Global Regenerative Medicine Market Demands, Key Players, Growth, Size and Forecast with Impact of COVID-19 (2020-2024) – Jewish Life News

Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024), provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Some of the major players operating in the global Regenerative Medicine Market are Novartis AG, Medtronic Plc, Bristol Myers Squibb (Celgene Corporation) and Smith+Nephew (Osiris Therapeutics, Inc.), whose company profiling has been done in the report. Furthermore, in this segment of the report, business overview, financial overview and business strategies of the respective companies are also provided.

Region Coverage

Company Coverage

Executive Summary

Regenerative medicines emphasis on regeneration or replacement of tissues, cells or organs of human body to cure the problem caused by disease or injury. The treatment fortify human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimers, diabetes, Parkinsons, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

Get Free Sample Copy of this Research Report at https://www.marketreportsonline.com/contacts/requestsample.php?name=813167

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Table of Contents

Direct Purchase of this Research Report at (Single User License: US $ 900) https://www.marketreportsonline.com/contacts/purchase.php?name=813167

List of Tables

Table 1: Global Regenerative Medicine Market Players: A Financial Comparison; 2019

List of Figures.

See the original post here:
Global Regenerative Medicine Market Demands, Key Players, Growth, Size and Forecast with Impact of COVID-19 (2020-2024) - Jewish Life News

COVID 19 to Lead the Sales of Adipose Tissue-derived Stem Cells to Register Stellar Growth in the Next 10 Years – Personal Injury Bureau UK

Adipose tissue is rich in multi potent stem cells that have the capability to differentiate into a number of cell types including adipocytes, osteocytes, chondrocytes and others, in vitro. These Adipose Tissue-derived Stem Cells are used for a number of applications including stem cell differentiation studies, regenerative medicine, cell therapy, tissue engineering and development of induced pluripotent stem cell lineage. Adult stem cells such as the Adipose Tissue-derived Stem Cells have a very good potential for regenerative medicine. The Adipose Tissue-derived Stem Cells show higher yields compared with other stem cell sources. Some of the regenerative medicine applications using Adipose Tissue-derived Stem Cells include skin, bone and cartilage regeneration.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/25831

Although, Adipose Tissue-derived Stem Cells have the ability to differentiate into different cell types in vitro, unlike the embryonic stem cells they lack the ability to differentiate into all types of organs and tissues of the body. Derivation of stem cells from adipose tissue have a number of advantages including that fat tissue contain 100 to 1000 times more mesenchymal stem cells than the bone marrow. Furthermore the method of collection of fat tissue is relatively easier and is less invasive than that of bone marrow collection. Although Adipose Tissue-derived Stem Cells have a potential to be used in cell-based therapy, there are a number of challenges the Adipose Tissue-derived Stem Cells market has to face. Some of the challenge include the safety issue for the clinical use of Adipose Tissue-derived Stem Cells, development and differentiation of the cells, delivery of the cells in vivo and immune response after the transplant.

The global Adipose Tissue-derived Stem Cells market is segmented based on product type and end user. Based on product type the Adipose Tissue-derived Stem Cells can be categorized into cell line and reagent & kits. Cell line can be further classified based on the source of the adipose tissue such as human and rodents. Based on reagents the Adipose Tissue-derived Stem Cells market is further classified as media & sera and kits. Based on application the Adipose Tissue-derived Stem Cells market is classified into regenerative medicine, cell therapy, tissue engineering, and other applications such as cell differentiation studies and other similar research. End users of Adipose Tissue-derived Stem Cells market are biotechnology companies and academic and research institutes.

The Global Adipose Tissue-derived Stem Cells market is classified on the basis of product type, end user and region:

Based on the Product Type, Adipose Tissue-derived Stem Cells market is segmented into following:

Based on the application, Adipose Tissue-derived Stem Cells market is segmented into following:

Based on the end user, Adipose Tissue-derived Stem Cells market is segment as below:

Key participants operating in the Adipose Tissue-derived Stem Cells market are: Lonza, ThermoFisher Scientific, Celprogen, Inc, American CryoStem, Rexgenero Ltd, iXCells Biotechnologies, Merck KGaA, Lifeline Cell Technology, and others.

