Lawsuit over League City stem-cell treatment headed for trial – Galveston County Daily News

State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Washington D.C. West Virginia Wisconsin Wyoming Puerto Rico US Virgin Islands Armed Forces Americas Armed Forces Pacific Armed Forces Europe Northern Mariana Islands Marshall Islands American Samoa Federated States of Micronesia Guam Palau Alberta, Canada British Columbia, Canada Manitoba, Canada New Brunswick, Canada Newfoundland, Canada Nova Scotia, Canada Northwest Territories, Canada Nunavut, Canada Ontario, Canada Prince Edward Island, Canada Quebec, Canada Saskatchewan, Canada Yukon Territory, Canada

Zip Code

Country United States of America US Virgin Islands United States Minor Outlying Islands Canada Mexico, United Mexican States Bahamas, Commonwealth of the Cuba, Republic of Dominican Republic Haiti, Republic of Jamaica Afghanistan Albania, People's Socialist Republic of Algeria, People's Democratic Republic of American Samoa Andorra, Principality of Angola, Republic of Anguilla Antarctica (the territory South of 60 deg S) Antigua and Barbuda Argentina, Argentine Republic Armenia Aruba Australia, Commonwealth of Austria, Republic of Azerbaijan, Republic of Bahrain, Kingdom of Bangladesh, People's Republic of Barbados Belarus Belgium, Kingdom of Belize Benin, People's Republic of Bermuda Bhutan, Kingdom of Bolivia, Republic of Bosnia and Herzegovina Botswana, Republic of Bouvet Island (Bouvetoya) Brazil, Federative Republic of British Indian Ocean Territory (Chagos Archipelago) British Virgin Islands Brunei Darussalam Bulgaria, People's Republic of Burkina Faso Burundi, Republic of Cambodia, Kingdom of Cameroon, United Republic of Cape Verde, Republic of Cayman Islands Central African Republic Chad, Republic of Chile, Republic of China, People's Republic of Christmas Island Cocos (Keeling) Islands Colombia, Republic of Comoros, Union of the Congo, Democratic Republic of Congo, People's Republic of Cook Islands Costa Rica, Republic of Cote D'Ivoire, Ivory Coast, Republic of the Cyprus, Republic of Czech Republic Denmark, Kingdom of Djibouti, Republic of Dominica, Commonwealth of Ecuador, Republic of Egypt, Arab Republic of El Salvador, Republic of Equatorial Guinea, Republic of Eritrea Estonia Ethiopia Faeroe Islands Falkland Islands (Malvinas) Fiji, Republic of the Fiji Islands Finland, Republic of France, French Republic French Guiana French Polynesia French Southern Territories Gabon, Gabonese Republic Gambia, Republic of the Georgia Germany Ghana, Republic of Gibraltar Greece, Hellenic Republic Greenland Grenada Guadaloupe Guam Guatemala, Republic of Guinea, Revolutionary People's Rep'c of Guinea-Bissau, Republic of Guyana, Republic of Heard and McDonald Islands Holy See (Vatican City State) Honduras, Republic of Hong Kong, Special Administrative Region of China Hrvatska (Croatia) Hungary, Hungarian People's Republic Iceland, Republic of India, Republic