A bright future for genomics and gene therapy in the UK – Health Service Journal

This is paid-for content from our commercial partners.Find out more

So-called scientific breakthroughs are often in the headlines, but in reality, ground-breaking medical innovations adhere to a slow process characterised by cautious clinical experimentation and gradual but continuous improvement before reaching patients. After years of effort, gene therapy looks set to become a routine medical approach to address serious unmet medical need.

Sponsored by

There are two types of gene therapy approved for commercial use today. The first, in vivo, uses a modified virus, administered directly into the body to correct the target cells original genetic defect. The second, ex vivo, takes the patients own cells away from their body for genetic modification with a virus and then puts them back into the patient. Ex vivo gene therapy is dominated by two cell types; CD34+ haematopoietic stem cells (bone marrow stem cells) that can be modified to correct certain genetic disorders, and cytotoxic T-cells that can be altered and trained to kill cancerous cells.

The cell and gene therapy industry in the UK is supported by the formation and growth of many companies with promising assets in clinical development. This thriving biotech community is also supported by a robust and prosperous contingent of specialist manufacturing companies. These companies were key to the recent national covid-19 vaccine manufacturing response because the process for making genetically modified adenovirus such as the SARs-COV-02 vaccine, (as developed at the Oxford University Jenner Institute), is very similar to the process for making viruses for gene therapy.

UK leadership in gene therapy is no accident. As specified in our National Industrial Strategy, the UKs many research councils, in particular the Medicines Research Council, are active in funding the development and translation of treatments. In the UK right now, there are approximately 127 clinical trials testing new cell and gene therapy medicines, which represents 12 per cent of the global total. The government is readying the NHS to support these trials and transition these treatments into more common use through funding of the Advanced Therapy Treatment Centres (ATTC), a multiyear multi-million-pound project coordinated by the Cell and Gene Therapy Catapult and comprising centres of excellence throughout the UK.

In the UK right now, there are approximately 127 clinical trials testing new cell and gene therapy medicines, which represents 12 per cent of the global total. The government is readying the NHS to support these trials

The ATTCs aim to develop and harmonise adoption of the one and done treatment paradigm by developing the appropriate frameworks and systems to support clinical adoption of these novel therapies. The ATTCs and the NHS are also working in partnership to develop novel medicines assessment and reimbursement paradigms which fairly recognise the ultra-long-term medical benefits that can accrue from a one-time gene therapy treatment. Increased adoption of gene therapy, which is proving to be an approach that can reduce the long-term healthcare burden of chronic disease management, has the potential to significantly lighten the NHS resources required for support of several chronic conditions.

As a future example of the UK commitment to gene therapies, we are also leading the practical application of genetic sequencing (genomics). Formation of the National Genomic Test Directory and support for the 100,000 genomes project by Genomics England are critical steps to improve the diagnosis of patients and identification of a new wave of one-off treatments that could be capable of delivering long-term clinical benefit.

Cell and gene therapies are a revolution in medicine and have even been described as the future of the healthcare system. When you consider that 80 per cent of rare diseases have a genetic component, these treatments could transform the prospects of thousands of people living with these conditions, creating a more economically sustainable and brighter future for them and their families.

Read the rest here:
A bright future for genomics and gene therapy in the UK - Health Service Journal

Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 – Good Night, Good Hockey

Stem Cell Therapy Marketis expected to reach 202.77 billion by 2026 from XX billion in 2018 at CAGR of XX %. REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/522

Stands for use of stem cells to treat or prevent disease or condition.Bone marrow transplant and some therapies derived from umbilical cord blood are mainly used in stem cell therapy. Advancement, in order to establish new sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes, heart disease, and other conditions, are increased in recent years.

The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.

Stem Cell Therapy Market Researchers are making efforts to discover novel methods to create human stem cells. This will increase the demand as well as supply for stem cell production and potential investigation in disease management. Increasing investment & research grants for developing safe and effective stem cell therapy products, the growing patient base for target diseases, concentrated product pipelines, increasing approval of the new clinical trials, rapid technological advancement in genomics, and the rising awareness about the stem cell are expected to drive the growth of the Stem Cell Therapy solutions market during the forecast period.

However, improper infrastructure, insufficient storage systems, nascent technology in underdeveloped economies, Ethical issues related to an embryonic stem cell, low patient acceptance rate, Difficulty in the preservation of stem cell are expected to restrain the market growth. North America is expected to be the largest growing region by 2026; the reason behind that is extensive funding by Government. However, Emerging countries like India, china, Korea have low growth rate as compared to Developed regions in 2017 but increase in awareness about stem cell therapy will lead the Asia Pacific to generate a significant level of revenue by 2026.

Key Highlights of Stem Cell Therapy Market report

Detailed quantitative analysis of the current and future trends from 2017 to 2026, which helps to identify the prevailing market opportunities. Comprehensive analysis of factors instrumental in changing the market scenario, rising prospective opportunities, market shares, core competencies in terms of market development, growth strategies and identification of key companies that can influence this market on a global and regional scale. Assessment of Market definition along with the identification of key drivers, restraints opportunities and challenges for this market during the forecast period. Complete analysis of micro-markets with respect to individual growth trends, prospects, and contributions to the overall Stem Cell Therapy Solutions market. Stem Cell Therapy market analysis and comprehensive segmentation with respect to the Application, End users, Treatment, and geography to assist in strategic business planning. Stem Cell Therapy market analysis and forecast for five major geographies-North America, Europe, Asia Pacific, Middle East & Africa, Latin America, and their key regions. For company profiles, 2017 has been considered as the base year. In cases, wherein information was unavailable for the base year, the years prior to it have been considered.

Research Methodology:

The market is estimated by triangulation of data points obtained from various sources and feeding them into a simulation model created individually for each market. The data points are obtained from paid and unpaid sources along with paid primary interviews with key opinion leaders (KOLs) in the market. KOLs from both, demand and supply side were considered while conducting interviews to get an unbiased idea of the market. This exercise was done at a country level to get a fair idea of the market in countries considered for this study. Later this country-specific data was accumulated to come up with regional numbers and then arrive at a global market value for the stem cell therapy market. Key Players in the Stem Cell Therapy Market are:

Chiesi Farmaceutici S.P.A Are: Gamida Cell ReNeuron Group, plc Osiris Therapeutics, Inc. Stem Cells, Inc. Vericel Corporation. Mesoblast, Ltd.