You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/25831

Growing research activities using stem cells along with the growth of regenerative medicine and cell therapy the global Adipose Tissue-derived Stem Cells market is set to expand considerably during the forecast period. However, ethical concerns and stringent regulations may hinder the growth of the global Adipose Tissue-derived Stem Cells market.

On the basis of geography, global Adipose Tissue-derived Stem Cells market is segmented into six major regions that include North America, Latin America, Europe, Asia-Pacific excluding China, China and Middle East & Africa. North America is expected to be the most lucrative Adipose Tissue-derived Stem Cells market owing to increased research activity of stem cells. Furthermore government support for regenerative and stem cell based studies along with cell therapy studies is driving the growth of the Adipose Tissue-derived Stem Cells market in the region. Changing government regulations in china is supporting the research activity that supports the growth of the adipose tissue-derived stem cell market in the region at a considerable rate.

See the original post:
COVID 19 to Lead the Sales of Adipose Tissue-derived Stem Cells to Register Stellar Growth in the Next 10 Years - Personal Injury Bureau UK

Global Regenerative Medicine Market: Size and Forecast with Impact Analysis of COVID-19 (2020-2024) – Cole of Duty

Scope of the Report

The report titled Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024), provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Access the PDF sample of the report @https://www.orbisresearch.com/contacts/request-sample/4707408

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Some of the major players operating in the global regenerative medicine market are Novartis AG, Medtronic Plc, Bristol Myers Squibb (Celgene Corporation) and Smith+Nephew (Osiris Therapeutics, Inc.), whose company profiling has been done in the report. Furthermore, in this segment of the report, business overview, financial overview and business strategies of the respective companies are also provided.

Region Coverage

North America Europe Asia Pacific ROW

Company Coverage

Novartis AG Medtronic Plc Bristol Myers Squibb (Celgene Corporation) Smith+Nephew (Osiris Therapeutics, Inc.)

Executive Summary

Regenerative medicines emphasis on regeneration or replacement of tissues, cells or organs of human body to cure the problem caused by disease or injury. The treatment fortify human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimers, diabetes, Parkinsons, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Browse the full report @https://www.orbisresearch.com/reports/index/global-regenerative-medicine-market-size-and-forecast-with-impact-analysis-of-covid-19-2020-2024

Table of Contents

1. Executive Summary

2. Introduction

2.1 Regenerative Medicine: An Overview 2.2 Regeneration in Humans: An Overview 2.3 Expansion in Peripheral Industries of Regenerative Medicine 2.4 Approval System for Regenerative Medicine Products 2.5 Regenerative Medicine Segmentation

3. Global Market Analysis

3.1 Global Regenerative Medicine Market: An Analysis

3.1.1 Global Regenerative Medicine Market by Value 3.1.2 Global Regenerative Medicine Market by Products (Cell Therapy, Tissue Engineering, Gene Therapy and Small Molecules and Biologics) 3.1.3 Global Regenerative Medicine Market by Material (Biologically Derived Material, Synthetic Material, Genetically Engineered Materials and Pharmaceuticals) 3.1.4 Global Regenerative Medicine Market by Region (North America, Europe, Asia Pacific and ROW)

3.2 Global Regenerative Medicine Market: Product Analysis

3.2.1 Global Cell Therapy Regenerative Medicine Market by Value 3.2.2 Global Tissue Engineering Regenerative Medicine Market by Value 3.2.3 Global Gene Therapy Regenerative Medicine Market by Value 3.2.4 Global Small Molecules and Biologics Regenerative Medicine Market by Value

3.3 Global Regenerative Medicine Market: Material Analysis

3.3.1 Global Biologically Derived Material Market by Value 3.3.2 Global Synthetic Material Market by Value 3.3.3 Global Genetically Engineered Materials Market by Value 3.3.4 Global Regenerative Medicine Pharmaceuticals Market by Value