of Indonesia, Republic of Iran, Islamic Republic of Iraq, Republic of Ireland Israel, State of Italy, Italian Republic Japan Jordan, Hashemite Kingdom of Kazakhstan, Republic of Kenya, Republic of Kiribati, Republic of Korea, Democratic People's Republic of Korea, Republic of Kuwait, State of Kyrgyz Republic Lao People's Democratic Republic Latvia Lebanon, Lebanese Republic Lesotho, Kingdom of Liberia, Republic of Libyan Arab Jamahiriya Liechtenstein, Principality of Lithuania Luxembourg, Grand Duchy of Macao, Special Administrative Region of China Macedonia, the former Yugoslav Republic of Madagascar, Republic of Malawi, Republic of Malaysia Maldives, Republic of Mali, Republic of Malta, Republic of Marshall Islands Martinique Mauritania, Islamic Republic of Mauritius Mayotte Micronesia, Federated States of Moldova, Republic of Monaco, Principality of Mongolia, Mongolian People's Republic Montserrat Morocco, Kingdom of Mozambique, People's Republic of Myanmar Namibia Nauru, Republic of Nepal, Kingdom of Netherlands Antilles Netherlands, Kingdom of the New Caledonia New Zealand Nicaragua, Republic of Niger, Republic of the Nigeria, Federal Republic of Niue, Republic of Norfolk Island Northern Mariana Islands Norway, Kingdom of Oman, Sultanate of Pakistan, Islamic Republic of Palau Palestinian Territory, Occupied Panama, Republic of Papua New Guinea Paraguay, Republic of Peru, Republic of Philippines, Republic of the Pitcairn Island Poland, Polish People's Republic Portugal, Portuguese Republic Puerto Rico Qatar, State of Reunion Romania, Socialist Republic of Russian Federation Rwanda, Rwandese Republic Samoa, Independent State of San Marino, Republic of Sao Tome and Principe, Democratic Republic of Saudi Arabia, Kingdom of Senegal, Republic of Serbia and Montenegro Seychelles, Republic of Sierra Leone, Republic of Singapore, Republic of Slovakia (Slovak Republic) Slovenia Solomon Islands Somalia, Somali Republic South Africa, Republic of South Georgia and the South Sandwich Islands Spain, Spanish State Sri Lanka, Democratic Socialist Republic of St. Helena St. Kitts and Nevis St. Lucia St. Pierre and Miquelon St. Vincent and the Grenadines Sudan, Democratic Republic of the Suriname, Republic of Svalbard & Jan Mayen Islands Swaziland, Kingdom of Sweden, Kingdom of Switzerland, Swiss Confederation Syrian Arab Republic Taiwan, Province of China Tajikistan Tanzania, United Republic of Thailand, Kingdom of Timor-Leste, Democratic Republic of Togo, Togolese Republic Tokelau (Tokelau Islands) Tonga, Kingdom of Trinidad and Tobago, Republic of Tunisia, Republic of Turkey, Republic of Turkmenistan Turks and Caicos Islands Tuvalu Uganda, Republic of Ukraine United Arab Emirates United Kingdom of Great Britain & N. Ireland Uruguay, Eastern Republic of Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Viet Nam, Socialist Republic of Wallis and Futuna Islands Western Sahara Yemen Zambia, Republic of Zimbabwe

