Proteins Role in Hair Cell Development Is Identified – Technology Networks

Credit: Mark Paton on Unsplash.

Read Time:

Researchers at the University of Maryland School of Medicine (UMSOM) have conducted a study that has determined the role that a critical protein plays in the development of hair cells. These hair cells are vital for hearing. Some of these cells amplify sounds that come into the ear, and others transform sound waves into electrical signals that travel to the brain.

Ronna Hertzano, MD, PhD, Associate Professor in the Department of Otorhinolaryngology Head and Neck Surgery at UMSOM andMaggie Matern, PhD, a postdoctoral fellow at Stanford University, demonstrated that the protein, called GFI1, may be critical for determining whether an embryonic hair cell matures into a functional adult hair cell or becomes a different cell that functions more like a nerve cell or neuron.

The study was published in the journalDevelopment, and was conducted by physician-scientists and researchers at theUMSOM Department of Otorhinolaryngology Head and Neck Surgeryand theUMSOM Institute for Genome Sciences (IGS), in collaboration with researchers at the Sackler School of Medicine at Tel Aviv University in Israel.

Hearing relies on the proper functioning of specialized cells within the inner ear called hair cells. When the hair cells do not develop properly or are damaged by environmental stresses like loud noise, it results in a loss of hearing function.

In the United States, the prevalence of hearing loss doubles with every 10-year increase in age, affecting about half of all adults in their 70s and about 80 percent of those who are over age 85. Researchers have been focusing on describing the developmental steps that lead to a functional hair cell, in order to potentially generate new hair cells when old ones are damaged.

To conduct her latest study, Dr. Hertzano and her team utilized cutting-edge methods to study gene expression in the hair cells of genetically modified newborn mice that did not produce GFI1. They demonstrated that, in the absence of this vital protein, embryonic hair cells failed to progress in their development to become fully functional adult cells. In fact, the genes expressed by these cells indicated that they were likely to develop into neuron-like cells.

Our findings explain why GFI1 is critical to enable embryonic cells to progress into functioning adult hair cells, said Dr. Hertzano. These data also explain the importance of GFI1 in experimental protocols to regenerate hair cells from stem cells. These regenerative methods have the potential of being used for patients who have experienced hearing loss due to age or environmental factors like exposure to loud noise.

Dr. Hertzano first became interested in GFI1 while completing her M.D., Ph.D. at Tel Aviv University. As part of her dissertation, she discovered that the hearing loss resulting from mutations in another protein called POU4F3 appeared to largely result from a loss of GFI1 in the hair cells. Since then, she has been conducting studies to discover the role of GFI1 and other proteins in hearing. Other research groups in the field are now testing these proteins to determine whether they can be used as a cocktail to regenerate lost hair cells and restore hearing.

Hearing research has been going through a Renaissance period, not only from advances in genomics and methodology, but also thanks to its uniquely collaborative nature among researchers, said Dr. Herzano.

The new study was funded by the National Institute on Deafness and Other Communication Disorders (NIDCD) which is part of the National Institutes of Health (NIH). It was also funded by the Binational Scientific Foundation (BSF).

This is an exciting new finding that underscores the importance of basic research to lay the foundation for future clinical innovations, saidE. Albert Reece, MD, PhD, MBA, Executive Vice President for Medical Affairs, UM Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine. "Identifying the complex pathways that lead to normal hearing could prove to be the key for reversing hearing loss in millions of Americans."

Reference: Matern MS, Milon B, Lipford EL, et al. GFI1 functions to repress neuronal gene expression in the developing inner ear hair cells. Development. 2020;147(17):dev186015. doi:10.1242/dev.186015.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Continued here:
Proteins Role in Hair Cell Development Is Identified - Technology Networks

GlycoT Therapeutics Grants Sublicense of Glycoengineering Technology to Daiichi Sankyo – PRNewswire

BALTIMORE, Sept. 14, 2020 /PRNewswire/ --GlycoT Therapeutics LLC,aUM Ventures start-upcompany based on intellectual property (IP) developed at the University of Maryland, Baltimore (UMB) and University of Maryland, College Park (UMCP),has executed a sublicense agreement for its glycoengineering technology with Daiichi Sankyo Company, Limited (Daiichi Sankyo; http://www.daiichisankyo.com).The agreement grants Daiichi Sankyo worldwide and non-exclusive rights to IP that GlycoT currently licenses from UMB and UMCP, and includes an undisclosed upfront payment, annual fees, and adequate royalties of sales to GlycoT.

