cells under development or due for FDA approval is anticipated to increase, thereby estimating to be the most prominent factor driving the growth of stem cell-derived cells market. However, high costs associated with the development of stem cell-derived cells using complete culture systems is restraining the revenue growth in stem cell-derived cells market.

The global Stem cell-derived cells market is segmented on basis of product type, material type, application type, end user and geographic region:

Segmentation by Product Type

Segmentation by End User

The stem cell-derived cells market is categorized based on product type and end user. Based on product type, the stem cell-derived cells are classified into two major types stem cell-derived cell kits and accessories. Among these stem cell-derived cell kits, stem cell-derived hepatocytes kits are the most preferred stem cell-derived cells product type. On the basis of product type, stem cell-derived cardiomyocytes kits segment is projected to expand its growth at a significant CAGR over the forecast years on the account of more demand from the end use segments. However, the stem cell-derived definitive endoderm cell kits segment is projected to remain the second most lucrative revenue share segment in stem cell-derived cells market. Biotechnology and pharmaceutical companies followed by research and academic institutions is expected to register substantial revenue growth rate during the forecast period.

North America and Europe cumulatively are projected to remain most lucrative regions and register significant market revenue share in global stem cell-derived cells market due to the increased patient pool in the regions with increasing adoption for stem cell based therapies. The launch of new stem cell-derived cells kits and accessories on FDA approval for the U.S. market allows North America to capture significant revenue share in stem cell-derived cells market. Asian countries due to strong funding in research and development are entirely focused on production of stem cell-derived cells thereby aiding South Asian and East Asian countries to grow at a robust CAGR over the forecast period.

Some of the major key manufacturers involved in global stem cell-derived cells market are Takara Bio Inc., Viacyte, Inc. and others.

The report covers exhaustive analysis on:

Regional analysis includes

Report Highlights:

Buy the report at a discounted rate!!! Exclusive offer!!!

Request Report Methodology @ https://www.persistencemarketresearch.co/methodology/28780

The Stem Cell-Derived Cells market report offers a plethora of insights which include:

The Stem Cell-Derived Cells market report answers important questions which include:

The Stem Cell-Derived Cells market report considers the following years to predict the market growth:

For any queries get in touch with Industry Expert @ https://www.persistencemarketresearch.co/ask-an-expert/28780

Why Choose Stem Cell-Derived Cells Market Report?

Stem Cell-Derived Cells Market Reportfollows a multi- disciplinary approach to extract information about various industries. Our analysts perform thorough primary and secondary research to gather data associated with the market. With modern industrial and digitalization tools, we provide avant-garde business ideas to our clients. We address clients living in across parts of the world with our 24/7 service availability.

More:
Stem Cell-Derived Cells Market Forecast to 2025: Global Industry Analysis by Top Players, Types, Key Regions and Applications - The Scarlet

Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 – StartupNG

The Plasma Therapy market research report added by Market Study Report, LLC, is an in-depth analysis of the latest trends persuading the business outlook. The report also offers a concise summary of statistics, market valuation, and profit forecast, along with elucidating paradigms of the evolving competitive environment and business strategies enforced by the behemoths of this industry.

The Plasma Therapy market report provides with a broad perspective of this business space and contains crucial insights such as current and predicted remuneration of the industry, in consort with its size and valuation over the estimated timeframe.

Request a sample Report of Plasma Therapy Market at:https://www.marketstudyreport.com/request-a-sample/2448306?utm_source=scientect.com&utm_medium=AG

The study assesses the key factors that are positively affecting the industry landscape based on revenue generated as well as market growth. Additionally, the document analyzes the current trends that define this market while evaluating the challenges & limitations as well as the growth factors of this domain.

Key aspects of Plasma Therapy market report:

Regional analysis of Plasma Therapy market:

Plasma Therapy Market Segmentation:

Product types and application scope of Plasma Therapy market:

Product landscape:

Product types:

Key factors highlighted in the report:

Application Landscape:

Application segmentation:

Details specified in the document:

Additional information enlisted in the document:

Ask for Discount on Plasma Therapy Market Report at:https://www.marketstudyreport.com/check-for-discount/2448306?utm_source=scientect.com&utm_medium=AG

Competitive arena of the Plasma Therapy market:

Key players in the Plasma Therapy market:

Major aspects enlisted in the report:

Report Objectives:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-plasma-therapy-market-growth-status-and-outlook-2020-2025