Continued here:
Lawsuit over League City stem-cell treatment headed for trial - Galveston County Daily News

Developing Stem Cell Therapy to Halt Critical Limb Amputations – Mirage News

Critical limb ischemia is a condition in which the main blood vessels supplying blood to the legs are blocked, causing blood flow to gradually decrease as atherosclerosis progresses in the peripheral arteries. It is a severe form of peripheral artery disease that causes progressive closure of arteries in the lower extremity, leading to the necrosis of the leg tissue and eventual amputation. Current treatments include angioplasty procedures such as stent implantation and anti-thrombotic drugs, but there is a risk of blood vessel damage and recurrence of blood clots, which is why there is a strong interest in developing a treatment using stem cells.

A research team led by Dr. Sangheon Kim of the Center for Biomaterials Research at the Korea Institute of Science and Technology (KIST) announced that they have developed a three-dimensional stem cell therapy to treat critical limb ischemia through a self-assembling platform technology using a new material microgel. By using collagen microgels, a new biocompatible material, the researchers were able to easily transplant stem cells into the body and increase cell survival rate compared to 3D stem cell therapies made of cells alone.

Stem cell therapies have high tissue regeneration capabilities, but when stem cells are transplanted alone, hypoxia at the site of injury, immune responses, and other factors can reduce cell viability and prevent the desired therapeutic effect. Therefore, it is necessary to develop a material that delivers stem cells using biodegradable polymers or components of extracellular matrix as a support to increase cell viability.

The team processed collagen hydrogels to micro-scale to create porous, three-dimensional scaffolds that are easy to inject in the body and have a uniform cell distribution. Collagen, a component of the extracellular matrix, has excellent biocompatibility and cellular activity, which can induce cell self-assembly by promoting interactions between the microgel particles and collagen receptors on stem cells. In addition, the spacing between microgel particles increased the porosity of the three-dimensional constructs, improving delivery efficiency and cell survival.

The microgel-cell constructs developed by the researchers expressed more pro-angiogenic factors and exhibited higher angiogenic potential than cell-only constructs. When microgel-cell constructs were injected into the muscle tissue of mice with critical limb ischemia, blood perfusion rate increased by about 40% and limb salvage ratio increased by 60% compared to the cell-only constructs, confirming their effectiveness in increasing blood flow and preventing necrosis in the ischemic limb.

The new stem cell therapy is expected to provide a new alternative for patients with critical limb ischemia who have limited treatment options other than amputation due to its excellent angiogenic effect. Furthermore, since angiogenesis is an essential component of various tissue regeneration processes, it can be extended to other diseases with similar mechanisms to peripheral arterial disease.

"The collagen microgel developed in this study is a new biomaterial with excellent biocompatibility and high potential for clinical applications," said Dr. Sangheon Kim of KIST. "We plan to develop technologies for administration methods required in the medical field, as well as conduct follow-up research to clarify the clear mechanism of action of the treatment and discover target factors."

See the original post here:
Developing Stem Cell Therapy to Halt Critical Limb Amputations - Mirage News

Unlocking the Secrets of Aging: Researchers Reveal Key to Intestinal Balance – SciTechDaily

University of Helsinki researchers discovered that the capacity of intestinal stem cells to maintain cellular balance in the gut diminishes with age, and identified a new mechanism linking nutrient adaptation of these stem cells to aging. This insight could lead to methods for preserving gut function in the elderly.

The ability of intestinal stem cells to preserve the cellular equilibrium in the gut diminishes with age. Scientists at the University of Helsinki have identified a novel interaction between the adaptation of intestinal stem cells to nutrients and the aging process. The finding may make a difference when seeking ways to maintain the functional capacity of the aging gut.

The cellular balance of the intestine is carefully regulated, and it is influenced, among other things, by nutrition: ample nutrition increases the total number of cells in the gut, whereas fasting decreases their number. The relative number of different types of cells also changes according to nutrient status.

The questions of how the nutrition status of the gut controls stem cell division and differentiation, and how the nutrient adaptation of stem cells changes as during aging have not been comprehensively answered. Nutrient adaptation refers to the way in which nutrients guide cell function.

On the left: Model organism fruit fly (Drosophila melanogaster), gastrointestinal tract highlighted in green. On the right: Microscope images of the fruit fly intestine where cell nuclei are stained (cyan). The intestine on the top is from well-fed animal, and the intestine below from an animal kept on a restricted diet. Credit: Jaakko Mattila

Researchers at the University of Helsinki identified a new regulatory mechanism that directs the differentiation of intestinal stem cells under a changing nutrient conditions. Cell signaling activated by nutrients increases the size of stem cells in the fruit fly intestine. The size of the stem cells, in turn, controls the cell type into which the stem cells differentiate. For stem cell function, flexible regulation of their size is essential.

In other words, the size of the cells dynamically increases or decreases, depending on the dietary conditions. Such flexibility enables stem cells to differentiate in accordance with the prevailing nutrient status. By utilizing intestine-wide cell imaging, the researchers found that the nutrient adaptation of stem cell size and the resulting differentiation vary in different regions of the gut.

