PRP Under Eye Treatment: What You Should Know – The Herald-News

Tired of looking in the mirror and seeing those unwanted signs of aging around your eyes? Forget going under the knife theres a new option that harnesses the power of your own body to achieve a brighter, more youthful appearance.

Platelet-Rich Plasma (PRP) injections are a revolutionary treatment offered at Eterna MedSpa & Laser Vein Center that can tackle a multitude of under-eye concerns.

The procedure uses a clients own blood plasma to tighten the skin and reduce wrinkles. How?

During the treatment, a small amount of blood is drawn and then placed in a centrifuge where it is spun at high speeds so the plasma rises to the top. The plasma is then drawn out into a syringe and injected in the under eye area.

The plasma contains proteins which strengthen and volumize the skin. In the under-eye area, rejuvenation occurs, stimulating the natural production of collagen, elastin, and hyaluronic acid.

The benefits of Platelet-Rich Plasma extend beyond just wrinkle reduction.

PRP helps with dark circles, puffiness, and shallowness under the eyes, said Kathe Malinowski, lead esthetician and Marketing Manager for Eterna MedSpa & Laser Vein Center. It also minimizes crepey skin under the eye area.

The results of the injections can last anywhere from six months to a year, depending on your individual age and skin condition.

Wondering if Platelet-Rich Plasma therapy is the right choice for you? Eterna MedSpa offers complimentary consultations with a nurse where you can discuss your goals and get a personalized treatment plan.

Dont wait any longer to achieve the beautiful, youthful eyes you deserve explore the power of PRP at Eterna MedSpa & Laser Vein Center.

For more information, please contact:

Eterna MedSpa & Laser Vein Center : 217 Vertin Boulevard : Shorewood, IL 60404 : 815.254.8888 : https://www.eternalaser.com/

[SPONSORED] Eterna MedSpa offers products that rejuvenate Jessica Knowles of Eterna MedSpa discusses the importance of skincare products. Injectables and other procedures provided by Eterna MedSpa will only take patients so far. Regular skin care is necessary to keep your skin looking smooth and youthful.

Original post:
PRP Under Eye Treatment: What You Should Know - The Herald-News

World’s first diabetes cure with cell therapy achieved in China – Interesting Engineering

In a groundbreaking medical achievement, a team of Chinese scientists and clinicians has reportedly cured a patient of diabetes using cell therapy for the first time.

The patient, a 59-year-old man who had endured type 2 diabetes for 25 years, faced severe complications from the disease. Despite receiving a kidney transplant in 2017, he had lost most of his pancreatic islet function, which is crucial for regulating blood glucose levels, and was dependent on multiple daily insulin injections.

I think this study represents an important advance in the field of cell therapy for diabetes, Timothy Kieffer, a professor in the Department of Cellular and Physiological Sciences at the University of British Columbia, told South China Morning Post (SCMP) on Monday.

Global researchers are investigating islet transplants as a promising alternative treatment, primarily focusing on creating islet-like cells from human stem cell cultures. After more than a decade of effort, the Chinese team has made significant progress.

In July 2021, the patient underwent the cell transplant. Just 11 weeks later, he no longer required external insulin, and within a year, his need for oral medication to control blood sugar levels was completely eliminated.

The team, led by Yin Hao, a leading researcher at Shanghai Changzheng Hospital, used and programmed the patients own peripheral blood mononuclear cells. These were transformed into seed cells and reconstituted pancreatic islet tissue in an artificial environment.

Yin emphasized that this breakthrough is another advancement in the field of regenerative medicine, which leverages the bodys own regenerative capabilities to treat illness.

A common challenge in translational research is differentiating stem cells into high-quality insulin-producing cells on a large scale for therapeutic use. In a study published in Stem Cell Research & Therapy earlier this year, a team of diabetes researchers led by Kieffer explored methods to enhance scalable manufacturing.

They identified key parameters for monitoring quality during cell therapy production. Their findings offer valuable insights into the large-scale production of human pluripotent stem cell (hPSC)-derived pancreatic cells and propose ways to standardize the manufacturing process.

While preclinical data from Kieffers team supports using stem cell-derived islets for type 2 diabetes treatment, Yins report represents the first evidence in humans, according to Kieffer.

Chinas diabetic population is disproportionately high, notes Huang Yanzhong, a senior fellow for global health at the Council on Foreign Relations. He highlighted that although China comprises 17.7% of the worlds population, its diabetic population constitutes a staggering quarter of the global total, imposing a significant health burden on the government.

China has the highest number of people with diabetes globally. According to the International Diabetes Federation, the country has 140 million people with diabetes, with around 40 million of them dependent on lifelong insulin injections.

If this cell therapy approach proves successful, Kieffer told SCMP that, it can free patients from the burden of chronic medications, improve health and quality of life, and reduce healthcare expenditures.

However, he emphasized that further studies involving more patients, based on the findings of this Chinese study, are necessary to achieve these outcomes.

NEWSLETTER

Stay up-to-date on engineering, tech, space, and science news with The Blueprint.

Srishti Gupta Srishti studied English literature at the University of Delhi and has since then realized it's not her cup of tea. She has been an editor in every space and content type imaginable, from children's books to journal articles. She enjoys popular culture, reading contemporary fiction and nonfiction, crafts, and spending time with her cats. With a keen interest in science, Srishti is particularly drawn to beats covering medicine, sustainability, gene studies, and anything biology-related.

Read the rest here:
World's first diabetes cure with cell therapy achieved in China - Interesting Engineering

Tackling the hurdle of tumor formation in stem cell therapies – EurekAlert

image:

A safer regenerative medicine process that removes the risk of tumor formation.