GlycoT's enzymatic glycoengineering technology provides a platform to precisely change and modify the sugars on antibodies. Daiichi Sankyoplans to use this cutting-edge technology to prepare new drug candidates.

"We are very excited to see the growing potential for GlycoT's glycoengineering technology," said Phil Robilotto, DO, MBA, associate vice president of UMB's Office of Technology Transfer and director of UM Ventures, which is UMB and UMCP's joint technology transfer initiative. "This is a great example of how university innovators continue to fuel therapeutic development across the globe."

Lai-Xi Wang, PhD, Founder and President of GlycoT Therapeutics and UMCP Professor in the Department of Chemistry and Biochemistry, developed the technologies that are the basis for the GlycoT/Daiichi Sankyo license agreement in his lab, first at UMB and later at UMCP.

"We are pleased to provide the opportunity for Daiichi Sankyo to use this technology,"said Dr. Wang. "We believe our technology has the potential to open new avenues for developing novel therapeutics for the treatment of human diseases."

About GlycoT Therapeutics LLCGlycoT Therapeutics aims to apply its innovative and proprietary chemoenzymatic glycosylation technology for glycoengineering of therapeutic proteins such as monoclonal antibodies to improve their therapeutic efficacy. For more information, visit http://www.glycot.com.

About UM VenturesUM Ventures, the joint technology transfer initiative of University of Maryland, Baltimore (UMB) and University of Maryland, College Park (UMCP), commercializes University of Maryland's breakthrough discoveries, fueling the creation of innovative start-up companies and attracting industry leaders and entrepreneurs to the universities. Researchers at UMB and UMCP have created hundreds of life science innovations that are available for licensing. Our Discovery Portfolio offers a mix of cutting-edge technologies, including vaccines, therapeutics, diagnostics, devices, and software that promise to make a quantifiable impact on human health and the environment. The internationally-recognized genomics, cancer, vaccine, stem cell, pharmaceutical and bioengineering research underway at the University of Maryland provides a robust pipeline of more than 250 new innovations each year. Visit our portfolio at umventures.org.

SOURCE University of Maryland Ventures

http://www.umventures.org

Read this article:
GlycoT Therapeutics Grants Sublicense of Glycoengineering Technology to Daiichi Sankyo - PRNewswire

Global Regenerative Medicine Market Analysis & Forecast to 2025 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Global Regenerative Medicine Market Analysis & Forecast to 2025; Stem Cells, Tissue Engineering, BioBanking & CAR-T Industries" report has been added to ResearchAndMarkets.com's offering.

This report provides a comprehensive overview of the size of the regenerative medicine market, segmentation of the market (stem cells, tissue engineering and CAR-T therapy), key players and the vast potential of therapies that are in clinical trials. The analysis indicates that the global regenerative medicine market was worth $35 billion in 2019 and will grow to over $124 billion by 2025, with a CAGR of 23.3% between this time frame. This report describes the evolution of such a huge market in 15 chapters supported by over 350 tables and figures in 700 pages.

Key Questions Answered

Key Topics Covered:

1.0 Report Synopsis

2.0 Introduction

3.0 Stem Cells and Clinical Trials

4.0 Stem Cells, Disruptive Technology, Drug Discovery & Toxicity Testing

5.0 Stem Cell Biomarkers

6.0 Manufacturing Stem Cell Products

7.0 Investment & Funding

8.0 Regenerative Medicine Market Analysis & Forecast to 2025

9.0 Stem Cell Market Analysis & Forecast to 2025

10.0 Tissue Engineering Tissue Engineering Market Analysis and Forecast to 2025

11.0 Biobanking Market Analysis

12.0 Global Access & Challenges of the Regenerative Medicine Market

13.0 Cell and CAR T Therapy

14.0 Company Profiles

15.0 SWOT Industry Analysis

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/dfpyeg

About ResearchAndMarkets.com

ResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Read more from the original source:
Global Regenerative Medicine Market Analysis & Forecast to 2025 - ResearchAndMarkets.com - Business Wire

Cell Culture Market: Chemically Defined Mediums Adaptation to Boost Market Growth – BioSpace

In a recent report by Transparency Market Research, thecell culturemarketis rapidly being adopted in the field of pharmaceuticals. Companies managing the global cell culture market are more focused on increasing strategic collaborations and expanding product development worldwide. Furthermore, they are aiming at expanding their footprints in emerging markets such as Latin America and Asia Pacific. An example of such collaboration would be the announcement of collaboration of Valneva SE and GE Healthcare in Nov, 2016 which optimized virus productivity in Valnevas EB66 cell line. Furthermore, the inauguration of EX-CELL Advanced HD perfusion mediums, is expected to help strengthen the streamline and production of regulatory compliances.