Key Target Audience:

Stem Cell Associations and Organizations Government Research Boards and Organizations Research and consulting firms Stem Cell Therapy Market Investors Healthcare Service Providers (including Hospitals and Diagnostic Centers) Stem Cell Therapeutic Product Manufacturing Organizations Research Labs Clinical research organizations (CROs) Stem Cell Therapy Marketing Players Pharmaceutical Product Manufacturing Companies Scope of the Stem Cell Therapy Market Report:

Stem Cell Therapy market research report categorizes the Stem Cell Therapy market based on Application, End users, Treatment, and geography (region wise). Market size by value is estimated and forecasted with the revenues of leading companies operating in the Stem Cell Therapy market with key developments in companies and market trends. Stem Cell Therapy Market, By Treatments:

Allogeneic Stem Cell Therapy Autologous Stem Cell Therapy

Stem Cell Therapy Market, By End Users:

Hospitals Ambulatory Surgical Centers

Stem Cell Therapy Market, By Application:

Oncology Central Nervous System Diseases Eye Diseases Musculoskeletal Diseases Wound & Injuries Metabolic Disorders Cardiovascular Disorders Immune System Disorders Stem Cell Therapy Market, By Geography:

North America Europe Asia Pacific Middle East & Africa Latin America

Available Customization:

With the given market data, Maximize Market Research offers customization of report and scope of the report as per the requirement

Regional Analysis:

Breakdown of the North America stem cell therapy market Breakdown of the Europe stem cell therapy market Breakdown of the Asia Pacific stem cell therapy market Breakdown of the Middle East & Africa stem cell therapy market Breakdown of the Latin America stem cell therapy market

Browse Full Report with Facts and Figures Report at:https://www.maximizemarketresearch.com/market-report/stem-cell-therapy-market/522/

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website:www.maximizemarketresearch.com

Read the original here:
Stem Cell Therapy Market by Treatment,Application,End Users and Geography Forecast To 2026 - Good Night, Good Hockey

Diabetic patients may find ray of hope in stem cell treatment – The News International

Diabetic patients may find ray of hope in stem cell treatment

TOKYO: Diabetic patients may find a treatment after scientists developed a new technique that grows insulin-producing cells and can protect them from immune attack after they are transplanted.

In type-1 diabetes, the body turns on itself and attacks the so-called beta cells inside clusters in the pancreas called "islets".

These beta cells are responsible for gauging sugar levels in the blood and releasing insulin to keep them stable. Without them, diabetics must rely on insulin injections or pumps.

One treatment devised to end that reliance involves transplanting donor islets into diabetics, but the process is complicated by several obstacles, including a shortage of donors.

Islets also often fail to connect with blood supply, and even when they do, like other transplants, they can come under attack by the recipient's immune system, which views the cells as invaders.

As a result, patients have to take drugs that suppress their immune systems, protecting their transplant but potentially exposing the rest of their body to illness.

In a bid to overcome some of these challenges, a team looked to find another source for islets, by coaxing induced pluripotent stem cells (iPS) to produce what the team called HILOs, or human islet-like organoids.

These HILOs, when grown in a 3D environment mimicking the pancreas and then turbocharged with a "genetic switch", successfully produced insulin and were able to regulate blood glucose when transplanted into diabetic mice.

"In the past, this functionality was only achieved after a month-long maturation in a living animal," said Ronald Evans, director of the Gene Expression Lab at the Salk Institute for Biological Studies.

"This breakthrough allows for the production of functional HILOs which are active on the first day of transplantation, placing us closer to clinical applications," Evans, who led the study, told AFP.

Giving hope

Having found a potential way to solve the supply chain problem, the scientists then sought to tackle the issue of immune rejection.

They focused on something called PD-L1, a so-called checkpoint protein that is known to inhibit the body's immune response.

In cancer treatments, medication is sometimes used to block PD-L1, boosting the body's immune response to cancer cells.

The team effectively reversed that process, and induced the HILOs to express the protein in a bid to outwit the immune system.

"Normally, human cells placed in a mouse would be eliminated within a day or two," said Evans.

"We discovered a way to create an immune shield that makes human cells invisible to the immune system."

While HILOs transplanted into mice without the PD-L1 protection gradually stopped functioning, those induced to express the protein were shielded and continued to help diabetic mice regulate their blood glucose for more than 50 days.

Being able to grow insulin-producing cells and protect them from attack "brings us much closer to having a potential therapy for type-1 diabetic patients," Evans said.

Around 422 million people worldwide were living with diabetes by 2014, according to the World Health Organization, a figure that includes both type-1 and type-2 diabetes.

Islet transplantation is generally considered as a treatment for type-1 diabetics, whose disease is the result of an auto-immune response.

Evans cautioned that the research, already a decade in the making, was still years from being able to treat diabetes in humans.

"To advance HILOs into the clinic, we need to confirm that they work in other animal models, including primates, as well as do longer-term studies in mice," he said.

He hopes that human studies of the technique will be possible in two to five years.

"This is a hard-to-manage disease and insulin is not a cure," he added, noting that 1.6 million children and teenagers are living with type-1 diabetes in the United States alone.

"Good science is not just a discovery it can enrich the world and give hope to those who live with disease."

Read more:
Diabetic patients may find ray of hope in stem cell treatment - The News International

Shielded Stem Cells Improve The Cells’ Ability To Heal Heart Injuries – Interesting Engineering

A heart attack survivor's heart might just get fully recovered thanks to this development.

When one experiences a heart attack, it is not certain whether they will fully recover or not. Even if the survivor goes back to his regular life, physical restrictions might be necessary due to heart scarring that occurs after the attack.

Bioengineers and surgeons fromRice University and Baylor College of Medicine (BCM) have developed a biomaterial containing stem cells to help repair the heart tissue damage that forms after a heart attack.

The research was published in the journalBiomaterials Science.

In fact, stem cells have been used to try and repair the heart tissue that was damaged before. A type of adult stem cell produced in blood marrow called mesenchymal stem cells (MSCs) was considered helpful in tissue repair. However, the immune system combatted them.

They thought the cells alone were not to correspond to the immune system.

RELATED: NEW BIOMARKER FINGERPRINT WITH AI TECHNOLOGY CAN NOW PREDICT FUTURE HEART ATTACKS

"The immune system perceives them as foreign. And so very rapidly, the immune system starts chewing at them and clearing them out." saidOmid Veiseh, one of the research leaders.

So basically what they did was to coat the stem cells with a biocompatible hydrogel capsule made of brown algae. Next, they were put in rodents, next to scarred tissue of their hearts. At the end of four weeks, the rodents with shielded stem cells healed 2.5 times better and faster compared to those with non-shielded stem cells.

Samira Aghlara-Fotovat, a graduate student and co-author of the study working in Veiseh's lab, generated 0,05-inch (1.5-millimeter) capsules that each contained around 30,000 MSCs.

"The immune system doesn't recognize our hydrogels as foreign, and doesn't initiate a reaction against the hydrogel," Veiseh added.

In fact, regulations of scarred tissues are operated by a protein called "type 5 collagen." So if one lacks the mentioned collagen or has it in small levels, it is likely that damaged tissue will have a hard time being repaired.

Have the capsules been tried on humans yet? Unfortunately, they haven't. But the thing is that encapsulation technologies designed to be compatible with immune system are already being developed for chronic diseases atSigilon Therapeutics, a Cambridge, Massachusetts-based biotech company. So it is a promising development that most probably will be used on humans soon.