4. Regional Market Analysis

4.1 North America Regenerative Medicine Market: An Analysis 4.1.1 North America Regenerative Medicine Market by Value

4.2 Europe Regenerative Medicine Market: An Analysis 4.2.1 Europe Regenerative Medicine Market by Value

4.3 Asia Pacific Regenerative Medicine Market: An Analysis 4.3.1 Asia Pacific Regenerative Medicine Market by Value

4.4 ROW Regenerative Medicine Market: An Analysis 4.4.1 ROW Regenerative Medicine Market by Value

5. COVID-19

5.1 Impact of Covid-19 5.2 Response of Industry to Covid-19 5.3 Variation in Organic Traffic 5.4 Regional Impact of COVID-19

6. Market Dynamics

6.1 Growth Drivers 6.1.1 Growth in Geriatric Population 6.1.2 Rising Global Healthcare Expenditure 6.1.3 Increasing Diabetic Population 6.1.4 Escalating Number of Cancer Patients 6.1.5 Rising Prevalence of Cardiovascular Disease 6.1.6 Surging Obese Population

6.2 Challenges 6.2.1 Legal Obligation 6.2.2 High Cost of Treatment

6.3 Market Trends 6.3.1 3D Bio-Printing 6.3.2 Artificial Intelligence to Advance Regenerative Medicine

7. Competitive Landscape

7.1 Global Regenerative Medicine Market Players: A Financial Comparison 7.2 Global Regenerative Medicine Market Players by Research & Development Expenditure

8. Company Profiles

8.1 Bristol Myers Squibb (Celgene Corporation) 8.1.1 Business Overview 8.1.2 Financial Overview 8.1.3 Business Strategy

8.2 Medtronic Plc 8.2.1 Business Overview 8.2.2 Financial Overview 8.2.3 Business Strategy

8.3 Smith+Nephew (Osiris Therapeutics, Inc.) 8.3.1 Business Overview 8.3.2 Financial Overview 8.3.3 Business Strategy

8.4 Novartis AG 8.4.1 Business Overview 8.4.2 Financial Overview 8.4.3 Business Strategy

Direct purchase the report @ https://www.orbisresearch.com/contact/purchase-single-user/4707408

About Us:

Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.

Contact Us:

Hector Costello Senior Manager Client Engagements 4144N Central Expressway, Suite 600, Dallas, Texas 75204, U.S.A. Phone No.: +1 (972)-362-8199; +91 895 659 5155

See the original post here:
Global Regenerative Medicine Market: Size and Forecast with Impact Analysis of COVID-19 (2020-2024) - Cole of Duty

Outlook on the Worldwide Regenerative Medicine Industry to 2024 – Rising Global Healthcare Expenditure Presents Opportunities – Yahoo Finance

Dublin, June 22, 2020 (GLOBE NEWSWIRE) -- The "Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024)" report has been added to ResearchAndMarkets.com's offering.

This report provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Region Coverage:

Company Coverage:

Regenerative medicines emphasise on the regeneration or replacement of tissues, cells or organs of the human body to cure the problem caused by disease or injury. The treatment fortifies the human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimer's, diabetes, Parkinson's, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Key Topics Covered:

1. Executive Summary

2. Introduction 2.1 Regenerative Medicine: An Overview 2.2 Regeneration in Humans: An Overview 2.3 Expansion in Peripheral Industries of Regenerative Medicine 2.4 Approval System for Regenerative Medicine Products 2.5 Regenerative Medicine Segmentation

3. Global Market Analysis 3.1 Global Regenerative Medicine Market: An Analysis 3.1.1 Global Regenerative Medicine Market by Value 3.1.2 Global Regenerative Medicine Market by Products (Cell Therapy, Tissue Engineering, Gene Therapy and Small Molecules and Biologics) 3.1.3 Global Regenerative Medicine Market by Material (Biologically Derived Material, Synthetic Material, Genetically Engineered Materials and Pharmaceuticals) 3.1.4 Global Regenerative Medicine Market by Region (North America, Europe, Asia Pacific and ROW)