Some of the Major Highlights of TOC covers:

Plasma Therapy Regional Market Analysis

Plasma Therapy Segment Market Analysis (by Type)

Plasma Therapy Segment Market Analysis (by Application)

Plasma Therapy Major Manufacturers Analysis

Related Reports:

1. Global Induced Pluripotent Stem Cells (iPSCs) Market Growth (Status and Outlook) 2020-2025 This report categorizes the Induced Pluripotent Stem Cells (iPSCs) market data by manufacturers, region, type and application, also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors Analysis. Read More: https://www.marketstudyreport.com/reports/global-induced-pluripotent-stem-cells-ipscs-market-growth-status-and-outlook-2020-2025

2. Global Ergothioneine (EGT) Market Growth (Status and Outlook) 2020-2025 Ergothioneine (EGT) Market report covers the market landscape and its growth prospects over the coming years, the Report also brief deals with the product life cycle, comparing it to the relevant products from across industries that had already been commercialized details the potential for various applications, discussing about recent product innovations and gives an overview on potential regional market. Read More: https://www.marketstudyreport.com/reports/global-ergothioneine-egt-market-growth-status-and-outlook-2020-2025

Contact Us: Corporate Sales, Market Study Report LLC Phone: 1-302-273-0910 Toll Free: 1-866-764-2150 Email: [emailprotected]

Visit link:
Plasma Therapy Market Overview with Detailed Analysis, Competitive landscape, Forecast to 2025 - StartupNG

Genetics of the Tree of Life – Lab Manager Magazine

The African baobab tree (Adansonia digitata) is called the tree of life. Baobab trees can live for more than a thousand years and provide food, livestock fodder, medicinal compounds, and raw materials. Baobab trees are incredibly significant. However, there are growing conservation concerns and until now, a lack of genetic information.

The African baobab tree has 168 chromosomescritical knowledge for further genetic studies, conservation, and improvement for agricultural purposes. The findings were published in the journalScientific Reports. Previous studies estimated that the tree has between 96 and 166 chromosomes.

The African baobab tree has 168 chromosomes in total. USDA researchers used fluorescent probes to see the genetic components of individual chromosomes within the cells.

Islam-Faradi, Sakhanokho & Nelson

"We were able to unequivocally count the chromosomes," says Nurul Faridi, a USDA Forest Service research geneticist who co-led the study with Hamidou Sakhanokho, a USDA Agricultural Research Service research geneticist.

The researchers used fluorescent probes to see the genetic components of individual chromosomes within the cellswhich glow like jewels.

The analysis also revealed that the tree has a massive nucleolus organizer region (NOR). Relative to the main chromosome body, this region appears larger than that of any other plant species. During certain stages of the cell cycle, nucleoli form at the NORs. The nucleoli are essential for ribosome assembly and protein synthesis in eukaryotes and are an important feature that differentiates eukaryotes from prokaryotes.

"These genetic findings are foundational and will make genetic conservation of the African baobab tree more efficient and effective," says Dana Nelson, a coauthor and project leader of the Southern Research Station's genetic unit. "This research is also a precursor for tree breeding programs seeking to improve baobab for silvicultural applications."

- This press release was originally published on theUSDA Forest Service's Southern Research Station website

Read more:
Genetics of the Tree of Life - Lab Manager Magazine

Royal Biologics Announces the Acquisition of FIBRINET – PRNewswire

HACKENSACK, N.J., Sept. 1, 2020 /PRNewswire/ --Royal Biologics, an ortho-biologics company specializing in the research and advancement of autologous and live cellular solutions, today announced the completed acquisition of FIBRINET, from Vertical Spine LLC. The acquisition comes as part of Royal Biologics' strategic initiative to add novel technologies to its growing portfolio of autologous and live cellular solutions to support orthopedic and spinal fusion.

The FIBRINET system utilizes a patient's own autologous blood to create a platelet-rich fibrin matrix/membrane (PRFM). During this process, a patient's autologous platelets are harvested first through centrifugation and then combined with a proprietary solution to solidify into a fibrin clot/membrane. PRFM can be used to help augment spinal fusions and provide surgeons a new and novel biologic option. FIBRINET is the first commercialized system that utilizes a non-thrombin solution to create a reproducible platelet-rich fibrin matrix. The use of its proprietary solution to solidify a fibrin membrane provides the unique advantage of creating a biologic reservoir of growth factors and stem cells that can be held and used at the point of care for spinal fusion.