Read Report Overview - https://www.transparencymarketresearch.com/cell-culture-market.html

According to TMR, Thermo Fisher Scientific Inc., Dickinson and Company, GE Healthcare, Sartorius AG, and Lonza are some of the leading companies operating in the market. The position in the market is established by leading players and they are enjoying brand loyalty among customers. These manufacturers have extensive distribution network across the world and offer a wide variety of product range. On the back of these factors, they enjoy a stronghold in the global cell culturemarket.

According to TMR report, the global cell culture market is expected to register a 9.5% CAGR during the forecast period of 2017 to 2025. The valuation of 2016 was around US$13.00 bn and is anticipated to remain stable by the end of the forecast period. Owing to increased focus on Research and Development activities, and the development of healthcare sector and high unmet clinical needs in the region, the cell culture market is expanding with 10.0% CAGR in Asia Pacific.

Request Brochure of Report - https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=405

Increase Use of Stem-Cell Structure to Boost Market

Stem cell culture aids in the stabilization of manufacturing of drugs and allows to produce a wide variety of cell lines and its related products. There is a high potential for growth of the cell culture market with applications likestem cellresearch in the years to come. Stem cell therapies serve to treat the cause of the disease whereas the old time pharmaceutical therapeutics could only aid in treating the symptoms of the disease. Thus, there is high prospect for the global cell culture market in the field of stem cell culture for developing drugs.

Request for Analysis of COVID-19 Impact on Cell Culture Market- https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=405

Cell structure is considered one of the most important steps in biosimilar production for antibodies. Cell structure reduces manufacturing cost and also increases the productivity and efficiency of biosimilar antibodies.

A majority of manufacturers are persistently trying to expand their product portfolio by launching new and advanced system for large-scale production. This involves both low risk of contamination and is cost-effective providing a win-win situation for the manufacturers.

Request for Custom Research - https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=405

Strict Regulatory Framework and High Quality Standards Restricting Growth

The imposition of solid regulatory framework and high quality standards set by market leaders may limit the speed of market perforation by newcomers. Furthermore, ethical issues corresponding to the use of high cost of infrastructure, stringent regulations, and fetal bovine serum required for cell culture are expected to hinder the market during the forecast period.

However, there is increase in scope for the use of cell culture in biologics as the research and development in biopharmaceuticals field concentrates on the discovery of new therapeutics for new mechanisms of drug action and rare diseases. Owing to the treatment of chronic diseases in both developing as well as developed countries, there is an increase in demand for cost-effective and efficient products. With this, the demand for approval of biosimilar products have also raised. Due to the rise in demand, the global cell culture market is anticipated to provide lucrative opportunities in the course of the forecast period.

Buy Cell Culture Market Report - https://www.transparencymarketresearch.com/checkout.php?rep_id=405&ltype=S

This review is based on the findings of a TMR report titled, Cell Culture Market (Product - Instruments (Cell Culture Vessels (Bioreactors), Carbon Dioxide Incubators, Biosafety Cabinets, Cryogenic Tanks), Mediums (Chemically Defined Mediums, Classical Mediums, Lysogeny Broths, Serum-free Mediums, Protein-free Mediums, Specialty Mediums), Sera, Reagents (Growth Factors & Cytokines, Albumin, Protease Inhibitors, Thrombin, Attachment Factors, Amino Acids); End use - Biotechnology Companies, Pharmaceutical Companies, Academic Institutes, and Research Institutes) - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2017 - 2025.

Browse more Trending Reports by Transparency Market Research:

Animal Stem Cell Therapy Market: https://www.transparencymarketresearch.com/animal-stem-cell-therapy-market.html

Bone Conduction Hearing Devices Market: https://www.transparencymarketresearch.com/bone-conduction-hearing-devices-market.html

Medically Supervised Weight Loss Service Market: https://www.transparencymarketresearch.com/medically-supervised-weight-loss-service-market.html

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through ad hoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.