3.2 Global Regenerative Medicine Market: Product Analysis 3.2.1 Global Cell Therapy Regenerative Medicine Market by Value 3.2.2 Global Tissue Engineering Regenerative Medicine Market by Value 3.2.3 Global Gene Therapy Regenerative Medicine Market by Value 3.2.4 Global Small Molecules and Biologics Regenerative Medicine Market by Value

3.3 Global Regenerative Medicine Market: Material Analysis 3.3.1 Global Biologically Derived Material Market by Value 3.3.2 Global Synthetic Material Market by Value 3.3.3 Global Genetically Engineered Materials Market by Value 3.3.4 Global Regenerative Medicine Pharmaceuticals Market by Value

4. Regional Market Analysis 4.1 North America Regenerative Medicine Market: An Analysis 4.2 Europe Regenerative Medicine Market: An Analysis 4.3 Asia Pacific Regenerative Medicine Market: An Analysis 4.4 ROW Regenerative Medicine Market: An Analysis

Story continues

5. COVID-19 5.1 Impact of Covid-19 5.2 Response of Industry to Covid-19 5.3 Variation in Organic Traffic 5.4 Regional Impact of COVID-19

6. Market Dynamics 6.1 Growth Drivers 6.1.1 Growth in Geriatric Population 6.1.2 Rising Global Healthcare Expenditure 6.1.3 Increasing Diabetic Population 6.1.4 Escalating Number of Cancer Patients 6.1.5 Rising Prevalence of Cardiovascular Disease 6.1.6 Surging Obese Population 6.2 Challenges 6.2.1 Legal Obligation 6.2.2 High Cost of Treatment 6.3 Market Trends 6.3.1 3D Bio-Printing 6.3.2 Artificial Intelligence to Advance Regenerative Medicine

7. Competitive Landscape 7.1 Global Regenerative Medicine Market Players: A Financial Comparison 7.2 Global Regenerative Medicine Market Players' by Research & Development Expenditure

8. Company Profiles 8.1 Bristol Myers Squibb (Celgene Corporation) 8.1.1 Business Overview 8.1.2 Financial Overview 8.1.3 Business Strategy 8.2 Medtronic Plc 8.2.1 Business Overview 8.2.2 Financial Overview 8.2.3 Business Strategy 8.3 Smith+Nephew (Osiris Therapeutics, Inc.) 8.3.1 Business Overview 8.3.2 Financial Overview 8.3.3 Business Strategy 8.4 Novartis AG 8.4.1 Business Overview 8.4.2 Financial Overview 8.4.3 Business Strategy

For more information about this report visit https://www.researchandmarkets.com/r/w15smu

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

CONTACT: ResearchAndMarkets.com Laura Wood, Senior Press Manager press@researchandmarkets.com For E.S.T Office Hours Call 1-917-300-0470 For U.S./CAN Toll Free Call 1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

More:
Outlook on the Worldwide Regenerative Medicine Industry to 2024 - Rising Global Healthcare Expenditure Presents Opportunities - Yahoo Finance

Global Regenerative Medicine Market (2020 to 2024) – Size & Forecast with Impact Analysis of COVID-19 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Global Regenerative Medicine Market: Size & Forecast with Impact Analysis of COVID-19 (2020-2024)" report has been added to ResearchAndMarkets.com's offering.

This report provides an in-depth analysis of the global regenerative medicine market with description of market sizing and growth. The analysis includes market by value, by product, by material and by region. Furthermore, the report also provides detailed product analysis, material analysis and regional analysis.

Moreover, the report also assesses the key opportunities in the market and outlines the factors that are and would be driving the growth of the industry. Growth of the overall global regenerative medicine market has also been forecasted for the years 2020-2024, taking into consideration the previous growth patterns, the growth drivers and the current and future trends.