"We are extremely excited to add FIBRINET to our growing portfolio of autologous and live cellular therapies," says Salvatore Leo, Royal Biologics Chief Executive Officer. "FIBRINET'S technology now allows surgeons to harvest a patient's autologous cells and create a unique platelet-rich fibrin membrane-scaffold to be used at the point of care in most spinal fusion procedures. When added to our current product portfolio of autologous and live cellular therapies, we feel that providing each patient an opportunity to harvest their own unique cells for treatment is a superior option in many surgical settings."

FIBRINET has shown promising results and has been adopted into major orthopedic institutions in the United States. Hospitals such as Hospital for Special Surgery, Mount Sinai, NY Presbyterian and Connecticut's Orthopaedic Institute have all adopted FIBRINET into their spine services portfolio of approved products for use.

In a recent European Spine Journalstudy, at a one-year follow-up, FIBRINET demonstrated over a 92.4% radiographic fusion, and there was a significant improvement recorded in VAS scores for both back and leg pain. Compared to baseline figures, the number of patients using opioid analgesics at 12 months decreased by 38%. While the majority (31/50) of patients that participated in the study were retired, 68% of the employed patients were able to return to work.1

"FIBRINET presents itself as a low-cost option to obtain premium, high-quality viable cells from the patient for each fusion procedure," comments Dr. James Yue, Co-Chief and Orthopedic Spine Surgeon at Midstate Medical Center. "During this pandemic, a time when patients are having difficulty receiving operations in major hospital systems, the transition of procedures to ambulatory surgery centers has become even more desired and essential. FIBRINET's low-cost bundle provides surgeons the ability to offer a live viable cell product, point of care in a streamlined and safe environment for spinal fusion."

As part of a national re-launch plan for FIBRINET, Royal Biologics has just launched a new 3D animated moviethat demonstrates the unique features and benefits of FIBRINET's technology. "We wanted to show surgeons, distributors and our peers a new and creative take on Autologous & Live Cellular therapy," comments Leo. "With the recent pandemic and industry environment, we felt it was necessary to help create a unique viewing experience of the FIBRINET system."

FIBRINET comes after two other recent product launches from Royal Biologics in Q1 of 2020. Magnus, a live viable cellular allograft, and Cryo-Cord, a live cellular umbilical cord, were launched in the first quarter of 2020. Both products focus on providing live cellular therapies without the use of traditional toxic cyro-protectants. Both products are new, novel approaches to preserving live cells in a cryo-protected format.

Royal Biologic's FIBRINET is available for U.S. national distribution. Please contact [emailprotected] for more information.

1"Singlecenter, consecutive series study of the use of a novel plateletrich fibrin matrix (PRFM) and betatricalcium phosphate in posterolateral lumbar fusion," European Spine Journal https://doi.org/10.1007/s00586-018-5832-5, July 16, 2018.

SOURCE Royal Biologics

Home

Read the original:
Royal Biologics Announces the Acquisition of FIBRINET - PRNewswire

Targeted Approach Considered for the Treatment of Accelerated/Blast Phase MPNs – Targeted Oncology

Standard treatment for accelerated or blast phase myeloproliferative neoplasms (MPNs) consists of hypomethylating agents (HMAs) or intensive induction chemotherapy and transplant. However, newer studies have suggested that accelerated or blast phase MPNs, such as acute myeloid leukemia (AML), can be treated with molecularly driven targeted therapies.

Srdan Verstovsek, MD, explained the current treatment paradigm for patients with accelerated or blast phase MPNs as well as emerging therapies in this setting in a presentation during the Texas Virtual MPN Workshop.1

Current Paradigm and Unmet Needs

Verstovsek, professor in the Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, explained that there are 3 phases of MPNs: chronic, accelerated, and blast (or post-MPN AML), which are determined by the percentage of blasts in the peripheral blood or bone marrow. These phases affect each type of MPN: essential thrombocytopenia (ET), polycythemia vera (PV), and myelofibrosis. In the chronic phase there are less than 10% blasts found in the peripheral blood or bone marrow, and in the blast phase theres 20% or more.

Blast-phase MPNs are associated with a very poor prognosis. It unfortunately has not changed very much over many yearswe have a lot to do, Verstovsek said.