Contact

Mr. Rohit Bhisey Transparency Market Research

State Tower,

90 State Street,

Suite 700,

Albany NY - 12207

United States

USA - Canada Toll Free: 866-552-3453

Email: sales@transparencymarketresearch.com

Website: https://www.transparencymarketresearch.com/

View original post here:
Cell Culture Market: Chemically Defined Mediums Adaptation to Boost Market Growth - BioSpace

Additional Analytical Results of the US-Based Phase 2b Clinical Trial of Regenerative Cell Medicine SB623 for the Treatment of Chronic Motor Deficit…

TOKYO--(BUSINESS WIRE)--SanBio Co., Ltd. (headquarters: Chuo-ku, Tokyo, Representative Director and President: Keita Mori, hereafter SanBio) hereby announces that it has obtained new analytical results from the Phase 2b clinical trial (the trial) of SB623 for the treatment of chronic motor deficit resulting from ischemic stroke the SanBio Group (SanBio Co., Ltd. and its subsidiary SanBio, Inc.) conducted in the US. It also announces that based on the newly obtained results, it has updated its development plans, including in regard to late-stage clinical trials for the ischemic stroke and hemorrhagic stroke programs of SB623 in Japan.

The trial evaluated efficacy and safety of SB623 in 163 patients suffering from chronic motor dysfunction from ischemic stroke. On January 29, 2019, SanBio announced that the trial did not meet its primary endpoint, as it failed to demonstrate statistical significance in the difference in the proportion of patients whose Fugl-Meyer Motor Scale (FMMS) score improved by 10 or more points from the baseline (primary endpoint) between the treatment group that received SB623 and the control group. Since then, the SanBio Group had continued to work on additional analysis of the trial data, and results of the additional analysis are as follows.

In conducting the additional analysis, from the perspective of minimal clinically important difference (MCID, or the minimal change in scores or other metrics that could be interpreted to mean the change in a patient is clinically meaningful) and based on the results of the Phase 2 clinical trial of SB623 for the treatment of chronic motor deficit from traumatic brain injury (TBI; STEMTRA trial), the company reevaluated trial data using composite FMMS. Of the total 163 patients enrolled in the trial, the company specifically looked at 77 patients who had infarct areas smaller than a certain size (47% of all patients enrolled in this trial). The SanBio Group evaluated the proportion of patients that met one or more of the following FMMS score improvement criteria 24 weeks after treatment: 6-point improvement on FMMS score for upper extremity, 4-point improvement on FMMS score for lower extremity, and 9-point improvement on FMMS total score (all from the baseline). Of the 51 patients in the treatment group that received SB623, improvement was seen in 49%, versus in 19% of 26 patients in the control group that received sham surgery, the difference between the two groups being statistically significant (p-value of 0.02). SanBio Group thinks that even compared to the primary endpointthe proportion of patients whose FMMS score improved by 10 or more points over the baseline six months after treatmentthe endpoint using composite FMMS can adequately explain clinical significance of the treatment efficacy. Details of the additional analysis results will be announced at the financial results briefing for institutional investors and the media held on September 15, 2020. The briefing video will be made available to the public on our website on the 16th of September or thereafter.

Based on the above results, the SanBio Group has begun preparations for the next late-stage clinical trials in the ischemic stroke and hemorrhagic stroke programs of SB623. 2021. Specific designs of the clinical trials and the contents of development for those two programs will be announced promptly upon being finalized. To maximize the value of SB623 at an early stage by selecting areas to focus the Groups management resources on, the SanBio Group plans to prioritize the development of the ischemic stroke and hemorrhagic stroke programs in Japan at the same time as it prepares to file for approval of SB623 for the treatment of chronic motor deficit resulting from TBI in Japan by the end of the current fiscal year (ending January 2021). The Group, however, postponed the global Phase 3 clinical trial for the TBI program of SB623 it had planned to commence this fiscal year to the next or subsequent fiscal years.

Many patients suffering from the chronic effects of ischemic stroke are said to be regularly taking drugs to prevent recurrence. However, because there is no drug that can fundamentally cure motor dysfunction, there is high unmet need for therapeutic drugs to restore motor functions for patients in the chronic phase of stroke. The SanBio Group aims to contribute to improving the lives of these patients, as well as of their family members, suffering from motor impairment and difficulties it causes in carrying out their daily lives through SB623.

About SB623

SB623 is an allogeneic mesenchymal stem cell produced by modifying and culturing bone marrow derived from healthy donors. Implantation of SB623 cells into nerve tissues is expected to promote regeneration of damaged nerve cells. Because SB623 is made from allogeneic cells, large-scale production is possible and there is no need for complex cell processing required for treatments using autologous cells, e.g., cell preparation for each patient at medical institutions. Hence, pharmaceutical products made from allogeneic cells, such as SB623, can be provided to many patients in uniform quality.