Credit: Atsushi Intoh

Ikoma, Japan Pluripotent stem cells (PSCs) are a type of stem cells capable of developing into various cell types. Over the past few decades, scientists have been working towards the development of therapies using PSCs. Thanks to their unique ability to self-renew and differentiate (mature) into virtually any given type of tissue, PSCs could be used to repair organs that have been irreversibly damaged by age, trauma, or disease.

However, despite extensive efforts, regenerative therapies involving PSCs still have many hurdles to overcome. One being the formation of tumors (via the process of tumorigenesis) after the transplantation of PSCs. Once the PSCs differentiate into a specific type for stem cell therapy, there is a high probability of tumor formation after differentiated stem cells are introduced to the target organ. For the success of PSC-based therapies, the need of the hour is to minimize the risk of tumorigenesis by identifying potentially problematic cells in cultures, prior to transplantation.

Against this backdrop, a research team led by Atsushi Intoh and Akira Kurisaki from Nara Institute of Science and Technology, Japan, has recently achieved a breakthrough discovery regarding stem cell therapy and tumorigenesis. Our findings present advancements that could bridge the gap between stem cell research and clinical application, says Intoh, talking about the potential of their findings. Their study was published in Stem Cells Translational Medicine and focuses on a membrane protein called EPHA2, which was previously found to be elevated in PSCs prior to differentiation by the team.

Through several experiments involving both mouse and human stem cell cultures, the researchers gained insights into the role of EPHA2 in preserving the potency of PSCs to develop into several cell types. They found that EPHA2 in stem cells is co-expressed with OCT4a transcription factor protein which controls the expression of genes which are critically involved in the differentiation of embryonic stem cells. Interestingly, when the EPHA2 gene was knocked down from the cells, cultured stem cells spontaneously differentiated. These results suggest that EPHA2 plays a central role in keeping stem cells in an undifferentiated state.

The researchers thus theorized that EPHA2-expressing stem cells, which would fail to differentiate, might be responsible for tumorigenesis upon transplantation into the target organ.

To test this hypothesis, the researchers prepared PSC cultures and artificially induced their differentiation into liver cells. Using a magnetic antibody targeting EPHA2, they extracted EPHA2-positive cells from a group of cultures prior to transplantation into mice. Interestingly, the formation of tumors in mice receiving transplants from cultures from which EPHA2 had been removed was vastly suppressed.

Taken together, these results point to the importance of EPHA2 in emerging stem cell-based therapies. EPHA2 conclusively emerges as a potential marker for selecting undifferentiated stem cells, providing a valuable method to decrease tumorigenesis risks after stem cell transplantation in regenerative treatments, remarks Kurisaki.

Further in-depth studies on this protein may lead to the development of protocols that make PSCs safer to use. Luckily, however, these findings pave the way towards a future where we will be able to finally restore damaged organs and even overcome degenerative conditions.

###

Resource

Title: EPHA2 is a novel cell surface marker of OCT4-positive undifferentiated cells during the differentiation of mouse and human pluripotent stem cells.

Authors: Atsushi Intoh, Kanako Watanabe-Susaki, Taku Kato, Hibiki Kiritani, Akira Kurisaki

Journal: Stem Cells Translational Medicine

DOI: 10.1093/stcltm/szae036

Information about Laboratory for Stem Cell Technologies can be found at the following website: https://bsw3.naist.jp/eng/courses/courses215.html

About Nara Institute of Science and Technology (NAIST)

Established in 1991, Nara Institute of Science and Technology (NAIST) is a national university located in Kansai Science City, Japan. In 2018, NAIST underwent an organizational transformation to promote and continue interdisciplinary research in the fields of biological sciences, materials science, and information science. Known as one of the most prestigious research institutions in Japan, NAIST lays a strong emphasis on integrated research and collaborative co-creation with diverse stakeholders. NAIST envisions conducting cutting-edge research in frontier areas and training students to become tomorrow's leaders in science and technology.

Stem Cells Translational Medicine

Experimental study

Animals

EPHA2 is a novel cell surface marker of OCT4-positive undifferentiated cells during the differentiation of mouse and human pluripotent stem cells.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

See the rest here:
Tackling the hurdle of tumor formation in stem cell therapies - EurekAlert

Improving Models to Study the Human Heart – News Center – Feinberg News Center

Northwestern Medicine scientists have developed a new method to measure and optimize the maturation process of cultured heart muscle cells, an approach that has the potential to set the future standard for a common cell model in scientific research, according to details published in Cell Reports.

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are cultured heart muscle cell models widely used to study a variety of human heart disease and responses to experimental drugs. However, newly cultured cardiomyocytes dont accurately reflect mature heart muscle cells in adult humans, and previous methods of measuring maturation were not high throughput.

Differences in cellular maturity may affect the results of various experiments and studies done using the cells, so understanding when the cells are suitable is critical, said Paul Burridge, PhD, associate professor of Pharmacology and senior author of the study.

The hiPSC-CM models dont perfectly match an adult cardiomyocyte, said Burridge, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. There are a number of ways you can make these cardiomyocytes more mature, but all of those techniques are time-consuming and not always compatible with the assays we perform, so we were really interested in what we could do to make these cardiomyocytes match an adult cardiomyocyte as much as possible.

In the study, Burridge and his collaborators cultured hiPSC-CMs and performed high-throughput assays to measure maturation of the cells. They found several factors could indicate when the cells are mature, including gene expression, mitochondrial function and electrical activity.

Building off this discovery, the investigators then developed cellular media combinations of compounds and nutrients designed to support cultured cellular growth and optimized it for the rapid maturation of the heart muscle cells.

The new measurement method and optimized cellular media will make it easier for scientists to study human heart cells, Burridge said.

IPS cell-derived cardiomyocytes appear to be one of the most powerful applications of the IPS cell technology in drug screening, Burridge said. The cells basically represent the heart cells of a patient. Whether were interested in the effects of drugs, arrhythmia, or heart failure, we want to have the best models possible. Here, we have improved the fidelity of that model without making it more complex.