See original here:
Shielded Stem Cells Improve The Cells' Ability To Heal Heart Injuries - Interesting Engineering

Steadman Philippon Research Institute (SPRI) Receives Multi-Million-Dollar Matching Grant from the National Institutes of Health – GlobeNewswire

August 20, 2020 15:02 ET | Source: Steadman Philippon Research Institute

VAIL, Colorado, Aug. 20, 2020 (GLOBE NEWSWIRE) -- Steadman Philippon Research Institute (SPRI) has been granted the prestigious Regenerative Medicine Innovation Project Investigator-Initiated Clinical Trials award from the National Institutes of Health (NIH). SPRI Chief Scientific Officer Johnny Huard, Ph.D. will serve as the principal investigator. Marc J. Philippon, M.D., who serves as managing partner of The Steadman Clinic and co-chair of SPRI and Scott Tashman, Ph.D., director of biomedical engineering at SPRI, will serve as co-principal investigators. The clinical trials are expected to begin enrolling in the Fall of 2020.

The award, administered by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, ranks as one of the most significant in SPRIs history, both in size and recognition. Given the potential of regenerative medicine to enhance human health and treat disease, the United States Congress included a provision in the 21st Century Cures Act a law passed in December 2016 to accelerate medical discovery and innovation to support the NIH-established Regenerative Medicine Innovation Project (RMIP). The RMIP aims to accelerate the field by supporting clinical research on adult stem cells while promoting the highest standards for protecting patient safety during the conduct of research.

This is a really great honor for SPRI, said Dr. Huard, who first came to Vail in 2015 and has served as the director of the Center for Regenerative Sports Medicine in addition to his role as the institutes chief scientific officer. Past recipients of these RMIP awards have been Albert Einstein College of Medicine, Boston Childrens Hospital, Columbia University Health Sciences, Childrens Hospital of Philadelphia, Harvard University, University of Colorado Denver and Yale University.So, we are in very good company.

The grant anticipates over $2.8 million from the NIH and requires a 1:1 match from SPRI over the next five years, pending availability of federal funds. The clinical trials and resulting publications and reports will take place over the next five years. A generous SPRI benefactor committed to fund the first year of the match, and Dr. Huard is hopeful that with the NIH matching the funds, more philanthropists will be inspired to become involved in this groundbreaking project.

Our donors have been so generous in supporting all that we do here at SPRI, said Dr. Huard, and I am very grateful and confident that we will raise the funds necessary to complete these trials over the next five years.

The trial is entitled,The Use of Senolytic and Anti-Fibrotic Agents to Improve the Beneficial Effect of Bone Marrow Stem Cells for Osteoarthritis. Huard explains in laypersons terms:

The idea behind the trial is to delay osteoarthritis in the knee, said Huard. Our goal is to delay the need for that first knee replacement in a patient for as long as we can. Over time SPRI intends to expand this area of research to other joints including hip and shoulder.

This clinical trial is designed to determine whether senolytic and/or antifibrotic agents will improve the beneficial effect of Bone Marrow Stem Cells for the treatment of symptomatic knee osteoarthritis. The trial will include four groups, totaling 100 patients, to investigate the teams hypothesis that the use of these agents will improve patient outcomes.

One of the great things that I love about this particular clinical trial is that we are actively involving our orthopaedic surgeons and our biomotion lab staff as well, said Dr. Huard. This will truly be a team effort over the next five years.

Those world-class surgeons are led by Dr. Philippon, considered one of the worlds foremost orthopaedic surgeons. The biomotion lab is under the direction of Dr. Tashman. The contributions of these two leaders and the talented roster of surgeons, clinicians and technicians in their departments will be critical to the success of the upcoming clinical trials. SPRIs Center for Outcomes-Based Orthopaedic Research and its director Grant Dornan are also participating in this project by contributing the statistical outcomes.

Dr. Philippon is not only a world-class surgeon but he is also an innovator, added Dr. Huard. He always wants to improve and is still willing to try new things to enhance patient outcomes. Dr. Tashman is the same way. Like everyone here at SPRI and The Steadman Clinic, they are embracing the cutting-edge technology available to them and finding new and better ways to treat patients and, most importantly, reduce patients recovery time and get them back to their active lives as quickly and safely as possible.

Huard notes that the rare combination of a globally recognized research institute like SPRI and a world-class orthopaedic surgery clinic like The Steadman Clinic in the same building is one of the key factors in the awarding of this RMIP grant.

Weve got something here in Vail that many other research institutes dont have, said Huard. We have one of the worlds finest orthopaedic clinics right next door, working hand-in-hand with us every day.

Dr. Huard and Dr. Tashman along with Suzanne Liv Page, J.D., our director of grants and contracts have worked diligently to prepare and gain acceptance of this grant proposal from the NIH, said Dr. Philippon. Our surgeons here at The Steadman Clinic eagerly await the opportunity to participate in the trial. Johnny, Scott and their staff have put SPRI into position to undertake major trials and studies like this one and we are all very honored that the NIH has given SPRI this incredible opportunity.

For further information or other inquiries about The Steadman Clinic or Steadman Philippon Research Institute, contact Lynda Sampson, Vice President of External Affairs (lsampson@sprivail.org).

Link to current SPRI clinical trials - https://www.sprivail.org/about-us/clinical-trials

See the rest here:
Steadman Philippon Research Institute (SPRI) Receives Multi-Million-Dollar Matching Grant from the National Institutes of Health - GlobeNewswire

Genmab Announces Janssen Granted U.S. FDA Approval for DARZALEX (daratumumab) in Combination with Carfilzomib and Dexamethasone in Relapsed or…

August 20, 2020 16:40 ET | Source: Genmab A/S

Company Announcement

Copenhagen, Denmark; August 20, 2020 Genmab A/S (Nasdaq: GMAB) announced today that the U.S. Food and Drug Administration (U.S. FDA) has approved the use of DARZALEX (daratumumab) in combination with carfilzomib and dexamethasone (DKd) for the treatment of adult patients with relapsed/refractory multiple myeloma who have received one to three previous lines of therapy. A supplemental Biologics License Application (sBLA) for this indication was submitted by Genmabs licensing partner, Janssen Biotech, Inc. (Janssen), in February 2020. In August 2012, Genmab granted Janssen an exclusive worldwide license to develop, manufacture and commercialize daratumumab.

We are extremely pleased that multiple myeloma patients in the U.S. will now have yet another treatment option as this is the eighth overall U.S. FDA approval for DARZALEX and the fifth in the relapsed/refractory setting. In addition, DARZALEX is now the first CD38 antibody approved for use in combination with carfilzomib, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab.

The combination has been approved in two carfilzomib dosing regimens, 70 mg/m2 once weekly and 56 mg/m2 twice weekly, based on positive results from the Phase 3 CANDOR and Phase 1b EQUULEUS studies. CANDOR was an Amgen-sponsored study, co-funded by Janssen Research & Development, LLC. EQUULEUS was sponsored by Janssen Research & Development, LLC.