Additionally, those with blast-phase MPNs show limited responses to conventional treatments for AML. In an analysis of 91 patients who developed post-MPN AML, patients who were treated with conventional treatments did not show significant survival differences compared with those who were not treated. The median survival among patients who received induction chemotherapy was 3.9 months compared with 2.1 months for those who did not receive any chemotherapy.2

Stem cell transplant, however, does have a more significant impact on survival following induction chemotherapy. Only patients that achieve complete response [CR] and go for transplant do well, Verstovsek said.

One analysis showed that the rate of overall survival (OS) among patients who did not achieve a CR from induction chemotherapy prior to transplant was 22% compared with 69% among patients who did have a CR (P = .008).3 He said that overall, the chance of achieving a CR with induction chemotherapy is approximately 35% to 40%.4

An alternative to induction chemotherapy is azacitidine, which has shown comparable survival rates to chemotherapy in post-MPN AML. In a study of 73 patients with post-MPN AML, no statistically significant difference was observed in either event-free survival or OS between those treated with chemotherapy or azacitidine. The event-free survival was 4.2 months with induction chemotherapy and 5.8 months with azacitidine (P = .4443) and the median OS was 8.3 and 7.9 months, respectively (P = .9842). Response rates were also similar at 58.8% with chemotherapy and 54.6% with azacitidine.5

The patients that transform from chronic phase MPN to blastic phase MPN actually pass through accelerated phase MPN. That is rather a rule. Its extraordinarily rare that overnight the patient comes from chronic phase to blastic phase, usually you see blasts coming up, Verstovsek said. That is useful because we dont want to wait for patients to transform. If we can follow patients closely, we would be intervening with hypomethylating agents in the accelerated phase.

Research suggests that patients benefit more from HMAs in the accelerated phase than in the blast phase. A retrospective study of patients with high-risk myelofibrosis in the accelerated or blast phase who were treated with decitabine showed that the OS among patients in the blast phase was 6.9 months, but those in the accelerated phase had a median OS of 9.7 months. Among those who responded to decitabine, the median OS was 10.5 months for those in the blast phase and 11.8 months for those in the accelerated phase.6

As ruxolitinib (Jakafi) is standard of care in treating patients with myelofibrosis, the JAK inhibitor has been investigated in clinical trials in combination with HMAs for the treatment of patients with accelerated and blast phase MPNs. When we talk about transformation to accelerated/blastic phase, we are usually talking about [patients with] myelofibrosis transforming, they are in bad physical shape, they have a very big spleen, very big liver, so there is utility perhaps in giving them ruxolitinib, Verstovsek said.

In a phase 1/2 study of ruxolitinib and decitabine in 29 patients with blast phase MPN, treatment with up to 50 mg of ruxolitinib twice daily and 20 mg/m2 of intravenous decitabine for 5 days on a 4 to 6 week schedule led to a response rate of 45%, which included a CR rate of 7%. The median OS for patients who responded to treatment was 9.4 months compared with 6.2 months in those who did not respond.7

We already know that ruxolitinib is not active in preventing progression. On its own its not active in accelerated or blast phasethats already well known, Verstovsek said.

The National Comprehensive Cancer Network (NCCN) guidelines for MPNs now include that ruxolitinib or fedratinib (Inrebic) can be given close to the start of conditioning treatment for the improvement of splenomegaly or disease-related symptoms.8

Overall, Verstovsek suggested starting with HMAs for 2 to 3 cycles because it canbedelivered in the outpatient setting and is not as toxic as chemotherapy, leading to better quality of life for the patient.

Moving Toward a Molecularly Targeted Approach

New medications are being developed for de novo acute myeloid leukemia, so why not use some of them in the setting of post-MPN AML or even in accelerated phase MPN? Verstovsek suggested.

Mutational analyses have shown a significant difference in the mutation frequency found between de novo AML and accelerated or blast phase MPNs. One mutation that is found more often in accelerated or blast phase MPN is IDH1/2, and agents are already available to target these alterations.

Small studies have already shown promise for this approach of treating patients with IDH1/2-mutant accelerated or blast phase MPNs with an IDH1/2 inhibitor. In a small study of 12 patients with IDH1/2-mutant post-MPN AML treated with IDH1/2 inhibitorbased regimens, 3 of 7 patients treated in the frontline setting had a CR and a median duration of response of 17.5+ months was reported. Two patients treated in the frontline and 3 in the relapsed/refractory setting also had stable disease.1

Targeted agentsis the way of the futureidentifying patients based on genetic profile and targeting those mutations for which we have medications, Verstovsek said.