Moving forward, Burridge and his collaborators will continue to optimize the model to match human heart muscle cells as closely as possible, he said, and potentially reduce the need for animal models in scientific research.

The better we can make this, the more work can be done in this cell culture model rather than in animal models such as mice, as it was done in the past, Burridge said. By improving the quality of this model, thats going to get us a little bit closer.

The study was supported by National Institutes of Health grants R01 CA220002 and CA261898 as well as funding from the Leducq Foundation.

Follow this link:
Improving Models to Study the Human Heart - News Center - Feinberg News Center

In vivo cyclic overexpression of Yamanaka factors restricted to neurons reverses age-associated phenotypes and … – Nature.com

Characterization of CamKII-transgenic mice: neuron-restricted reprogramming in young mice

Since the transgenic model we used is entirely novel, we aimed to characterize it initially and verify that indeed Yamanaka factors (YF) were being effectively expressed. To do this, we began by studying the first offspring whose genotyping confirmed the presence of both transgenes. We maintained continuous activation of the doxycycline-inducible system from birth until the mice reached three months of age (when the nervous system should be fully formed), time when we collected samples.

To assure that exogenous YF were effectively expressed, quantitative PCR (qPCR) was performed against the sequence E2A-cMyc of the transgenes OSKM using hippocampus, neocortex and cerebellum samples. The results revealed a clearly higher expression in -CaMKII-OSKM compared to transgenic control mice in hippocampus and neocortex, but no difference was observed in the cerebellum between transgenic and control mice, being almost undetectable (Supplementary Fig.1a).

Attending the expression of one of the YFs (Klf4) in cerebral histological regions, we were able to determine more precisely the specific areas in which the promoters were active throughout the experiment (Supplementary Fig.1b). It is important to note that due to the nature of the transgene, the expression of Klf4 (located in the third position within the gene order of the construct, after Oct4 and Sox2) implies that the other genes should have also been expressed in the neuron, so the expression pattern observed with Klf4 would correspond to that of the transgene as a whole.

The highest expression occurs in different neuronal layers of the hippocampal formation (DG, CA3, CA1, Subiculum), dorsal and ventral striatum, and neocortex (somatosensory, somatomotor, visual or orbital areas). Some expression was also observed in the thalamus but at a much lower level. No expression was found in other diencephalic regions, such as the globus pallidus, or in brainstem regions such as the substantia nigra, superior or inferior colliculus, cerebellum, or medulla. The varied pattern of -CaMKII promoter expression throughout the different cerebral regions in these mice is in line with that described previously20.

In order to better understand the molecular process behind, we have focused first on the hippocampal formation, which not only have exhibited one of the highest Klf4 protein expressions in this model but also because this region is involved in different key brain processes such as memory functioning or adult neurogenesis, both processes affected by ageing21. We obtained bulk transcriptomic data from the hippocampi of 8 different animals to which doxycycline was not administered since birth, allowing neuronal cells from double transgenic mice to express YF continuously since birth. RNA-seq analysis (ENA accession number is PRJEB56610), by using Deseq2722 R software package, detected 1419 differentially expressed genes (DEG) (q value<0.05) in neuronal-reprogrammed animals regarding control mice. From all of them, 604 DEG resulted in decreased and 815 in increased expression. The MA-plot shows the log2 fold changes (M) between two conditions over the mean of normalised counts (A) for all samples (Supplementary Fig.1c). In the heatmap (Supplementary Fig.1d), is also shown how the expression of YF in a subpopulation of neurons, has led to significant changes in the transcriptome of a relevant group of genes. According to the Gene Ontology (GO) knowledgebase, which is the largest source of information on the functions of genes and proteins, and to the Kyoto Encyclopedia of Genes and Genomes (KEGG), we have been able to track down groups of differentially expressed genes (DEG) involved in certain cellular functions (Supplementary Fig.1e-f; Supplementary Data1). Data obtained revealed changes in the expression of genes related with regulation of nervous system development (46 DEG; 1.68E-07 p.adj), stem cell differentiation (21 DEG; 0.027 p.adj) or maintenance (17 DEG; 0.02 p.adj), central nervous system neuron differentiation (23 DEG; 1.74E-03 p.adj) or specifically in regulation of neuron differentiation (31 DEG; 1.91E-05 p.adj), would confirm that processes related with reprogramming in -CaMKII-OSKM mice are taken place. In addition, transcription changes were found in genes related with: extracellular matrix organization (48 DEG: 5.09E-10 p.adj), structure (29 DEG; 1.29E-08 p.adj) or in the regulation of cell-cell adhesion (62 DEG; 2.86E-10 p.adj); in the regulation of synaptic organization (38 DEG; 1.68E-07 p.adj) and of synaptic structure or activity (39 DEG; 1.20E-07 p.adj); learning or memory (39 DEG; 4.30E-06 p.adj) and cognition (42 DEG; 3.85E-06 p.adj); dendrite morphology (26 DEG; 3.26E-05 p.adj) or development (34 DEG; 0.00019 p.adj), axogenesis (61 DEG; 3.07E-09 p.adj) as well as in regulation of neurogenesis (57 DEG; 6.93E-09 p.adj). It is important to note that all these functions are ultimately affected with ageing.