About the CANDOR study The Phase 3 trial (NCT03158688) was a randomized, open-label study that included 466 patients with multiple myeloma who had relapsed after 1 to 3 prior therapies. Patients were randomized to receive either DKd or carfilzomib and dexamethasone (Kd) alone. In the daratumumab treatment arm, patients received 8 milligrams per kilogram (mg/kg) on days 1 and 2 of cycle 1, then 16 mg/kg once weekly for the remaining doses of the first 2 cycles, then every 2 weeks for 4 cycles (cycles 3 to 6), and then every 4 weeks for the remaining cycles or until disease progression. In both treatment arms carfilzomib was dosed twice weekly (20 mg/m2 on cycle 1 days 1 and 2 and 56 mg/m2 beginning on cycle 1 day 8 and thereafter) and dexamethasone was given weekly (40 mg orally or via IV infusion). The primary endpoint of the study was progression free survival (PFS).

About the EQUULEUS (MMY1001) Study The Phase 1b EQUULEUS (NCT01998971) study was an open label, multi-cohort trial that evaluated the safety, tolerability, and dose regimen of daratumumab when administered in combination with various treatment regimens for the treatment of multiple myeloma. Among the regiments evaluated, the combination of DKd compared to Kd alone was studied in 85 patients with relapsed/refractory multiple myeloma who had received one to three prior lines of therapy using a once-weekly dosing regimen. DKd was evaluated at a starting dose of 20 mg/m2, which was increased to 70 mg/m2 on Cycle 1, Day 8 and onward.

About multiple myeloma Multiple myeloma is an incurable blood cancer that starts in the bone marrow and is characterized by an excess proliferation of plasma cells.1 Multiple myeloma is the third most common blood cancer in the U.S., after leukemia and lymphoma.2 Approximately 26,000 new patients were expected to be diagnosed with multiple myeloma and approximately 13,650 people were expected to die from the disease in the U.S. in 2018.3 Globally, it was estimated that 160,000 people were diagnosed and 106,000 died from the disease in 2018.4 While some patients with multiple myeloma have no symptoms at all, most patients are diagnosed due to symptoms which can include bone problems, low blood counts, calcium elevation, kidney problems or infections.5

About DARZALEX(daratumumab) DARZALEX (daratumumab) has become a backbone therapy in the treatment of multiple myeloma. DARZALEX intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with carfilzomib and dexamethasone for the treatment of patients with relapsed/refractory multiple myeloma who have received one to three previous lines of therapy; in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.6 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma.

DARZALEX is indicated for the treatment of adult patients in Europe via intravenous infusion or subcutaneous administration: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy7. Daratumumab is the first subcutaneous CD38 antibody approved in Europe for the treatment of multiple myeloma. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S.

In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.

DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, is approved in the United States for the treatment of adult patients with multiple myeloma: in combination with bortezomib, melphalan and prednisone in newly diagnosed patients who are ineligible for ASCT; in combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for ASCT and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy; in combination with bortezomib and dexamethasone in patients who have received at least one prior therapy; and as monotherapy, in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent.8 DARZALEX FASPRO is the first subcutaneous CD38 antibody approved in the U.S. for the treatment of multiple myeloma.

Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).6,9,10,11,12

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis and T-cell acute lymphocytic leukemia (ALL). Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.

About Genmab Genmab is a publicly traded, international biotechnology company specializing in the creation and development of differentiated antibody therapeutics for the treatment of cancer. Founded in 1999, the company is the creator of the following approved antibodies: DARZALEX (daratumumab, under agreement with Janssen Biotech, Inc.) for the treatment of certain multiple myeloma indications in territories including the U.S., Europe and Japan, Kesimpta (subcutaneous ofatumumab, under agreement with Novartis AG), for the treatment of adults with relapsing forms of multiple sclerosis in the U.S. and TEPEZZA (teprotumumab, under agreement with Roche granting sublicense to Horizon Therapeutics plc) for the treatment of thyroid eye disease in the U.S. A subcutaneous formulation of daratumumab, known as DARZALEX FASPRO (daratumumab and hyaluronidase-fihj) in the U.S., has been approved in the U.S. and Europe for the treatment of adult patients with certain multiple myeloma indications. The first approved Genmab created therapy, Arzerra (ofatumumab, under agreement with Novartis AG), approved for the treatment of certain chronic lymphocytic leukemia indications, is available in Japan and is also available in other territories via compassionate use or oncology access programs. Daratumumab is in clinical development by Janssen for the treatment of additional multiple myeloma indications, other blood cancers and amyloidosis. Genmab also has a broad clinical and pre-clinical product pipeline. Genmab's technology base consists of validated and proprietary next generation antibody technologies - the DuoBody platform for generation of bispecific antibodies, the HexaBody platform, which creates effector function enhanced antibodies, the HexElect platform, which combines two co-dependently acting HexaBody molecules to introduce selectivity while maximizing therapeutic potency and the DuoHexaBody platform, which enhances the potential potency of bispecific antibodies through hexamerization. The company intends to leverage these technologies to create opportunities for full or co-ownership of future products. Genmab has alliances with top tier pharmaceutical and biotechnology companies. Genmab is headquartered in Copenhagen, Denmark with sites in Utrecht, the Netherlands, Princeton, New Jersey, U.S. and Tokyo, Japan.

Contact: Marisol Peron, Corporate Vice President, Communications & Investor Relations T: +1 609 524 0065; E: mmp@genmab.com

For Investor Relations: Andrew Carlsen, Senior Director, Investor Relations T: +45 3377 9558; E: acn@genmab.com

This Company Announcement contains forward looking statements. The words believe, expect, anticipate, intend and plan and similar expressions identify forward looking statements. Actual results or performance may differ materially from any future results or performance expressed or implied by such statements. The important factors that could cause our actual results or performance to differ materially include, among others, risks associated with pre-clinical and clinical development of products, uncertainties related to the outcome and conduct of clinical trials including unforeseen safety issues, uncertainties related to product manufacturing, the lack of market acceptance of our products, our inability to manage growth, the competitive environment in relation to our business area and markets, our inability to attract and retain suitably qualified personnel, the unenforceability or lack of protection of our patents and proprietary rights, our relationships with affiliated entities, changes and developments in technology which may render our products or technologies obsolete, and other factors. For a further discussion of these risks, please refer to the risk management sections in Genmabs most recent financial reports, which are available on http://www.genmab.com and the risk factors included in Genmabs most recent Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission (SEC), which are available at http://www.sec.gov. Genmab does not undertake any obligation to update or revise forward looking statements in this Company Announcement nor to confirm such statements to reflect subsequent events or circumstances after the date made or in relation to actual results, unless required by law.

Genmab A/S and/or its subsidiaries own the following trademarks: Genmab; the Y-shaped Genmab logo; Genmab in combination with the Y-shaped Genmab logo; HuMax; DuoBody; DuoBody in combination with the DuoBody logo; HexaBody; HexaBody in combination with the HexaBody logo; DuoHexaBody; HexElect; and UniBody. Arzerra and Kesimpta are trademarks of Novartis AG or its affiliates. DARZALEX and DARZALEX FASPRO are trademarks of Janssen Pharmaceutica NV. TEPEZZA is a trademark of Horizon Therapeutics plc.