A study has also considered treatment with venetoclax (Venclexta)based combination regimens. The study included 29 patients treated in the frontline or relapsed/refractory setting. Six of the 14 patients treated in the frontline setting achieved a CR or complete response with incomplete hematologic recovery from treatment with the venetoclax regimen and showed a median duration of response of 6 months. However, there was a high degree of infections and mortality in the first 60 days of treatment.1

Additionally, when comparing the venetoclax regimen to other treatment regimens, no survival benefit was found with the use of venetoclax.

Verstovsek summarized that those with targetable mutations, such as IDH1/2 or FLT3 mutations, should receive these targeted treatments, and those with no targetable mutation should receive HMA-based therapy or intensive chemotherapy, and all patients are recommended to undergo allogeneic stem cell transplant if they achieve a complete response and are eligible for transplant.

References:

1. Verstovsek S. Therapy Strategies for Accelerated and Blastic Phase MPN. Presented at: Texas Virtual MPN Workshop; August 27-28, 2020; Virtual.

2. Mesa RA, Li CY, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood. 2005;105(3):973-977. doi:10.1182/blood-2004-07-2864

3. Alchalby H, Zabelina T, Stubig T, et al; Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Bio Blood Marrow Trasplant. 2014;20(2):279-281. doi:10.1016/j.bbmt.2013.10.027

4. Mascarenhas J. A concise update on risk factors, therapy, and outcome of leukemic transformation of myeloproliferative neoplasms. Clin Lymph Myel Leuk. 2016;16(suppl):S124-S129. doi:10.1016/j.clml.2016.02.016

5. Venton G, Courtier F, Charbonnier A, et al. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms. Am J Hematol. 2018;93(3):330-338. doi:10.1002/ajh.24973

6. Badar T, Kantarjian HM, Ravandi F, et al. Therapeutic benefit of decitabine, a hypomethylating agent, in patients with high-risk primary myelofibrosis and myeloproliferative neoplasm in accelerated or blastic/acute myeloid leukemia phase. Leuk Res. 2015;39(9):950-956. doi:10.1016/j.leukres.2015.06.001

7. Bose P, Verstovsek S, Cortes JE, et al. A phase 1/2 study of ruxolitinib and decitabine in patients with post-myeloproliferative neoplasm acute myeloid leukemia. Leukemia. 2020;34(9):2489-2492. doi:10.1038/s41375-020-0778-0

8. NCCN Clinical Practice Guidelines in Oncology. Myeloproliferative neoplasms, version 1.2020. Accessed August 28, 2020. https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf

See original here:
Targeted Approach Considered for the Treatment of Accelerated/Blast Phase MPNs - Targeted Oncology

Novel Targets Outside of JAK Inhibition Inching into Myelofibrosis Treatment Landscape – Targeted Oncology

Experts in myeloproliferative neoplasms find janus kinase (JAK) inhibitors to be particularly important to the armamentarium for the treatment of myelofibrosis (MF). With only 2 FDA-approved agents, fedratinib (Inrebic) and ruxolitinib (Jakafi), and the inevitability that not all patients will derive benefit, and some will develop resistance, the option of moving beyond JAK inhibition is widely discussed.

During a presentation at the 1st annual Texas Virtual MPN Workshop, Naveen Pemmaraju, MD, associate professor, Department of Leukemia, University of Texas MD Anderson Cancer Center discussed the novel therapies beyond JAK inhibitors that are making their way into the treatment landscape of MF.1

Currently, novel agents are showing promise in phase 3 clinical trials, include pacritinib (SB1518) in the phase 3 PACIFICA study (NCT03165734), momelitinib (formerly GS-0387) is being evaluated in the phase III MOMENTUM study (NCT04173494), and fedratinib, although approved in the frontline setting, is now being evaluated as second-line treatment.

Modern JAK Inhibition Combinations

Ruxolitinib remains the standard-of-care treatment for patients with MF, even with the emergence of novel therapies, Pemmaraju noted. To improve upon outcomes in the patient population, ruxolitinib is now being rechallenged in patients or combined with other drugs. One study for which data were published in a 2018 issue of Blood, explored the addition of ruxolitinib to the chemotherapy agent azacitidineazacitidine (Vidaza).