Furthermore, using a bioinformatics tool such as Ingenuity Pathway Analysis (IPA)23, we were able to identify a common upstream regulator of downstream genes. IPA revealed several different types of upstream molecules (~400), including transcription regulators, transporters, cytokines, growth factors, kinases or various enzymes. Among all upstream regulators, HMG20A, IL4, FGFR, C1QA, KTMT2D, KAT2A or CREBBP are within the top 20 most significantly activated regulators (P<10-05 and Z-score 2; among the top 30 upstream regulator). These regulators have been associated with epigenetic modifications (KTMT2D, KAT2A), neuronal differentiation (HMG20A, FGFR, KTMT2D), neurodevelopment (C1QA, FGFR, CREBBP), the ageing process (IL4, FGFR) or memory functioning (KAT2A). On the other hand, APOE, TP63, Ptprd or PSEN1 were among the most significantly inhibited regulators (P<10-04 and Z-score 2; among the top 30 upstream regulator), and they are also involved in ageing or ageing-associated diseases (APOE, TP63, Ptprd or PSEN1), cell adhesion (Ptprd) or neural differentiation (PSEN1).

During these experiments the impact of continuous neuron-restricted reprogramming on mortality rate was analysed. Thus, in the case of these young mice that underwent continuous induction of transgenes from birth, a high mortality rate (around 60%) was observed, along with the presence of hydrocephalus in some cases. However, for the mice in which the transgene system was only activated in adulthood at 6 months old, whose study will be described below, the mortality rate decreased to zero. Neither in the case of continuous induction nor in the case of cyclic induction did we find teratomas, confirming that the expression of YF in neurons did not lead to cellular dedifferentiation in vivo. This result is in line with the findings of Kim and colleagues17.

Next, we proceed to study the impact of neuron-restricted reprogramming on adult mice during long-term treatment, initiating the treatment in mice aged 6 months to nearly one-year-old, a protocol similar to that described previously13. Some mice were subjected to continuous factor expression by the continuous withdrawal of doxycycline over the 4-month treatment period, while another group of mice underwent cyclic doxycycline administration. This cyclic protocol involved administering water for 3 days per week and doxycycline for the remaining 4 days (Fig.1). The cyclical expression of Yamanaka factors was confirmed by the histological study of Klf4 protein expression at different time intervals during a week cyclical protocol (Supplementary Fig.2a-b). The analysis of immunofluorescence obtained from Klf4 Yamanaka factor expression have shown that indeed, after 3 days of induction, there is a significant increase (p value=0.0043) in the expression of Klf4 Yamanaka factor (Supplementary Fig.2c). This induction returns to day 0 levels after 4 days of continuous doxycycline administration (p value=0.0146).

a Crossbreeding was conducted between -CaMKII-tTA and TetO-OSKM transgenic mice to generate the -CaMKII-OSKM mice. b Schematic representation of the OSKM transgene showing the location of DNA sequences encoding 2A peptides that separate each Yamanaka factor. c Temporal representation of the three OSKM treatments applied to the murine model in the present study. Doxycycline administration prevents binding between the transactivator tTA and the TetO promoter and thus inhibits transcription of Yamanaka factors.

To characterize the histological expression of YF in adult -CaMKII mice, we employed antibodies targeting KLF4, just as in the previously shown study with young mice (Fig.2a, b; Supplementary Fig.3a). Quantitative analysis of immunohistofluorescence in adult -CaMKII mice subjected to cyclic transgene induction from 6 to 11 months, demonstrated significantly higher YF expression compared to transgenic control mice (Fig.2c, d). This difference was more pronounced in the deeper layers of the somatosensory neocortex (Fig.2c). In the control group, YF expression was nearly absent in all regions of the cerebral cortex, as shown in Fig.2a. Additionally, continuous transgene expression resulted in higher YF expression levels compared to transgenic control mice and adult -CaMKII mice with cyclic YF expression. This difference was more evident in the hippocampal region (Supplementary Fig.3b, c).

a, b Representative microphotographs of the Klf4 Yamanaka Factor immunoreactivity (in green) obtained in sagittal brain sections from control 11 months old adult mice (n=5) (a), -CaMKII-OSKM mice with cyclic induction (n=5) of transgene system from 6 to 11 months of age (b). Schematic outlines approximating the boundaries of some of the most relevant areas of the central nervous system have been overlaid on the microphotographs. Scale bar shown in a and b indicates 1000 m. c, d Graphical representation of the meanSEM of the percentage of occupied area by Klf4-immunoreactivity in somatosensory neocortex, distinguishing deep layers from superficial (c) and different regions from hippocampal region, including CA1, CA3 and dentate gyrus (d). *p<0.05 and ** p<0.01 by Students paired t-test.

With respect to the regional distribution of Klf4 expression, adult -CaMKII mice with cyclic and continuous expression of YF exhibited an immunofluorescence pattern of Klf4 protein expression similar to that of mice with continuous expression from birth at 3 months of age (Fig.2b; Supplementary Fig.3a). The highest expression was found throughout all the neocortex, mainly in deeper layers. Expression was also found in the hippocampus, subiculum, caudate putamen, piriform cortex and thalamus, but cerebellum or other medullary nucleus seemed to lack YF expression.

We first analysed the animals anxiety levels by observing their exploration behaviour within the central area of the box. Typically, rodents tend to remain close to the walls and avoid open spaces, a behaviour known as thigmotaxis24. As rodents age, it appears that they tend to spend less time in the central zone of the open field, which would translate to higher levels of anxiety25,26. The results showed statistically significant increase (p value=0.0003) in the time spent by the -CaMKII-OSKM mouse in the central zone of the tray when they had cyclic treatment in comparison with the control group (Fig.3a, b). As already described (see Materials and Methods), a short-term (2hours) novel object recognition test was used to assess memory performance. The results of the test (Fig.3c, d) showed a higher memory index in terms of time (P value=0,0149) and entries (P value=0,0204) in -CaMKII-OSKM regarding the control group. Spatial memory was also evaluated through the Y-maze test (Fig.3e, f), which showed improvements in the -CaMKII-OSKM mice with cyclical administration of doxycycline with respect to the control group (P value=0,0422). Therefore, cyclic activation of YF expression restricted to a subpopulation of neurons was enough to improve different types of memory in middle-age mice. Contrary to the cognitive effects found in -CaMKII-OSKM adult mice with the cyclical induction of YF, continuous induction did not result in significant changes, either in the open field test or in the other tests conducted.