1 American Cancer Society. "Multiple Myeloma Overview." Available at http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-what-is-multiple-myeloma.Accessed June 2016. 2 National Cancer Institute. "A Snapshot of Myeloma." Available at http://www.cancer.gov/research/progress/snapshots/myeloma. Accessed June 2016. 3 Globocan 2018. United States of America Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/840-united-states-of-america-fact-sheets.pdf. 4 Globocan 2018. World Fact Sheet. Available at http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf. Accessed December 2018. 5 American Cancer Society. "How is Multiple Myeloma Diagnosed?" http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-diagnosis. Accessed June 2016 6 DARZALEX Prescribing information, September 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761036s024lbl.pdf Last accessed September 2019 7 DARZALEX Summary of Product Characteristics, available at https://www.ema.europa.eu/en/medicines/human/EPAR/darzalex Last accessed June 2020 8 DARZALEX FASPRO Prescribing information, May 2020. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761145s000lbl.pdf Last accessed May 2020 9 De Weers, M et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology. 2011; 186: 1840-1848. 10 Overdijk, MB, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015; 7: 311-21. 11 Krejcik, MD et al. Daratumumab Depletes CD38+ Immune-regulatory Cells, Promotes T-cell Expansion, and Skews T-cell Repertoire in Multiple Myeloma. Blood. 2016; 128: 384-94. 12 Jansen, JH et al. Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking.Blood. 2012; 120(21): abstract 2974.

Company Announcement no. 38 CVR no. 2102 3884 LEI Code 529900MTJPDPE4MHJ122

Genmab A/S Kalvebod Brygge 43 1560 Copenhagen V Denmark

Read more:
Genmab Announces Janssen Granted U.S. FDA Approval for DARZALEX (daratumumab) in Combination with Carfilzomib and Dexamethasone in Relapsed or...

Worldwide Dilated Cardiomyopathy (DCM) Market Insights, Epidemiology and Forecast – 2030 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Dilated Cardiomyopathy (DCM) - Market Insights, Epidemiology and Market Forecast - 2030" drug pipelines report has been added to ResearchAndMarkets.com's offering.

This report delivers an in-depth understanding of the Dilated Cardiomyopathy, historical and forecasted epidemiology as well as the Dilated Cardiomyopathy market trends in the United States, EU5 (Germany, France, Italy, Spain, and United Kingdom), and Japan.

The Dilated Cardiomyopathy market report provides current treatment practices, emerging drugs, Dilated Cardiomyopathy market share of the individual therapies, current and forecasted Dilated Cardiomyopathy market size from 2017 to 2030 segmented by seven major markets. The report also covers current Dilated Cardiomyopathy treatment practice/algorithm, market drivers, market barriers and unmet medical needs to curate best of the opportunities and assesses underlying potential of the market.

Epidemiology

The Dilated Cardiomyopathy epidemiology division provides the insights about historical and current Dilated Cardiomyopathy patient pool and forecasted trend for each seven major countries. It helps to recognize the causes of current and forecasted trends by exploring numerous studies and views of key opinion leaders. This part of the report also provides the diagnosed patient pool and their trends along with assumptions undertaken.

The disease epidemiology covered in the report provides historical as well as forecasted Dilated Cardiomyopathy epidemiology segmented as [Total Prevalent Population of Dilated Cardiomyopathy, Total Diagnosed Population of Dilated Cardiomyopathy, Familial and non-familial cases of Dilated Cardiomyopathy, Gender-Specific Cases of Dilated Cardiomyopathy, and Total Treated Cases of Dilated Cardiomyopathy] scenario of Dilated Cardiomyopathy in the 7MM covering the United States, EU5 countries (Germany, France, Italy, Spain, and United Kingdom), and Japan from 2017 to 2030.

Key Findings

Drug Chapters

Drug chapter segment of the Dilated Cardiomyopathy report encloses the detailed analysis of Dilated Cardiomyopathy marketed drugs and late stage (Phase-III and Phase-II) pipeline drugs. It also helps to understand the Dilated Cardiomyopathy clinical trial details, expressive pharmacological action, agreements and collaborations, approval and patent details, advantages and disadvantages of each included drug and the latest news and press releases.

Approved Drug

Corlanor (ivabradine): Amgen

Corlanor (ivabradine) is a hyperpolarization-activated cyclic nucleotide-gated channel blocker that reduces the spontaneous pacemaker activity of the cardiac sinus node by selectively inhibiting the If current, resulting in heart rate reduction with no effect on ventricular repolarization and no effects on myocardial contractility.

The US FDA approval of Corlanor (ivabradine) for the treatment of stable symptomatic heart failure (HF) due to dilated cardiomyopathy in pediatric patients aged 6 months to 18 years was based on a randomized, double-blind, placebo-controlled trial in 116 patients aged 6 months to less than 18 years with symptomatic DCM in sinus rhythm, NYHA/Ross class II to IV HF, and left ventricular ejection fraction 45%. The primary endpoint of the study was 20% reduction in resting heart rate from baseline without bradycardia or symptoms after an initial titration period.

Emerging Drugs

PF-07265803/ARRY-371797/ARRY-797: Pfizer

ARRY-371797 which is also known as ARRY-797 is an oral, p38 mitogen activated protein kinase (MAPK) inhibitor discovered by Array scientists. Compared to other p38 MAPK inhibitors ARRY-797 has unique and differentiated properties: it is highly selective, retains exceptional potency in whole blood and possesses a favorable pharmacokinetic profile. It is currently under phase III trial for the treatment of patients affected with dilated cardiomyopathy due to a Lamin A/C gene mutation. In the year 2019, Pfizer completed the acquisition of Array Biopharma to expand its pipeline and currently this drug is in phase III pipeline drugs of Pfizer with name PF-07265803 for the treatment of patients affected by dilated cardiomyopathy.

Ixmyelocel-T: Vericel

Ixmyelocel-T is an investigational autologous expanded multicellular therapy manufactured from the patient's own bone marrow using Vericel's proprietary, highly automated, fully closed cell-processing system. This process selectively expands the population of mesenchymal stromal cells and alternatively activated macrophages, which are responsible for production of anti-inflammatory and pro-angiogenic factors known to be important for repair of damaged tissue. Ixmyelocel-T has been designated as an orphan drug by the U.S. Food and Drug Administration for use in the treatment of DCM. However, currently the development of this drug is at halt because as per the recent news the company do not have current plans to initiate or fund a phase III trial for this drug at their own.

BC007: Berlin Cures GmbH

BC007 is a DNA aptamer-based compound that binds to and eliminates pathogenic autoantibodies directed against the beta-1 adrenoceptor, a receptor belonging to the large family of cell surface receptors known as G-protein coupled receptors that regulate the heart's rate and contraction strength.