About SanBio Co., Ltd. and SanBio, Inc.

SanBio Group is engaged in the regenerative cell medicine business, spanning research, development, manufacture, and sales of regenerative cell medicines. The Companys propriety regenerative cell medicine product, SB623, is currently being investigated for the treatment of several conditions including chronic neurological motor deficit resulting from traumatic brain injury and ischemic stroke. The Company is headquartered in Tokyo, Japan and Mountain View, California, and additional information about SanBio Group is available at https://sanbio.com.

Link:
Additional Analytical Results of the US-Based Phase 2b Clinical Trial of Regenerative Cell Medicine SB623 for the Treatment of Chronic Motor Deficit...

Outcomes After Daratumumab Addition to Induction Therapy in Newly Diagnosed Multiple Myeloma – Hematology Advisor

The addition of daratumumab (D) to standard frontline lenalidomide, bortezomib, and dexamethasone (RVd) induction therapy prior to autologous stem cell transplantation (ASCT) yielded higher rates of stringent complete response (sCR) and minimal residual disease (MRD) negativity compared with RVd in patients with newly diagnosed multiple myeloma (MM), according to results from the phase 2 GRIFFIN trial (ClinicalTrials.gov Identifier, NCT02874742), which was published in Blood.

Eligible patients with newly diagnosed MM (207 patients) were randomly assigned (1:1) to receive 4 cycles of D-RVd or RVd induction, 2 cycles of ASCT, D-RVd or RVd consolidation, and 26 cycles of lenalidomide plus D or lenalidomide maintenance. The primary endpoint was sCR rate by the end of post-ASCT consolidation.

The median patient age was 59 years (range, 29-70 years) in the D-RVd arm and 61 years (range, 40-70 years) in the RVd arm. Other patient and disease characteristics were also well balanced among the arms.

The sCR rate by the end of post-ASCT consolidation was higher in the D-RVd arm compared with the RVd arm (42.4% vs 32.0%; odds ratio, 1.57; 95% CI, 0.87-2.82; 1-sided P =.068; meeting the prespecified 1-sided a of 0.10). The rate of MRD negativity (10-5 threshold) was also higher in the D-RVd arm compared with the RVd arm (21.2% vs 5.8%; P =.0019) in the intent-to-treat population.

At a median follow up of 22.1 months, the responses deepened in both arms. The sCR rates improved to 62.6% for D-RVd and 45.4% for RVd (P =.0177); the MRD negativity rates also improved (51.0% vs 20.4%, respectively; P <.0001).

Neither median progression-free survival (PFS) nor overall survival were reached in either arm. The Kaplan-Meier estimate of the 24-month PFS rates were 95.8% and 89.8% in the D-RVd and RVd arms, respectively. Disease progression occurred in 3.8% and 6.8% of patients in the D-RVd (4 patients) and RVd arm (7 patients), respectively.

No new safety concerns were reported. Grade 3/4 hematologic adverse events were more common with D-RVd compared with RVd (neutropenia, 41.4% vs 21.6%; lymphopenia, 23.2% vs 21.6%; thrombocytopenia, 16.2% vs 8.8%; leukopenia, 16.2% vs 6.9%; anemia, 9.1% vs 5.9%). Infections were more common with D-RVd compared with RVd (90.9% vs 61.8%); however, grade 3/4 infection rates were similar between the arms (23.2% vs 21.6%).

Study results from GRIFFIN are promising and practice informing; this randomized phase 2 study was designed to expediently provide efficacy and safety information on a new regimen of great interest to myeloma clinicians, wrote the authors.

These results provide a support for the ongoing phase 3 PERSEUS registration study (ClinicalTrials.gov Identifier: NCT03710603), which is assessing PFS in transplant-eligible patients with newly diagnosed MM receiving D-RVd or RVd.

Disclosures: Some authors have declared affiliations with or received funding from the pharmaceutical industry. Please refer to the original study for a full list of disclosures.

Voorhees PM, Kaufman JL, Laubach JP, et al. Daratumumab, Lenalidomide, Bortezomib, & Dexamethasone for Transplant-eligible Newly Diagnosed Multiple Myeloma: GRIFFIN. Blood. 2020;136(8):936-945. doi:10.1182/blood.2020005288

More:
Outcomes After Daratumumab Addition to Induction Therapy in Newly Diagnosed Multiple Myeloma - Hematology Advisor

What Certain Patients with DLBCL Need To Know About Monjuvi-Revlimid – Curetoday.com

The combination of Monjuvi (tafasitamab-cxix) and Revlimid (lenalidomide) is a recently approved treatment for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) who are unable to undergo autologous stem cell transplant, and while there are still questions to be answered about its sequencing, it may work best just after stopping a previous therapy, according to the lead researcher of the study that led to its approval.