The phase 2 study of ruxolitinib plus azacitidineazacitidine included 44 patients with MF whose median age was 66 years (range, 48-87 years). At baseline, 36 patients (82%) had intermediate-2 (int-2)/high IPSS score, 29 patients (66%) had splenomegaly, and 24 patients (55%) were positive for a JAK V61F mutation.

Thirty-nine patients were evaluable for response. The median follow-up time was 20.4 months (range, 0.5-3.7). The results showed objective response in 33 patients (72%) which included 2 partial responses and clinical improvement in 31 patients. The median time to response was 1.8 months (range, 0.7-19 months). In addition, the combination of ruxolitinib and azacitidine led to spleen response in 21 (61%) of the 34 patients who had splenomegaly > 5cm. In 3 other patients whose splenomegaly was 5 to 10 cm at baseline, there was a 50% reduction in spleen size following treatment with the ruxolitinib combination.

Another phase 2 clinical trial evaluated treatment with ruxolitinib plus navitoclax in patients with JAK2-resistant MF (NCT03373877). The combination demonstrated clinical activity in these patients, according to findings presented at the 2019 American Society of Hematology Annual Meeting. In 30% of the study population, there was a spleen volume response of greater than 35%. In addition, there was a 65% reduction in symptoms and 35% of patients had a reduction in total symptom score (TTS) of more than 50%.

Pemmeraju also noted an ongoing phase 1b study of ruxolitinib plus PU-H71 in patients with MF and polycythemia vera (PV, NCT03373877). In addition, the add-on strategy is being explored with lenalidomide (Revlimid), thalidomide (Thalomid), pracinostat, CPI-0610, sotatercept (ACE-011) plus luspatercept (Reblozyl), as well as in combination with a PI3k (phosphoinositide 3-kinase) inhibitors and interferon inhibitors.

Possible Modern JAK Inhibition Strategies

Targeting JAK is no longer the only strategy available for MF in 2020, Pemmaraju explained. Research has shown that there are possibilities for targeting apoptosis and cell death pathways, telomerase, hematopoietic stem cell, and microenvironments, the TP53 pathway, and targeting fibrosis, cytokines, epigenetics, and other pathways.

In relation to targeting apoptosis and cell death pathways, the phase 2 study of single-agent LCL-161 (NCT02098161) investigated 50 patients with primarily relapsed/refractory MF. A phase 2 open-label study of navitoclax alone or in combination with ruxolitinib (NCT03222609) is also testing out this strategy. The telomerase inhibitor, imtelestat, was also studied in this patient population in phase 2 study (NCT02426086).

There are 2 ongoing trials (NCT02268253 and NCT03373877) investigating the targeting of hematopoietic stem cell/microenvironment. One study is also assessing the targeting of the TP53 pathway in patients with MPNs as well as post-MPN acute myeloid leukemia (AML). Other trials that Pemmaraju mentioned that are investigating fibrosis, cytokines, epigenetics, and other pathways as targets include the phase 2 study of pentraxin (PRM-151, NCT01981850), as well as the studies of sotatercept/luspatercept, alisertib (MLN8237), CPI-0610, and PSD1 inhibition.

Promise of MF Treatment Beyond JAK Inhibition

Multiple treatment strategies have shown positive results in clinical trials as treatment of patients with high-risk MF, Pemmaraju shared. First, he shared results of the phase 1/2 trial of a novel CD123-directed therapy, which was designed to address the CD123 expression seen in many myeloid malignancies, including MF.

Tagraxofusp

In the phase 1/2 trial of tagraxofusp, 32 patients were included in the safety analysis for the study, and more than 10% experienced treatment-related adverse events (TRAEs). The most common TRAEs of any grade were hypoalbuminemia (25%), headache (16%), alanine aminotransferase increased (16%), anemia (14%), and thrombocytopenia (14%).

At baseline, 18 patients had splenomegaly 5 cm, and of those patients, 10 (56%) had spleen reductions. Additionally, 2 patients had spleen reductions of greater than 50%. Among patients with thrombocytopenia and platelet counts <100 109/L 8 patients (62%) had spleen size reduction as did 4 patients (57%) with thrombocytopenia and platelets < 50 109/L. Subjects with monocytosis whose monocytes were 1 109/L. In addition, 46% of the 24 patients evaluated to efficacy had a reduction in their TTS.

In terms of survival, the median OS observed was 30.5 months at a median follow-up time of 27 months (range, 0.6-50.3 months).