Ifetroban: Cumberland Pharmaceuticals

Ifetroban is a potent and selective inhibitor of the thromboxane receptor (TPr), preventing fibrosis and an inflammatory response. It was initially developed by Bristol-Myers Squibb as an anti-platelet agent to prevent blood clots (blood thrombus), and was acquired by Cumberland in 2011. It is believed that this drug molecule is able to stop important molecular signals that mediate inflammation and fibrosis (tissue scaring) mechanisms in the heart, triggered by the loss of dystrophin protein.

Danicamtiv/MYK-491: MyoKardia

MYK-491 is an orally-administered small molecule designed to increase the number of myosin-actin cross-bridges formed during cardiac muscle contraction while having minimal impact on diastolic function. In the heart, myosin is the motor protein that binds to actin to generate the force and movement of contraction. In patients with dilated cardiomyopathy and systolic heart failure, in which the left ventricle of the heart is too distended and weak to adequately pump blood to meet the body's needs, MYK-491 is intended to increase myosin-actin engagement, thereby targeting the biomechanical defects underlying disease and improving cardiac contractility.

CAP-1002: Capricor Therapeutics

CAP-1002, Capricor's lead product candidate, is a proprietary allogeneic adult stem cell therapy for the treatment of heart disease. The product is derived from donor heart tissue. The cells are expanded in the laboratory using a specialized process and then introduced directly into a patient's heart via infusion into a coronary artery using standard cardiac catheterization techniques. CAP-1002 consists of allogeneic cardiosphere-derived cells, or CDCs, a unique population of cells that has been shown to exert potent immunomodulatory activity and alters the immune system's activity to encourage cellular regeneration.

Market Outlook

Besides treating any recognizable and reversible underlying causes, the management and treatment of DCM are in concordance with the standard heart failure guidelines. Currently, the treatment pattern of DCM is mainly dependent on pharmacological therapy, pacing therapy, surgical options, and Corlanor (ivabradine).

The pharmacological therapies consist of diuretics, inotropic agents, afterload reducing agents, beta-blockers, anticoagulation medications, anti-arrhythmia medications. The main diuretics that are prescribed for the treatment are furosemide, spironolactone, bumetanide, and metolazone. Common side effects of diuretics include dehydration and abnormalities in the blood chemistries particularly potassium loss. Inotopric agents that are prescribed for the treatment are digoxin, dobutamine, dopamine, epinephrine, norepinephrine, vasopressin, and milrinone. Some afterload reducing medications include angiotensin-converting enzyme inhibitors (ACE inhibitors) such as captopril, enalMay, lisinopril, monopril, angiotensin I blocker such as losartan. Losartan and milrinone are inotropic agents that also relax the arteries. Stronger anticoagulation drugs are warfarin, heparin, and enoxaparin; these drugs require careful monitoring with regular blood testing.

Angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARB) have shown benefit in the treatment of heart failure with reduced ejection fraction and are suggested for the patients affected with DCM. Aldosterone receptor blockade with spironolactone or eplerenone also is recommended in patients with New York Heart Association (NYHA) heart failure class II-IV and systolic dysfunction. Similarly, beta-blockade with carvedilol, bisoprolol, or long-acting metoprolol is recommended in all patients with heart failure with reduced ejection fraction without any contraindications. The addition of isosorbide dinitrate plus hydralazine also has shown to increase survival amongst those with advanced disease.

In some cases, beta-blockers allow an enlarged heart to become more normal in size. Common beta-blockers include carvedilol, metoprolol, propranolol, and atenolol. Side effects include dizziness, low heart rate, low blood pressure, and, in some cases, fluid retention, fatigue, impaired school performance, and depression. The choice of anticoagulation drugs depends on how likely it is that a blood clot will form. Less strong anticoagulation medications include aspirin and dipyridamole. Common anti-arrhythmia medications include amiodarone, procainamide, and lidocaine. Also, Corlanor (ivabradine) is an approved therapy for the treatment of 6 months to 18 years old patient affected by Dilated Cardiomyopathy.

Key Findings

According to the report, Dilated Cardiomyopathy market in the 7MM is expected to change in the study period 2017-2030. The total therapeutic market of Dilated Cardiomyopathy in seven major markets was found to be USD 244 million in 2017 which is expected to increase during the study period (2017-2030).

The United States Market Outlook

In 2017, the total market size of Dilated Cardiomyopathy therapies was estimated to be USD 142.9 million in the United States which is expected to increase in the study period (2017-2030).

EU5 Countries: Market Outlook

In 2017, the total market size of Dilated Cardiomyopathy therapies was found to be USD 74.4 million in the EU5 countries which is expected to increase in the study period (2017-2030).

Japan Market Outlook

The total market size of Dilated Cardiomyopathy therapies in Japan was found to be USD 27.1 million in 2017 which is also expected to increase during the study period (2017-2030).

Pipeline Development Activities

The drugs which are in pipeline include:

1. PF-07265803/ARRY-371797/ARRY-797: Pfizer

2. Ixmyelocel-T: Vericel

3. BC007: Berlin Cures GmbH

4. Ifetroban: Cumberland Pharmaceuticals

5. Danicamtiv/MYK-491: MyoKardia

6. CAP-1002: Capricor Therapeutics

Access and Reimbursement Scenario

The record published in United HealthCare Services, in the United States, stated that reimbursement is eligible for the CPT codes related to various genetic testing for cardiac disease. CPT code 81439 includes indications such as hereditary cardiomyopathy (e.g., hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy), genomic sequence analysis panel - must include sequencing of at least five cardiomyopathy-related genes (e.g., DSG2, MYBPC3, MYH7, PKP2, TTN). Moreover, cardiomyopathies that present primarily as neuromuscular disorders and related genetic testing are also covered in the Medical Policy.

KOL Views

To keep up with current market trends, we take KOL's and SME's opinion working in Dilated Cardiomyopathy domain through primary research to fill the data gaps and validates our secondary research. Their opinion helps to understand and validate current and emerging therapies treatment patterns and Dilated Cardiomyopathy market trend. This will support the clients in the introduction of potential upcoming novel treatment by identifying the overall scenario of the market and the unmet needs.

Competitive Intelligence Analysis

The publisher performs Competitive and Market Intelligence analysis of the Dilated Cardiomyopathy Market by using various Competitive Intelligence tools that includes - SWOT analysis, PESTLE analysis, Porter's five forces, BCG Matrix, Market entry strategies etc. The inclusion of the analysis entirely depends upon the data availability.

Scope of the Report

Report Highlights

Companies Mentioned

For more information about this drug pipelines report visit https://www.researchandmarkets.com/r/qfjown

Go here to see the original:
Worldwide Dilated Cardiomyopathy (DCM) Market Insights, Epidemiology and Forecast - 2030 - ResearchAndMarkets.com - Business Wire

Huntington’s Disease Alters Human Development in the Fetal… : Neurology Today – LWW Journals

By Jamie Talan August 20, 2020 The Science Explained Article In Brief

Scientists identified several cellular abnormalities in the developing cortex from fetal tissues carrying the mutant gene implicated in Huntington's disease. The findings suggest that the disease alters human development at an early age.