In an interview with CURE, Dr. Gilles Salles, head of the hematology department of the Centre Hospitalier Lyon-Sud in France, discusses the key factors patients should know about the treatment and what physicians should discuss with them before they start taking the combination.

Transcription:

They should probably know that the sooner this form of therapy is installed, the better the result. That is classical in cancer, but when you are at the first failure of your previous line, it works a little bit better than when you use it later.

What they should know is that other agents have been approved, essentially in the third-line setting, and we have been talking about CAR-T cells. And CAR-T cells are genetically engineered immune cells, T cells that fight the disease. This is a great tool for patients. We don't know exactly at this time how we should optimally sequence, if needed, the combination of tafasitamab/lenalidomide and CAR-T cell, whether it's better to use one before, like tafasitamab, or whether it may or not diminish the potential efficacy of CAR-T cell in the future.

So, it's the ideas and research here, so we need to discuss that with patients. Other than that, what they should know is that, at the present time for patients that have got benefit of (therapy for) this disease, there is a continuous treatment. Tafasitamab is delivered as an IV infusion every two weeks, so they have to continue to come to the hospital every two weeks to receive an infusion.

But this infusion is given, it's usually much better tolerated when we go further down the road. We actually stop lenalidomide, the second drug, after one year and we use tafasitamab alone; that has much less side effect and the infusion lasts 90 minutes. And we do hope that continuing this treatment will prevent any recurrence of the disease.

Read the original here:
What Certain Patients with DLBCL Need To Know About Monjuvi-Revlimid - Curetoday.com

LAVA Therapeutics, Amsterdam UMC and Monash University Announce Publication of a Novel Cancer Immunotherapy Approach in Nature Cancer – Business Wire

UTRECHT, The Netherlands & PHILADELPHIA--(BUSINESS WIRE)--LAVA Therapeutics B.V., a biotech company pioneering bispecific gamma-delta T cell engagers for cancer, Amsterdam UMC and the Monash Biomedicine Discovery Institute in Australia, today announced that Nature Cancer has published their co-authored paper titled, A single domain bispecific antibody targeting CD1d and the NKT T cell receptor induces a potent antitumor response, detailing a novel immune-oncology approach for the potential treatment of cancer.

Findings in the paper highlight the potential for a LAVA-derived antibody fragment, known as a single domain antibody, that acts as a bridge to link together two key immune cell receptors the CD1d receptor and the T cell receptor of natural killer T (NKT) cells in order to enhance the bodys immune response to cancer. The CD1d receptor is frequently expressed by tumor cells and NKT cells are positioned at the interface between the innate and adaptive immune system and play an important role in the host-rejection of both tumors and virally infected cells. Preclinical research through the companies collaboration demonstrates that a CD1d-NKT cell targeting antibody resulted in significant activation of NKT cells and the subsequent killing of CD1d-expressing tumor cells in multiple tumor samples, including multiple myeloma and acute myeloid leukemia.

These data underscore the potential of LAVAs bispecific antibody approach to target and activate NKT cells for the treatment of cancer, said Hans van der Vliet, professor in medical oncology at Amsterdam UMC and chief scientific officer of LAVA Therapeutics. By targeting and boosting natural immune cells that are inherent in all humans, such as NKT and gamma-delta T cells, for an enhanced therapeutic effect, our approach could translate into a broadly applicable immunotherapeutic strategy for treating a range of cancer indications.

Using the Australian Synchrotron, the team at Monash University provided detailed atomic insight into how the single domain antibodies exerted their effect on immune cells in a cancer model. Through this, we were able to precisely visualize how the single domain antibody simultaneously recognized CD1d and the NKT T cell receptor, thereby providing a molecular basis for their anti-tumor properties, professor Jamie Rossjohn, Australian Research Council Laureate Fellow at Monash University stated. The collaboration with LAVA Therapeutics on this ground-breaking approach was very effective.

Instrumental to the study were joint first authors Dr. Roeland Lameris from Amsterdam UMC and Dr. Adam Shahine from Monash University.