Our observations demonstrate that the regulation of intestinal stem cells is much more region-specific than previously understood. This may be relevant to, for example, how we think about the pathogenetic mechanisms of intestinal diseases, says Jaakko Mattila, the corresponding author of the research article from the Faculty of Biological and Environmental Sciences, University of Helsinki.

The researchers also observed that the ability of intestinal stem cells to react to a changing nutrient status is greatly reduced in older animals. They also found that, in older animals, stem cells are in a state where they are constantly large in size, which restricts their ability to differentiate. With aging, flexible regulation of stem cell size was markedly better preserved in animals that had been kept under a diet regime that is known as intermittent fasting. In the past, intermittent fasting has been shown to prolong the lifespan of animals, and the results now obtained indicate that the improved preservation of stem cell function may underlie this prolongation.

According to the researchers, the mechanisms associated with the functioning, nutrient adaptation, and aging of human and fruit fly stem cells are fairly similar.

We believe that these findings have a broader significance towards understanding how to slow down the loss of tissue function caused by aging by controlling the nutrient adaptation of stem cells. However, more information is needed on the effect of the mechanism on human intestinal stem cells. Our work on the nutrient adaptation of stem cells continues, says Professor Ville Hietakangas from the Faculty of Biological and Environmental Sciences and the Institute of Biotechnology, University of Helsinki.

Reference: Stem cell mTOR signaling directs region-specific cell fate decisions during intestinal nutrient adaptation by Jaakko Mattila, Arto Viitanen, Gaia Fabris, Tetiana Strutynska, Jerome Korzelius and Ville Hietakangas, 9 February 2024, Science Advances. DOI: 10.1126/sciadv.adi2671

Here is the original post:
Unlocking the Secrets of Aging: Researchers Reveal Key to Intestinal Balance - SciTechDaily

Human stem-cell-based therapy for Parkinson’s disease proven safe PET – BioNews

A small clinical trial involving 12 patients with Parkinson's disease has reported no safety concerns with a newly developed human stem-cell-based therapy.

The therapy called TED A9 was delivered as a cell transplant injected directly into the brain of the participants as part of a Phase 1/2a clinical trial, which is principally concerned with assessing safety and dosing requirements.

The drug's developer, S.Biomedics, in Seoul, South Korea, claimed in a press release: 'According to Professor Jin-Woo Chang, [the principal investigator of the transplant conducted at Severance Hospital, Seoul,] none of the 12 Parkinson's disease participants had any side effects, complications, or unusual adverse reactions following the transplantation of TED-A9'.

The trial participants were aged between 50 and 75 years old, had been diagnosed with Parkinson's disease for more than five years, and had already motor complications such as freezing of gait or dyskinesia.

To ensure and monitor the safety of the treatment, an initial three patients were injected with a low dose (3.15 million cells) and monitored for three months, before another three patients were treated at high dose (6.3 million cells) and also monitored for three months.

No side effects, complications, or unusual adverse reactions were seen in either group during the three-month assessment period. Therefore, the clinical trial continued by adding three further patients to each of the low-dose and high-dose groups. Again, no safety concerns were seen.

Parkinson's symptoms are caused by the progressive loss of neurons that produce dopamine, a major chemical messenger in the brain. The TED-A9 therapy contains dopaminergic progenitor (precursor) cells, which had themselves been derived in the lab from embryonic stem cells.

The drug developers at S.Biomedics hope that the dopaminergic precursor cells in TED-A9 will treat Parkinson's disease by replacing the mature dopamine-producing nerve cells that are lost in patients.

Professor Dong-Wook Kim, a neurosurgeon and the principal developer of TED-A9, said: 'We have developed a fundamental therapeutic mechanism that directly replaces dopaminergic neurons lost in patients with Parkinson's disease. TED-A9 could represent a fundamental treatment that surpasses current therapies, which only temporarily alleviate the symptoms of Parkinson's disease,'.