Teams of French researchers have found cellular changes that alter cortical development in the brains of human fetuses who carry the mutant huntingtin gene (mHTT) implicated in Huntington's disease (HD).

The finding adds a new wrinkle to the puzzle of HD as many people who carry the mutation can live healthy lives for four decades or longer before the onset of symptoms.

No one knows why, but this is a common thread in other late-onset genetically-driven neurodegenerative conditions like Alzheimer's and Parkinson's disease, the researchers said. And a growing number of researchers believe that it is best to treat people with the HD mutation as early as possible.Now, findings from this study, published online July 16 in Science, beg the question: How early?

The researchers, led by Sandrine Humbert, PhD, research director of INSERM (the French National Institute for Health and Medical Research) and group leader at the Grenoble Institut des Neurosciences, and Alexandra Durr, MD, PhD, professor at Sorbonne University and team leader of the Paris Brain Institute at Pitie-Salptrire Hospital, had access to fetal tissue from families that terminated their pregnancy in the context of a prenatal test. The developing fetus carried the mHTT.

Other mouse and neuroimaging studies with pre-manifest mutation carriers have suggested that the mutation might affect neurodevelopment but this is the first time that scientists have looked to the human fetus to know for sure.

Dr. Durr works with people undergoing genetic testing and counseling for Huntington's disease. Her team was able to collect cortical tissue from four HD mutation carriers when the pregnancies were terminated at around 13-weeks' gestation and tissue from four healthy controls.

This age is an opportune time to assess the tissue, the study authors noted, because at this stage the cortical neurons that project to the striatumthose that become dysfunctional and die during the course of the diseaseare being born from progenitor cells at the ventricular zone.

Thirteen weeks gestation is the time point when you need a lot of cells to be generated, Dr. Humbert explained. At this stage in development cells are massively cycling. The implications for the fetal brain with an HD mutation is that there is a shift to differentiate early and, as a result, you generate fewer neurons, at least at this specific time point during development.

The scientists identified several cellular abnormalities in the developing cortex, including mislocalization of the mutant huntingtin protein and other junction proteins that keep the neuroepithelium sealed. They observed abnormal ciliogenesis and changes in mitosis and cell-cycle progression, which correlated with defects in the balance between renewal and differentiation of progenitors.

In neuroprogenitor cells, this balance is tightly regulated to provide the right amount of neurons along the development of the cortex. Fewer proliferating cells and more progenitors prematurely began to differentiate in the tissues of HD carrierssubtle findings that are changing the landscape of the cortex.

Huntington's definitely has a neurodevelopmental component in addition to a neurodegenerative disease, Dr. Humbert explained. Studies in mice have found similar cellular abnormalities.

These data are supported by similar findings in mice that show mutant HTT impairs neuroprogenitor cell division, migration, and maturation, and that these changes result in a thinner cortex. Additional studies have revealed that early exposure to mutant HTT is enough to trigger signs of HD when the mice grow up. Neuroimaging studies with pre-symptomatic mutation carriers, even children, have shown smaller intracranial volume in HD mutation carriers.

What is also intriguing is that these events occurred even though the fetuses had small pathological expansions39, 40, and 42 repeats that would typically cause an adult onset of HD.

The findings trigger a number of questions: Why aren't there any obvious clinical problems until mid-life? Do these early developmental changes set the stage for symptoms decades down the road? Are other brain cells compensating for the changes and it takes 40-plus years for symptoms to develop?

Dr. Humbert and her colleagues said that the defects we observed likely render the cortico-striatal circuitry more vulnerable to the later dysfunctions characteristic of HD. The path to degeneration is complex, however, and weaves together both pathogenic and compensatory mechanisms.

They cited a recent pair of studies in Neurology by Peg Nopoulos, MD, and her colleagues at the University of Iowa, Carver College of Medicine that looked at children who are HD mutation carriers. They showed initial striatal enlargement with hyper-connectivity between the striatum and the cerebellum. Over time, the striatum decreases and the connections weaken. Although the cerebellar connections initially may help compensate for the abnormally developed striatum, it is the loss of these connections that may ultimately lead to motor abnormalities. Again, it will be decades before any obvious motor signs develop.

Once there are disease-modifying therapies, we know we should treat as early as possible or differently in pre-manifest compared to symptomatic stages of the disease, or it may not be sufficient, said Dr. Humbert.

She said she is now interested in understanding how these early defects contribute to adult pathology, and how their compensation could be regulated during the silent symptom-free period. This should give access to new molecules of interest, either as treatments or biomarkers, she added.

It is a beautiful paper, said Christopher A. Ross, MD, PhD, director of neurobiology and professor of psychiatry and behavioral sciences at Johns Hopkins Medicine. The concept fits with ideas people have had. Their study is groundbreaking.

It's unclear how these cell-cycle abnormalities alter normal development, said Dr. Ross. I have been doing pre-manifest genetic testing for years, and my belief is that asymptomatic people who are far from their predicted onset but test positive are clinically completely normal.

These data are very interesting, said Sarah Tabrizi, MD, PhD, professor of clinical neurology at University College London Institute of Neurology. There has been debate in the HD field regarding the existence of a neurodevelopmental deficit, and evidence is accruing that this may be the case based on differentiating HD induced pluripotent stem cell systems, mouse development, and now these studies of early human development.

We recently found that HD gene carriers ~24 years before predicted disease onset had essentially completely normal brains including normal cortico-striatal connectivity on advanced neuroimaging, apart from a slightly smaller striatum, which we hypothesized resulted in selective vulnerability of the striatum to subsequent neurodegeneration in HD (Lancet Neurology 2020). Importantly, our HD gene carriers performed as well as matched controls on a range of stringent cognitive and motor assessments.

This all suggests that we need to treat as early as possible with disease-modifying therapies to enable us to delay or prevent symptom onset, Dr. Tabrizi said, and means that there is still great potential for therapies to potentially prevent the neurodegeneration occurring if we treat early enough. We need to understand more about the very earliest manifestations of neurodegeneration and then intervene at the optimal stage.

Dr. Ross believes that the brain figures out a workaround of these developmental alterations but agrees that it may leave the brain more vulnerable later in life. He added, These findings are conceptually very important, though not necessarily with immediate implications for patients or those who are asymptomatic but test positive.

He said that this finding represents a paradigm shift that will lead scientists to look for developmental abnormalities in other neurodegenerative diseases.

It is important to emphasize how the Huntington gene (HTT) affects the brain in the context of a lifetime trajectory, added Dr. Nopoulos, the Paul W. Penningroth professor of psychiatry and chair in the department of psychiatry at University of Iowa Carver College of Medicine. This gene is vital for brain development. Our group has shown that HTT drives brain development and that repeats in HTT are beneficial, and the higher the repeat, the higher the IQ. For individuals with repeats in the range of 39-42, like those in the fetal tissue study, HTT likely contributed to the development of a cerebellar-striatal-cortical circuit that was initially advantageous (which is why they are found to be asymptomatic in the Tabrizi study), but later in life, vulnerable to degeneration. Therefore, although the findings in the fetal tissue study are reported as abnormalities, they are more likely to be evidence of differences since the changes are not pathologic until much later in life.