About LAVA Therapeutics

LAVA Therapeutics, B.V., is developing a proprietary bispecific antibody platform that engages gamma-delta T cells for the treatment of hematological and solid cancers. The companys first-in-class immuno-oncology approach activates V9V2 T cells upon binding to membrane-expressed tumor targets. LAVA was founded in 2016 based on intellectual property originating from Hans van der Vliet`s group at the Amsterdam UMC, and is backed by Lupus Ventures, Biox Biosciences, Versant Ventures, Gilde Healthcare and MRL Ventures Fund. The company has established a highly experienced antibody research and development team located in Utrecht, the Netherlands (headquarters) and Philadelphia. For more information, please visit http://www.lavatherapeutics.com.

About the Monash Biomedicine Discovery Institute at Monash University

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Spanning six discovery programs across Cancer, Cardiovascular Disease, Development and Stem Cells, Infection and Immunity, Metabolic Disease and Obesity, and Neuroscience, Monash BDI is one of the largest biomedical research institutes in Australia. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

See more here:
LAVA Therapeutics, Amsterdam UMC and Monash University Announce Publication of a Novel Cancer Immunotherapy Approach in Nature Cancer - Business Wire

Stem Cell Therapy Market To 2026: Growth Analysis By Manufacturers, Regions, Types And Applications – Kewaskum Statesman News Journal

IndustryGrowthInsights, one of the worlds prominent market research firms has announced a novel report on the Stem Cell Therapy market. The report is integrated with imperative insights on the market which will support the clients to make precise business decisions. This research will help both existing and new aspirants for Global Stem Cell Therapy Market to figure out and study market requirements, market size, and competition. The report incorporates data regarding the supply and demand situation, the competitive scenario, and the challenges for market growth, market opportunities, and the threats encountered by key players during the forecast period of 2020-2027.

Request a sample before buying this report @ https://industrygrowthinsights.com/request-sample/?reportId=168110

Impact of COVID-19

The report also incorporates the impact of the ongoing global crisis i.e. COVID-19 on the Stem Cell Therapy market and explains how the future is going to unfold for the global market. The report also provides an analysis of the effects of the pandemic on the global economy. The outbreak has directly affected production and demand disrupted the demand and supply chain. The report also computes the financial impact on firms and financial markets. IndustryGrowthInsights has accumulated insights from various delegates of the industry and got involved in the primary and secondary research to offer the clients data & strategies to combat the market challenges during and after the COVID-19 pandemic.

Benefits of buying the report:

Industry experts and research analysts have worked extensively to fabricate the research report which will give that extra edge to your business in the competitive market. The market research report can be customized as per you and your needs. This means that IndustryGrowthInsights can cover a particular product, application, or can offer a detailed analysis in the report. You can also buy a separate report for a specific region.

You can buy the complete report @ https://industrygrowthinsights.com/checkout/?reportId=168110

Some of the major companies that are covered in this report:

Osiris Therapeutics NuVasive Chiesi Pharmaceuticals JCR Pharmaceutical Pharmicell Medi-post Anterogen Molmed Takeda (TiGenix) Stem Cell Therap

*Note: Additional companies can be included on request

The market scenario is likely to be fairly competitive. To analyze any market with simplicity the market is fragmented into the following segments:

By Application:

Musculoskeletal Disorder Wounds & Injuries Cornea Cardiovascular Diseases Others

By Type:

Autologous Allogeneic Stem Cell Therap

By Geographical Regions

Asia Pacific: China, Japan, India, and Rest of Asia Pacific Europe: Germany, the UK, France, and Rest of Europe North America: The US, Mexico, and Canada Latin America: Brazil and Rest of Latin America Middle East & Africa: GCC Countries and Rest of Middle East & Africa

Segmenting the market into smaller components helps in analyzing the dynamics of the market with more clarity. Another key component that is integrated into the report is the regional analysis to assess the global presence of the Stem Cell Therapy market. You can also opt for a yearly subscription of all the updates on the Stem Cell Therapy market.

Below is the TOC of the report:

Executive Summary

Assumptions and Acronyms Used

Research Methodology

Stem Cell Therapy Market Overview

Global Stem Cell Therapy Market Analysis and Forecast by Type

Global Stem Cell Therapy Market Analysis and Forecast by Application

Global Stem Cell Therapy Market Analysis and Forecast by Sales Channel

Global Stem Cell Therapy Market Analysis and Forecast by Region

North America Stem Cell Therapy Market Analysis and Forecast

Latin America Stem Cell Therapy Market Analysis and Forecast

Europe Stem Cell Therapy Market Analysis and Forecast

Asia Pacific Stem Cell Therapy Market Analysis and Forecast

Asia Pacific Stem Cell Therapy Market Size and Volume Forecast by Application

Middle East & Africa Stem Cell Therapy Market Analysis and Forecast

Competition Landscape

If you have any questions on this report, feel free to reach us! @ https://industrygrowthinsights.com/enquiry-before-buying/?reportId=168110

About IndustryGrowthInsights:

IndustryGrowthInsights has a vast experience in making customized market research reports in a number of industry verticals. Our motto is to provide complete client satisfaction. We cover in-depth market analysis, which consists of stipulating lucrative business strategies, especially for the new entrants and the emerging players of the market. We make sure that each report goes through intensive primary, secondary research, interviews, and consumer surveys before final dispatch.