a, c, e Schematic representation of the organisation of the space where the behavioural tests were performed, a Open field test, b Novel Object Recognition test and c Y maze test. Representative tracking maps obtained with Any Maze software, showing the trajectory of the centre of the rodent during the behavioural test. b, d, f Graphical representation of the meanSEM of the time (s) between the number of entries in the area analyzed (see Material & Methods) in different experimental groups. Control 11 months old adult mice (n=8) and -CaMKII-OSKM mice with cyclic induction (n=9); control 11 months old adult mice (n=8) and -CaMKII-OSKM mice with continuous induction (n=7). *p<0.05, ** p<0.01, *** p<0.001.

Given that only the cyclical induction of YF in adult neurons yielded noteworthy improvements in cognition compared to continuous induction, we opted to focus on this approach, which would entail expression of YF within the -CamKII promoter subpopulation of neurons.

We obtained transcriptomic data from both hippocampal and neocortical tissues of adult animals. Bulk RNA-seq analysis (ENA accession number is PRJEB65922), by using Deseq2722 R software package, detected in total 94 differentially expressed genes (DEG) (q value<0.05) in neuronal-reprogrammed animals regarding control mice (Supplementary Data2). Out of all of them, the majority (~75%) showed decreased expression (70 DEG), while around 25% their expression was found to have increased. The gene expression data can be visualized in Fig.4 where the MA-plot is shown for all samples in the neocortex and in the hippocampus (Fig.4a, b; Supplementary Data2). In the heatmaps (Fig.4c, d), it is also shown how the expression of YF in a subpopulation of neurons, has led to significant changes in the transcriptome of a relevant group of genes.

a, b MA-plot from neocortex (a) and hippocampus (b) samples which represent genes coloured in blue that have q values less than 0.05. Points which fall out of the window are plotted as open triangles pointing either up or down. Heatmap from neocortex (c) and hippocampus (d) samples. Data are displayed in a grid where each row corresponds to a gene and each column to a sample (from two different conditions). The colour and intensity in the heatmap represent changes of gene expression from the list of genes with q value in the Principal Component Analysis (PCA). Emapplot from neocortex (e) and hippocampal (f) samples, showing an enrichment Map for enrichment result of over-representation test or gene set enrichment analysis. g GO term analysis (cellular component) of altered genes.

According to the Gene Ontology (GO) knowledgebase, we have been able to track down groups of differentially expressed genes (DEG) involved in certain cellular functions (Fig.4e, f; raw data in Supplementary Data2). Firstly, it is important to note that, when examining the cellular component of ORA analysis (considering the both hippocampus and neocortex), the transcriptomic data revealed that reported changes were mainly located in specific neuron compartments, with the dendritic component standing out prominently (Fig.4g). This finding confirms the specificity of YF expression solely in neurons. Data obtained revealed that genes with altered expression (qvalue<0.05) were included in different biological processes, as regulation of nervous system development (Nectin3/Chrna4/Lrrtm4/Gabra5; 3.7E-04 padj) and neuron differentiation (Dab1/Trpc6/Brinp3/Neurog2; 5.5E-04 padj) that indicate functions compatible with a reprogramming process. Moreover, in general many of these differentially expressed genes (DEG), could be primarily grouped into alterations in processes related to the extracellular matrix (e.g. ECM organization Itga8/Col15a1/Adamts16/Fbln2/Grem1/Col22a1; 5.45E-04 Padj) and cell adhesion (e.g. regulation of cell substrate-adhesion; Col26a1/Pcsk5/Thy1/Ajap1/Fbln2/Ppm1f/Grem1, 7.27E-06), neuronal activity involving different classes of neurotransmitters (13 different processes, e.g., neurotransmitter receptor activity; Chrna4/Chrnb3/Gabra5/Htr2a/Hrh3, 2.96E-05 padj), cognition (Itga8/Chrna4/Gabra5/Htr2a/Hrh3/Jun, 9.4E-04), and processes always associated with neuronal structures and functions, with a particular emphasis on postsynaptic processes (e.g, postsynaptic specialization; Nectin3/Itga8/Chrna4/Dab1/Lrrtm4/Gabra5/Als2/Lzts3, 9.53E-05 padj).

Taking into account the hippocampus and the neocortex separately, the expression of these factors seems to have led to a somewhat more intense reprogramming process in the second region compared to the hippocampal region, considering the number of genes with altered expression (43 DEGs in the hippocampus vs. 59 DEGs in the neocortex). Among the genes with the most statistically significant differential expression, notable examples relate to the extracellular matrix, with collagen alpha 1 type XXVI (Col26a1; 7.5831E-11 padj) in the hippocampus and collagen alpha 1 type XXII (Col22a1; 1.63E-4 padj) in the neocortex. Furthermore, zinc finger proteins, like Zfp804b (3.6816E-06 padj) in the neocortex and Zfp386 (4.94E-09 padj) in the hippocampus, are noteworthy. Given their capacity to bind to chromatin, these proteins are believed to play a central role in neuronal reprogramming processes27 and the latter have been involved in silencing LINE-1 elements28,29. In addition, there have been genes whose expression has been found to be altered in both cortical areas, such as Glis3 (another zinc finger protein) and Fbln2. The expression of the Glis3 gene, functionally involved in reprogramming processes30 and known to increase with aging31,32, was significantly reduced in both hippocampal and neocortical regions in this study. Fbln2 is an extracellular matrix protein with roles in tissue remodelling and embryonic development33,34.