However, she added, everything about HTT is on a spectrumthe classic dose effect of repeats on the age of onset is a good example where greater repeats result in earlier onset. The same is likely true for development.

Human brain development is prolonged, lasting until roughly age 30, she continued. Those with repeats in the low mutant range (36-42) will have a chance for full brain development before the vulnerable cerebellar-striatal-cortical circuit begins to degenerate and disease manifests. However, in those with longer repeats (above 50), the vulnerable brain circuit may begin to degenerate before full brain maturation is complete.

In this range of repeats, the ultimate effect of mHTT on brain development may be detrimental. These considerations are vitally important when considering when to intervene with preventive therapies such as gene knock-down drugs. In those with low mutant repeats, knocking down the gene early in life (before age 30) may be detrimental to brain development, yet in those with high repeats, rescue may need to be much earlier (adolescence).

Drs. Humbert, Durr, Ross, and Nopoulos had no relevant disclosures.

See the original post here:
Huntington's Disease Alters Human Development in the Fetal... : Neurology Today - LWW Journals

Catholic Support for Ethically Acceptable Stem Cell Research

Sometimes it is wrongly said that the Catholic Church opposes stem cell research. In fact, the Church supports ethically responsible stem cell research, while opposing any research that exploits or destroys human embryos.

Because the Church opposes deliberately destroying innocent human life at any stage, for research or any other purpose, it opposes embryonic stem cell research as currently conducted. However, when scientists proposed avenues for possibly obtaining embryonic stem cells or their pluripotent equivalent without creating or harming embryos, Catholic leaders were among the first to welcome this idea: http://www.freerepublic.com/focus/f-news/1435477/posts.

The Catholic Church has long supported research using stem cells from adult tissue and umbilical cord blood, which poses no moral problem. Catholic institutions at times have taken the lead in promoting such constructive research, which is already providing cures and treatments for suffering patients:

In October 2005, the Catholic bishops of South Korea said they will raise and donate about $10 million to advancing adult stem cell research: http://www.taipeitimes.com/News/world/archives/2005/10/06/2003274635

South Korea's Catholic Medical Centre announced in June 2005 that it had successfully treated stroke and vascular disease in 64 patients using adult stem cells: http://www.asianews.it/view.php?l=en&art=3491

A March 2005 breakthrough demonstrating the capabilities of adult stem cells in Australia was made possible by a grant of $50,000 (Australian dollars) from the Catholic Archdiocese of Sydney: http://edition.cnn.com/2005/TECH/science/03/21/australia.stemcell/

In February 2005 a major Catholic teaching hospital in Boston, Caritas St. Elizabeth's Medical Center, announced that it had "identified adult stem cells that may have the capacity to repair and regenerate all tissue types in the body": http://www.caritas-semc.org/home/site_content_list_detail.asp?s=2328&ss=324

The U.S. Conference of Catholic Bishops has worked to pass federal legislation creating a nationwide public bank for umbilical cord blood stem cells, for research and the treatment of a wide variety of diseases.

In 2004 Monsignor Thomas Hartman, director of radio and television for the Catholic Diocese of Rockville Centre, founded The Thomas Hartman Foundation for Parkinson's Research. The foundation has raised millions of dollars for adult stem cell research and other avenues for curing Parkinson's disease: http://www.hartmanfoundation.org

Clearly, the Church favors ethically acceptable stem cell research. It opposes destroying some human lives now, on the pretext that this may possibly help other lives in the future. We must respect life at all times, especially when our goal is to save lives.

Follow this link:
Catholic Support for Ethically Acceptable Stem Cell Research

Stanford Children’s Health Appoints New Chief of Pediatric Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine – PRNewswire

Gruber brings a wealth of clinical and laboratory experience from St. Jude Children's Research Hospital, where she worked for more than a decade, most recently as an Associate Member of the Molecular Oncology Division in the Oncology Department. While at St. Jude, she became a nationally and internationally recognized leader and physician-scientist who ran a research laboratory in addition to national clinical trials.

"I am thrilled to welcome Dr. Gruber to Stanford Children's Health," said Paul King, president and CEO of Stanford Children's Health. "On the heels of opening our new inpatient cancer centerin 2019, Dr. Gruber's leadership as a remarkably accomplished and collaborative physician-scientist will further enhance Stanford Children's Health's ability to offer preeminent, innovative treatment for pediatric cancer, blood diseases, and stem cell transplantation."

Gruber's research focuses on high-risk leukemia and acute megakaryoblastic leukemia (AMKL). Research in her lab at St. Jude led to the identification of CBFA2T3-GLIS2, a novel fusion gene that confers a poor prognosis in pediatric AMKL and a detailed view of the genomic landscape in MLLr leukemia. Her lab also identified bortezomib and vorinostat as active agents in MLLr leukemia with a novel mechanism of action. These data formed the preclinical basis for the multi-institutional clinical trial "Total Therapy for Infants with Acute Lymphoblastic Leukemia," for which patients at Lucile Packard Children's Hospital Stanford were recruited.

"We are tremendously excited about Tanja's arrival. She will be a transformative leader for the Division of Pediatric Hematology, Oncology, and will also play a pivotal role as the Stanford Cancer Institute's new Associate Director for Pediatric Cancer," said Steven Artandi, MD, PhD, director of the Stanford Cancer Institute. "Her expertise as both a laboratory scientist and clinical trialist will bring added strength to our cancer drug discovery efforts, and her background in immunology will enable us to explore new synergies between our adult and pediatric efforts."

"Stanford is an incredibly inspiring place, and I look forward to working with all the physicians and scientists here to develop new treatment approaches and bring them to patients," Gruber said. "The passion for providing excellent patient care rooted in cutting-edge science is clear, and the opportunity to lead a group that is so committed to advancing the field of pediatric cancer and blood diseases is very exciting."

Gruber graduated from the University of Southern California with an MD in Medicine and PhD in Immunology. She completed residency and a fellowship in hematology and oncology at Children's Hospital Los Angeles prior to being recruited by St. Jude.

Media ContactKate DeTrempe [emailprotected] (650) 485-9487

About Stanford Children's HealthStanford Children's Health, with Lucile Packard Children's Hospital Stanfordat its center, is the Bay Area's largest health care system exclusively dedicated to children and expectant mothers. Our network of care includes more than 65 locationsacross Northern California and more than 85 locations in the U.S. Western region. As part of Stanford Medicine, a leading academic health system that also includes Stanford Health Care and Stanford University School of Medicine, we are cultivating the next generation of medical professionals and are at the forefront of scientific research to improve children's health outcomes around the world. We are a nonprofit organization committed to supporting the community through meaningful outreach programs and services and providing necessary medical care to families, regardless of their ability to pay. Discover more at stanfordchildrens.org.

SOURCE Stanford Childrens Health

http://www.stanfordchildrens.org/

More here:
Stanford Children's Health Appoints New Chief of Pediatric Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine - PRNewswire