We invest in our analysts to ensure that we have a full roster of experience and expertise in any field we cover. Our team members are selected for stellar academic records, specializations in technical fields, and exceptional analytical and communication skills. We also offer ongoing training and knowledge sharing to keep our analysts tapped into industry best practices and loaded with information.

Contact Info: Name: Alex Mathews Address: 500 East E Street, Ontario, CA 91764, United States. Phone No: USA: +1 909 545 6473 | IND: +91-7000061386 Email: sales@industrygrowthinsights.com Website: https://industrygrowthinsights.com

Original post:
Stem Cell Therapy Market To 2026: Growth Analysis By Manufacturers, Regions, Types And Applications - Kewaskum Statesman News Journal

$14.6M Grant to Explore a Therapy to Control HIV Without Meds – POZ

In nearly 40 years of the HIV epidemic, only two people have likely been cured of the virus. Both scenarios resulted from stem cell transplants needed to fight blood cancers such as leukemia. Inspired by these two cases, a team of scientists is studying a multipronged way to potentially control HIV without medication. It involves two different genetic alterations of immune cells and with a safer method of stem cell transplants, also referred to as bone marrow transplants, a procedure that is generally toxic and dangerous.

The research is being funded by a five-year $14.6 million grant from the National Institutes of Health. The scientists coleading the preclinical studies are Paula Cannon, PhD, a distinguished professor of molecular microbiology and immunology at the Keck School of Medicine of the University of Southern California, and Hans-Peter Kiem, MD, PhD, who directs the stem cell and gene therapy program at the Fred Hutchinson Cancer Research Center, also known as Fred Hutch. According to a Keck School of Medicine press release, the two other main partners are David Scadden, MD, a bone marrow transplant specialist and professor at Harvard University and the Harvard Stem Cell Institute, and the biotechnology company Magenta Therapeutics.

In the HIV cure scenariosinvolving the so-called Berlin and London patientsboth men received stem cell transplants from donors with a natural genetic mutation that made them resistant to HIV. Specifically, their genes resulted in immune cells that lack CCR5 receptors on their surface (HIV latches onto these receptors to infect cells). Unfortunately, this method isnt viable for the nearly 38 million people worldwide living with HIV. Not only is it expensive, toxic and riskyit involves wiping out the patients immune system and replacing it with the new immune cellsbut it also requires matched donors who are CCR5 negative. According to the press release, about 1% of the population have this mutation.

With funding from this new grant, researchers hope to overcome these challenges in several ways. First, Cannon has already developed a gene-editing method to remove the CCR5 receptors from a patients own stem cells. She now hopes to further genetically engineer stem cells so they release antibodies that block HIV.

Our engineered cells will be good neighbors, Cannon said in the press release. They secrete these protective molecules so that other cells, even if they arent engineered to be CCR5 negative, have some chance of being protected.

Fred Hutchs Kiem will use CAR-T therapya new method of genetically modifying immune cells that is emerging out of cancer researchwith the goal of creating T cells that attack HIV-infected cells.

In addition, other scientists involved in the federal grant aim to develop less toxic methods of bone marrow transplantationfor example, by reducing the amount of chemotherapy required and speeding up the process of creating the new immune system.

The research finding could translate to other illnesses, such as cancer, sickle cell anemia and autoimmune disorders.

A home run would be that we completely cure people of HIV, Cannon said. What Id be fine with is the idea that somebody no longer needs to take anti-HIV drugs every day because their immune system is keeping the virus under control so that it no longer causes health problems and, importantly, they cant transmit it to anybody else.

For the latest on the cure cases, see Famed London Man Probably Cured of HIV from earlier this year. And in related news, see $14M Federal Grant to Research CAR-T Gene Therapy to Cure HIV.

Read more here:
$14.6M Grant to Explore a Therapy to Control HIV Without Meds - POZ