Since transcriptomic studies have revealed significant effects of partial reprogramming on regulatory neuronal activity genes we aimed to investigate, in a more specific manner, how these changes in neuronal activity may have contributed to the cognitive improvement observed in these animals during partial reprogramming. For this purpose, we conducted histological analyses on tissue samples using an immediate early gene c-Fos marker. In neurons, c-Fos expression is induced under conditions of neuronal plasticity, including learning and memory35. It has been widely used as a neuronal activity marker since they are rapidly and transiently induced by neuronal stimuli in the brain36. In this study, the mice were immediately perfused upon completion of the memory test. In this way, we were able to study the activity levels of the memory circuits during the execution of these memory tests. The analysis of c-Fos-immunoreactive cells was focused on the hippocampus (Fig.5a), due to its essential role on recognition/spatial memory performance. We found a higher number of neurons active (c-Fos-immunoreactive) just after memory test performance in -CaMKII-OSKM transgenic mice regarding transgenic control mice, in both granular cell layer of dentate gyrus and in the pyramidal cell layer of CA1 (Fig.5b). This result potentially indicates more active circuits during memory testing due to YF expression restricted to neurons.

a Representative microphotographs of immunoreactivity obtained for c-Fos protein expression (in red) in the hippocampus region from control (n=8) and -CaMKII-OSKM mice (n=10). Scale bar indicates 200 m. b Graphical representation of the meanSEM of c-Fos-immunoreactive cells per mm3 at different neuronal layers of the hippocampal region (Dentate gyrus, DG; CA1; CA3). *p<0.05.

Additionally, we have found in these mice a significant inverse correlation (R=0.964) between levels of Klf4 expression and density of c-Fos-immunoreactive cells (Supplementary Fig.4). Excessive expression of Klf4 led to lower increase of c-Fos-immunoreactive cell density in the hippocampus of -CaMKII-OSKM transgenic mice. These results are consistent with those found in -CaMKII-OSKM mice with continuous induction of the YF. In these mice, where Klf4-YF expression is continuous, we observed worse cognitive performance compared to those with cyclical induction. All these results underscore once again the importance of the level of induction of the YF. Moderate rather than excessive induction is what achieves beneficial effects on the cognition of aged mice.

Considering significant changes previously identified in the extracellular matrix (ECM) as a result of reprogramming in young -CaMKII-OSKM mice (Supplementary Fig.1, Supplementary Fig.5), which led to an overall reduction in its structure, in addition to transcriptomic data obtained from -CaMKII-OSKM adult mice showing significant alterations in genes related to ECM, we aimed to investigate whether partial reprogramming in adult mice would result in youthful ECM reorganization. Thus, we studied the expression of the cartilage-specific core protein proteoglycan (aggrecan), which binds to specific proteoglycans and allows visualisation of the so-called perineuronal extracellular matrix networks (Fig.6a and d from the overall panoramic view). Immunoreactivity analysis for this protein was carried out in both the neocortex and hippocampal formation at both experimental groups (control and -CamK-OSKM adult mice with cyclic overexpression of YF). Figure6a shows representative microphotographs of the neocortex using an antibody against aggrecan protein, where, to facilitate the analysis, the supragranular layers (layers I-IV) have been distinguished from the infragranular layers (layers V and VI). The results have shown a prominent inclination towards an overall reduction in the percentage of area occupied by the aggrecan protein across the entire neocortex (p value=0.0518), attaining statistical significance within the deeper neocortical layers (V and VI) among -CaMKII-OSKM mice in comparison to the control group (p value=0.0258; Fig.6b).

a Representative microphotographs of immunoreactivity obtained for Aggrecan protein expression (in red) in the somatosensorial neocortex from control (n=8) and -CaMKII-OSKM mice (n=9). On the right side of the panel are enlargements of the panoramic view displaying the structure of perineuronal networks formed by the extracellular matrix. Scale bar shown in A indicates 200 m and 15 m in the magnification. b Graphical representation of the meanSEM of the percentage of area occupied by Aggrecan-immunoreactive cells per mm3 in total volume of the somatosensory neocortical region and at different cortical layers. *p<0.05. c Density of perineuronal net units (PNNs) in the somatosensorial neocortex (number of Aggrecan-immunoreactive PNNs in each brain slice by the volume of the somatosensory neocortical region, *p<0.05). d Representative microphotographs of immunoreactivity obtained for Aggrecan protein expression (in red) in the hippocampus of the different murine models. On the right side of the panel are enlargements of the panoramic view displaying the structure of perineuronal networks formed by the extracellular matrix. Scale bar shown in (a) indicates 200 m and 15 m in the magnification. e Representation of the meanSEM of the percentage of area occupied by Aggrecan immunoreactive per mm3 at different neuronal layers of the hippocampal region (Dentate gyrus, DG; CA1; CA3). f Density of perineuronal net units (PNNs) in total hippocampus (number of Aggrecan-immunoreactive PNNs in each brain slice by the volume of the area analysed).

In line with these results, the analysis of the density of perineuronal net units also shows a significant reduction following the induction of partial reprogramming in -CaMKII-OSKM mice (Fig.6c). In contrast to the neocortical areas, noteworthy statistical differences were not found in the hippocampus between both experimental groups for the area occupied by the immunoreactive aggrecan matrix (Fig.6e), nor regarding the density of PNN units (Fig.6f). This general reduction found by immunofluorescence detection in aggrecan-immunoreactive extracellular matrix has been corroborated by Western blot technique (Supplementary Fig.6a, b). We observed a highly significant decrease (P=0.0001) in its expression following the cyclical induction of the Yamanaka factors. These data confirm the significant role of extracellular matrix reorganization during cyclical reprogramming processes in the brain.