According to Pemmaraju, the subsets of patients with MF who had thrombocytopenia, monocytosis, or accelerated phase disease are areas of ongoing research.

LCL161

LCL161 was the second agent Pemmaraju noted as a potential new treatment for high-risk MF. The agent was assessed in a phase 2 clinical trial which was launched to address the unfavorable survival outcomes in the patient population. In addition, no JAK inhibitors are approved by the FDA as treatment of this particular group of patients with MF.

In 50 patients, the objective response rate was 30%, leading clinical improvements in 11 patients with symptoms, 6 patients with anemia, and 1 pain with splenomegaly. Additionally, 1 patient achieved a cytogenetic remission.

The survival data show that 34 patients (68%) were still alive at data cutoff. The median duration of response was 1.4 months (95% CI, 0.9-9.1 months). There was also a number of longer-term responses (n = 8) who experienced a response for 1 year or more. At data cutoff, long-term responses were ongoing in 4 patients. The median OS was not reached in the study.

Based on these data, Pemmaraju stated that LCL161 may be a viable option for older patients, those who failed prior JAK inhibitors, and those with thrombocytopenia that limit entry into clinical trials.

Luspatercept

Data presented previously at the 2018 American Society of Hematology (ASH) Annual Meeting showed that a phase 2 study of luspatercept was positive for its primary and secondary end points of transfusion independence.1,2

In a cohort of 22 patients who were not receiving ruxolitinib and had no red blood cell transfusion for 12 consecutive weeks, 14% achieved the primary end point and 18% achieved the secondary end point. In a separate cohort of 21 patients who were not receiving ruxolitinib and had been transfusion dependent for 12 consecutive weeks, 10% were positive for the primary end point and 38% were positive for the secondary end point. In the cohort of 14 patients who were receiving a stable dose of ruxolitinib and were transfusion independent of 12 consecutive weeks, 21% reached the primary end point and 64% achieved the secondary end point. Finally, in the cohort of 19 patients who received a stable dose of ruxolitinib but were transfusion-dependent for 12 consecutive weeks, 32% achieved the primary end point and 53% achieved the secondary end point.

CPI-0610

Preliminary results for CPI-0610 were also presented at ASH in 2019. In the phase 2 study CPI-0610 was combined with ruxolitinib in treatment-nave patients with MF.1,3

Compared with baseline measurements, an 80% SVR35 (spleen volume reduction) response was observed at week 12, demonstrating a median change from baseline of -49.7% (range, -80.8% to -17.0%). Responses were also observed in high-risk patients including 86.7% of those with DIPSS Dynamic Prognostic Scoring System (DIPPS) int-2, 80% with hemoglobin < 10g/dL, and 53.3% of patients with high molecular risk (HMR) positivity.

In terms of total symptom score (TSS) improvement, it was observed that 71.4% of patients had a TSS response at week 12, and this included the treatment nave population with an improvement of 45.9%.

Navitoclax

In another phase 2 study, navitoclax with or without ruxolitinib demonstrated promise in patients with primary of secondary MF. The drug specifically helped patients overcome resistance to ruxolitinib which resulted in splenomegaly improvement.1,4

Out of 30 patients assessed, SVR35 at week 24 was 43% in 13 patients and 30% in 9 patients. In addition, resolutions of palpable splenomegaly were observed in 53% of patients. Twenty-five percent of patients also demonstrated reductions in bone marrow fibrosis per local assessment.

Imetelstat

A randomized phase 2 study of imetelstat as treatment of patients with intermediate-2 or high-risk MF who were relapsed or refractory to JAK inhibition induced responses and a survival benefit.1,5

In a pool of 107 patients, 6 patients (10%) had 35% SVR at week 24 and 23 patients (37%) had a 10% SVR at week 24.

Imetelstat also achieved a median OS of 19.9 months (95% CI, 17.1-not evaluable [NE]) when administered at a dose of 4.7 mg.kg and the median OS climbed to 29.9 months (95% CI, 22.8-NE) when Imetelstat was administered at 9.4 mg/kg.

Pemmaraju noted that a review of the existing and ongoing research on targeting beyond JAK inhibition in patients with MF was recently published in Current Hematologic Malignancy Reports. The paper states that because of the different mechanisms of action other the novel therapies in MPNs, they can improve outcomes in the field when use alone or in combination with ruxolitinib.6

References:

1. Pemmaraju N, et al. Novel Targeted Therapies Beyond JAK Inhibitors. Presented at: Texas Virtual MPN Workshop; August 2728, 2020; Virtual.