The trial is expected to continue until February 2026, allowing safety of the therapy to be monitored for a total of five years. As part of the study, exploratory efficacy will also be examined for two years using clinical measures of motor symptoms and a patient questionnaire of daily life quality.

More Information is available at ClinicalTrials.gov.

More here:
Human stem-cell-based therapy for Parkinson's disease proven safe PET - BioNews

BioXcel Therapeutics Announces European Patent Office’s Grant of Patent for Method of Treating Agitation in Dementia Using Sublingual…

Newly granted patent aligns with Company’s focus on expanding geographic coverage and strengthening intellectual property protection for BXCL501 Newly granted patent aligns with Company’s focus on expanding geographic coverage and strengthening intellectual property protection for BXCL501

More here:
BioXcel Therapeutics Announces European Patent Office’s Grant of Patent for Method of Treating Agitation in Dementia Using Sublingual...

University of Calgary Joins the Phase II Trial of LSALT Peptide Targeting Cardiac Surgery Associated-Acute Kidney Injury

TORONTO, March 15, 2024 (GLOBE NEWSWIRE) -- Arch Biopartners Inc., (“Arch” or the “Company”) (TSX Venture: ARCH and OTCQB: ACHFF), announced today that a research team from the University of Calgary’s Cumming School of Medicine has joined the Phase II trial for LSALT peptide targeting the prevention and treatment of cardiac surgery-associated acute kidney injury (CS-AKI). LSALT peptide is the Company’s lead drug candidate for preventing and treating inflammation injury in the kidneys, lungs and liver.

Read more here:
University of Calgary Joins the Phase II Trial of LSALT Peptide Targeting Cardiac Surgery Associated-Acute Kidney Injury

Clene Announces Peer-Reviewed Publication Characterizing the Protein Corona of the Investigational Neurodegenerative Disease Drug, CNM-Au8®

SALT LAKE CITY, March 15, 2024 (GLOBE NEWSWIRE) -- Clene Inc. (Nasdaq: CLNN) (along with its subsidiaries, “Clene”) and its wholly owned subsidiary Clene Nanomedicine Inc., a clinical-stage biopharmaceutical company focused on improving mitochondrial health and protecting neuronal function to treat neurodegenerative diseases, including (ALS) and multiple sclerosis (MS), today reported the publication of “Protein Corona Composition of Gold Nanocatalysts” in the journal ACS Pharmacology & Translational Science, a journal of the American Chemical Society that publishes innovative and impactful research with translational relevance across a broad spectrum of biological sciences.

See the original post:
Clene Announces Peer-Reviewed Publication Characterizing the Protein Corona of the Investigational Neurodegenerative Disease Drug, CNM-Au8®

New Positive Data Presented on Briquilimab Conditioning in Patients with Fanconi Anemia

REDWOOD CITY, Calif., March 15, 2024 (GLOBE NEWSWIRE) -- Jasper Therapeutics, Inc. (Nasdaq: JSPR) (Jasper), a biotechnology company focused on development of briquilimab, a novel antibody therapy targeting c-Kit (CD117) to address mast cell driven diseases such as chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIndU), announced additional positive Phase 1b/2a data on briquilimab as a conditioning agent in the treatment of Fanconi Anemia (FA).

See the article here:
New Positive Data Presented on Briquilimab Conditioning in Patients with Fanconi Anemia

Nuvectis Pharma to Present at the 36th Annual Roth Conference

FORT LEE, NJ, March 15, 2024 (GLOBE NEWSWIRE) -- Nuvectis Pharma, Inc. (“Nuvectis”, “Company”), a biopharmaceutical company focused on the development of innovative precision medicines for the treatment of serious conditions of unmet medical need in oncology, today announced that Ron Bentsur, Chairman and Chief Executive Officer, will present at the 36th Annual Roth Conference.

Read the original here:
Nuvectis Pharma to Present at the 36th Annual Roth Conference