In vitro studies have demonstrated that YF alone is not sufficient to induce neuronal dedifferentiation17. In this study, we decided to try to validate these findings in vivo, determining whether, under YF expression, neurons could undergo dedifferentiation. For this analysis, we employed a distinct set of antibodies. Doublecortin protein (Dcx) is expressed in migrating neuroblasts and immature neurons, making it a reliable marker for adult neurogenesis. In general, in adult rodents, it is only possible to find immature neurons in regions where neurogenesis occurs, which are typically only two, one of which is the subgranular zone (SGZ) of the hippocampal dentate gyrus. Thus, we tried to detect doublecortin labelling outside of the subgranular zone in -CaMKII-OSKM mice. This would indicate that processes of dedifferentiation owing to YF expression from mature neurons to a previous state of maturation have occurred. In these animals, throughout the cerebral cortex we only observed doublecortin labelling in the subgranular zone, similar to what was seen in the control group. We did not find these cells in the rest of the hippocampus or the neocortex. Moreover, we observed no differences in the density of Dcx-immunoreactive cells between the control and -CamKII-OSKM mice in SGZ (Supplementary Fig.7a, d). Furthermore, we aimed to study other markers of earlier neuronal development such as the intermediate progenitor marker T-box brain gene 2 (Tbr2) to ensure that partial reprogramming was not regressing to even earlier stages than those identified by the doublecortin marker. The results in the SGZ revealed no differences in Tbr2 expression between the transgenic and control groups (Supplementary Fig.7b, e). Additionally, 5-chloro-2-deoxyuridine (CldU) was administered three weeks before perfusion for each mouse in both experimental groups to identify cells that were newly generated at that time. Results have shown how the number of three weeks-old cells labelled with CldU was not significantly changed in the DG of the -CaMKII-OSKM, indicating that partial reprogramming by YF not only does it not appear to influence adult neurogenesis itself, but it also would not affect the proliferation of new cells in adult mice (Supplementary Fig.7c). Differences in the density of CldU-labelled cells between control and -CaMKII-OSKM adult mice in the somatosensory neocortex were not found either (Supplementary Fig.7c, f).

Considering that the reprogramming induced by Yamanaka factors correlates with epigenetic changes7,37, in this study we aimed to verify whether the selective partial reprogramming of neurons led them to more youthful epigenetic states. Early studies in rats showed that methylation of histones H3 and H4 changes gradually with increasing age38. Moreover, a systematic study of posttranslational modifications of histones in the brain of senescence-accelerated prone mouse 8 (SAMP8) model revealed a significant decrease of H4K20me3 marker during ageing39. Here, we have found a remethylation of this epigenetic marker at H4 after cyclic neuronal induction of YF expression in adult mice (Fig.7). The results showed that H4K20me3 (histone 4 lysine 20 trimethylation) marker increases in -CamKII-OSKM adult mice overexpressing YF in a cyclic manner regarding control mice throughout all the neocortex layers (p value=0.0124; Fig.7a, b), as well as in CA1 (p value=0.0372) and CA3 (p value=0.0288) pyramidal cell layers at the hippocampal region (Fig.7c, d), but not in the granular cell layer of DG. According to previous studies these epigenetic changes in areas where partial reprogramming is taking out would lead to a more youthful epigenetic pattern in those reprogrammed cortical neurons39.

a Representative microphotographs of immunoreactivity obtained for H4K20me3 expression marker (in green) in the somatosensory neocortex from control (n=8) and -CaMKII-OSKM mice (n=9). On the right side of the panel, enlargements are displayed, showing H4K20me3-immunoreactivity expression in a group of cells present in the deeper neocortical layers. Scale bar shown indicates 200 m and 15 m in the magnification. b Representative percentage of mean intensity (arbitrary units) obtained from H4K20me3 immunoreactivity in neocortex, distinguishing supragranular layer (I-IV) and infragranular layers (V-VI). *p<0.05. c Representative microphotographs of immunoreactivity obtained for H4K20me3 expression marker (in green) in the hippocampal region of the different murine models. On the right side of the panel, enlargements are displayed, showing H4K20me3-immunoreactivity expression in a group of cells present in the pyramidal neuronal layer of the CA1 region. Scale bar shown indicates 200 m and 15 m in the magnification. d Percentage of mean intensity (arbitrary units) obtained from H4K20me3 immunoreactivity in hippocampus, distinguishing CA1, CA3 and dentate gyrus (DG). *p<0.05.

More here:
In vivo cyclic overexpression of Yamanaka factors restricted to neurons reverses age-associated phenotypes and ... - Nature.com

Induced Pluripotent Stem Cells Production Market Will Hit Big – openPR

Leading market research firm Infinitive Data Expert recently released a study titled 'Induced Pluripotent Stem Cells Production Market Global Size, Share, Growth, Industry Trends, Opportunity and Forecast 2024-2033,' This study Induced Pluripotent Stem Cells Production report offers a thorough analysis of the market, as well as competitor and geographical analysis and a focus on the most recent technological developments. The research study on the Induced Pluripotent Stem Cells Production market extensively demonstrates existing and upcoming opportunities, profitability, revenue growth rates, pricing, and scenarios for recent industry analysis.

The research analysis on the global Induced Pluripotent Stem Cells Production market report 2024 offers a close watch on top industry rivals along with briefings on their company profiles, strategical surveys, micro as well as macro industry trends, futuristic scenarios, analysis of pricing structure, and an all-encompassing overview of the Induced Pluripotent Stem Cells Production market circumstances in the forecast period between 2024 and 2033.

Get Evaluate Sample: https://www.infinitivedataexpert.com/industry-report/induced-pluripotent-stem-cells-production-market#sample

List of Major Market Participants

Lonza, Axol Biosciences Ltd., Evotec SE, Hitachi Ltd., Merck KGaA, REPROCELLS, Inc., Fate Therapeutics, Thermo Fisher Scientific, Inc., StemCellsFactory III, Applied StemCells, Inc., Creative Biolabs, Bio-Techne Corporation.