2. Gerds AT, Vannucchi AM, Passamonti F, et al. A Phase 2 Study of Luspatercept in Patients with Myelofibrosis-Associated Anemia. Blood. 2019;34(supplement_1):557. doi: 10.1182/blood-2019-122546

3. Mascarenhas J, Kremyanskaya M, Hoffman R, et al. MANIFEST, a Phase 2 Study of CPI-0610, a bromodomain and extraterminal domain inhibitor (beti), as monotherapy or "add-on" to ruxolitinib, in patients with refractory or intolerant advanced myelofibrosis. Blood. 2019; 134 (Supplement_1): 670. doi: /10.1182/blood-2019-127119

4. Harrison CN, Garcia JS, Mesa RS, et al. Results from a phase 2 study of navitoclax in combination with ruxolitinib in patients with primary or secondary myelofibrosis. Blood. 2019;134(supplement_1):671. doi: 10.1182/blood-2019-130158

5. Mascarenhas J, Komrokji RS, Cavo M, et al. Imetelstat is effective treatment for patients with intermediate-2 or high-risk myelofibrosis who have relapsed on or are refractory to janus kinase inhibitor therapy: results of a phase 2 randomized study of two dose levels. Blood. 2018;132(supplement_1):685. doi: 10.1182/blood-2018-99-115163

6. Economides, M.P., Verstovsek, S. & Pemmaraju, N. Novel therapies in myeloproliferative neoplasms (mpn): beyond jak inhibitors.Curr Hematol Malig Rep.2019;14,460468. doi: 10.1007/s11899-019-00538-4

The rest is here:
Novel Targets Outside of JAK Inhibition Inching into Myelofibrosis Treatment Landscape - Targeted Oncology

Parents plea for stem cell help to save life of daughter with rare blood disorder – Mirror Online

The parents of a girl battling a deadly blood disorder are begging people to join the stem cell donor register to save her life after her only match in the world pulled out at the last minute.

Evie Hodgson, eight, who suffers from aplastic anaemia, was due to have a bone marrow transplant this month but her donor backed out at the last possible moment.

Her mum, Tina, says the chances of finding another donor are so slim that doctors are now planning a different course of treatment. But, in future, a stem call transplant is Evies best hope of being cured.

The schoolgirl, from Whitby, North Yorks, was first taken to hospital with a rash and was diagnosed with aplastic anaemia in May.

After a global donor search was launched, a 10/10 match was found and the anonymous donor agreed to the procedure. In preparation, Evie had to have dental work and one of her ovaries was removed. But on August 14 the donor pulled out.

Tina, 37, who works at RAF Flyingdales, in Pickering, North Yorks, said: We were devastated, it was a huge blow. We have no idea why the donor changed their mind. Evie has already been through so much. She thought she had a donor and now she doesnt.

The donor pulling out is quite hard-hitting, but we want to raise awareness of the stem cell register. Its so easy to be a donor. Its just like giving blood, but you could save a childs life. Its so easy to join but only 1% of the UK population is registered.

Evie said: I need this transplant to save my life. Please sign the register to help.

Tina added: The condition Evie has is life-threatening. She wont survive without a transplant. We are desperately appealing for people to sign the stem cell register.

Evie was diagnosed with the condition after she developed a pin-prick rash on her back, which didnt fade. Tests revealed she had low blood platelet levels and she was told she needed a bone marrow transplant.

Aplastic anaemia is a rare life-threatening condition where the bone marrow fails to produce enough blood cells. Around 100-150 people are diagnosed in the UK each year.

Treatment can include immunosuppressants, chemotherapy, blood transfusions, or blood and bone marrow transplants.

Neither Tina, dad Andy, 49, or brother William, five, were a match and so an international search was launched.

Tina said: Our world crumbled when Evie was diagnosed. Evie knew shed need chemotherapy. She donated her hair to The Little Princess Trust, after making friends with poorly children who have lost all their hair.

Evie will be treated with immunosuppressants while the search for a donor continues.

Blood cancer charity Anthony Nolan is looking for stem cell donors between the ages of 16-30.

Research shows that younger donors result in better outcomes for patients.

To find out how to donate click here.

Read the original post:
Parents plea for stem cell help to save life of daughter with rare blood disorder - Mirror Online