This market study offers a thorough examination of the size of the global Induced Pluripotent Stem Cells Production market, as well as regional and national market sizes, segmentation market growth, market share, competitive landscape, sales analysis, the effects of domestic and foreign market players, price chain optimisation, trade laws, recent developments, opportunities analysis, global Induced Pluripotent Stem Cells Production strategic market growth analysis, product launches, the expanding space market, and technological advancements. Segments of the global Induced Pluripotent Stem Cells Production market include material, end user, channel, and geography.

The competitive landscape for Induced Pluripotent Stem Cells Production includes information on each vendor, as well as company summaries, total financial revenue, market potential, global reach, sales and revenue generated by Induced Pluripotent Stem Cells Production, market share, price, production locations and facilities, SWOT analysis, and product launches. This analysis offers the Induced Pluripotent Stem Cells Production sales, revenue, and market share for each player covered in this report for the period 2024-2033.

Global Induced Pluripotent Stem Cells Production Market, By Product

Products Consumables & kits Instruments/ devices Automated platforms Service

Global Induced Pluripotent Stem Cells Production market, By Application

Drug development & discovery Regenerative medicine Toxicology studies Other applications

Global Induced Pluripotent Stem Cells Production Market, By End User

Pharmaceutical & biotechnology companies Research & academic institutes Contract research organizations

Browse Full Report: https://www.infinitivedataexpert.com/industry-report/induced-pluripotent-stem-cells-production-market

Regional Segmentation of the Global Induced Pluripotent Stem Cells Production Market

North America (the United States, Canada, and Mexico) Asia-Pacific (China, Japan, Korea, India, and Southeast Asia) Europe (Germany, France, UK, Russia, and Italy) The Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria, and South Africa) South America (Brazil, Argentina, Colombia, etc.)

Responses that the report accepts:

The size of the market and its growth rate over the next few years. The main things that drive the Induced Pluripotent Stem Cells Production Market. Key market trends that are making the Induced Pluripotent Stem Cells Production Market grow faster. Threats to the growth of the market. Key sellers of Induced Pluripotent Stem Cells Production Market. SWOT study in depth. The chances and risks that the current sellers in the Global Induced Pluripotent Stem Cells Production Market face. Trending factors that affect the market in different parts of the world. Strategic efforts are centred on the top vendors. A PEST study of the market in the five most important areas.

Contact Info

Company Name: Infinitive Data Expert Contact Person: Krishnav Yadav Email: info@infinitivedataexpert.com/ Asia: +91 (883) 074-8030 Address: E 905, GK arise, City: Pune, State: Maharashtra, Country: INDIA Website: https://www.infinitivedataexpert.com/ Follow us on twitter: @infinitivedata LinkedIn: https://www.linkedin.com/company/infinitive-data-expert

About Us

Infinitive Data Expert is a leading distributor of market research report with more than 600+ global clients. As a market research company, we take pride in equipping our clients with insights and data that holds the power to truly make a difference to their business. Our mission is singular and well-defined - we want to help our clients envisage their business environment so that they are able to make informed, strategic and therefore successful decisions for themselves.

This release was published on openPR.

See the original post:
Induced Pluripotent Stem Cells Production Market Will Hit Big - openPR

Genelux Corporation Announces Pricing of Approximately $27.5 Million Underwritten Offering of Common Stock and Accompanying Warrants

WESTLAKE VILLAGE, Calif., May 24, 2024 (GLOBE NEWSWIRE) -- Genelux Corporation (Genelux) (Nasdaq: GNLX), a late clinical-stage immuno-oncology company, today announced the pricing of an underwritten offering of 6,875,000 shares of its common stock and accompanying warrants to purchase 6,875,000 shares of its common stock at a combined offering price of $4.00 per share and accompanying warrant, in each case before underwriting discounts and commissions. Each warrant will have an exercise price of $5.25 per share, will be immediately exercisable following the closing of the offering and will expire five years from the date of issuance. Gross proceeds to Genelux from the offering are expected to be approximately $27.5 million, before deducting underwriting discounts and commissions and estimated offering expenses payable by Genelux. The net proceeds from the offering are expected to provide working capital into the first quarter of 2026 for general corporate purposes, including the continued clinical development of Olvi-Vec, with topline results of the OnPrime Phase 3 registrational trial anticipated in the second half of 2025. The offering is expected to close on or about May 29, 2024, subject to customary closing conditions. All of the securities are being sold by Genelux. In addition, Genelux has granted the underwriters a 30-day option to purchase up to an additional 1,031,250 shares of its common stock and accompanying warrants to purchase 1,031,250 shares of its common stock to cover over-allotments, if any.

Excerpt from:
Genelux Corporation Announces Pricing of Approximately $27.5 Million Underwritten Offering of Common Stock and Accompanying Warrants

Cullinan Therapeutics to Participate in Fireside Chat at TD Cowen 5th Annual Oncology Innovation Summit

CAMBRIDGE, Mass., May 24, 2024 (GLOBE NEWSWIRE) -- Cullinan Therapeutics, Inc. (Nasdaq: CGEM), a biopharmaceutical company focused on developing modality-agnostic targeted therapies, today announced that Nadim Ahmed, Chief Executive Officer and Jeffrey Jones, MD, MBA, Chief Medical Officer, will participate in a fireside chat at the TD Cowen 5th Annual Oncology Innovation Summit: Insights for ASCO & EHA, being held virtually on May 28 and 29, 2024.

Excerpt from:
Cullinan Therapeutics to Participate in Fireside Chat at TD Cowen 5th Annual Oncology Innovation Summit