Regenerative medicines emphasise on the regeneration or replacement of tissues, cells or organs of the human body to cure the problem caused by disease or injury. The treatment fortifies the human cells to heal up or transplant stem cells into the body to regenerate lost tissues or organs or to recover impaired functionality. There are three types of stem cells that can be used in regenerative medicine: somatic stem cells, embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells).

The regenerative medicine also has the capability to treat chronic diseases and conditions, including Alzheimer's, diabetes, Parkinson's, heart disease, osteoporosis, renal failure, spinal cord injuries, etc. Regenerative medicines can be bifurcated into different product type i.e., cell therapy, tissue engineering, gene therapy and small molecules and biologics. In addition, on the basis of material regenerative medicine can be segmented into biologically derived material, synthetic material, genetically engineered materials and pharmaceuticals.

The global regenerative medicine market has surged at a progressive rate over the years and the market is further anticipated to augment during the forecasted years 2020 to 2024. The market would propel owing to numerous growth drivers like growth in geriatric population, rising global healthcare expenditure, increasing diabetic population, escalating number of cancer patients, rising prevalence of cardiovascular disease and surging obese population.

Though, the market faces some challenges which are hindering the growth of the market. Some of the major challenges faced by the industry are: legal obligation and high cost of treatment. Whereas, the market growth would be further supported by various market trends like three dimensional bioprinting , artificial intelligence to advance regenerative medicine, etc.

Market Dynamics

Growth Drivers

Challenges

Market Trends

Companies Profiled

For more information about this report visit https://www.researchandmarkets.com/r/ufteqn

See more here:
Global Regenerative Medicine Market (2020 to 2024) - Size & Forecast with Impact Analysis of COVID-19 - ResearchAndMarkets.com - Business Wire

PMR Reveals In-Depth Analysis On The Cell Banking Outsourcing Market 2016-2022 – The Canton Independent Sentinel

A cell bank refers to a facility that store cells derived from various body fluids and organ tissue for future needs. The bank store the cells with detailed characterization of the cell line hence decrease the chances of cross contamination. Cell banking outsourcing industry involves collection, storage, characterization, and testing of cells, cell lines, and tissues. Cell banks provide cells, cell lines, and tissues for R&D, production of biopharmaceuticals with maximum effectiveness and minimal adverse events. The process for storage of cells includes first proliferation of cells that multiplied in large number of identical cells and then stored into cryovials for future use. Cells mainly used in the regenerative medicine production. Increasing demand of stem cell therapies and number of cell banks expected to boost the global market.

Global cell banking outsourcing market segmented based on bank type, cell type, phase, and geography. Based on bank type market is further segmented into master cell banking, working cell banking, and viral cell banking. Cell type segment further divided based on stem cell banking and non-stem cell banking. Stem cell banking includes dental, adult, cord, embryonic, and IPS stem cell banking. Based on phase, the global cell banking outsourcing market segmented into preparation, storage, testing, and characterization. Geographically, market divided into North America, Europe, Asia Pacific, Latin America, and Middle East Africa. By considering bank type master cell banking accounted largest share owing to longer duration of preservation that would attract the researcher. Stem cell banking accounted larger share than non-stem cell banking due to lower risk of contamination.

For detailed insights on enhancing your product footprint, request for a Sample Report herehttps://www.persistencemarketresearch.com/samples/8026

In stem cell banking cord stem cell banking accounted larger share by revenue in 2014 due to increasing number of cord blood banks, and services globally. Additionally, donor convenience, immediate availability, lower risk of viral contamination is major driving factors for cord stem cell banking. In bank phase, segment storage phase accounted largest share and expected to maintain its share due to development of sophisticated preservation technologies such as cryopreservation technique. Geographically, North America accounted largest share due to high number of ongoing research projects. However, Asia Pacific expected to show significant growth during forecast period owing to supportive government initiatives coupled with increasing awareness about cell therapies.

The global cell banking outsourcing market is witnessing lucrative growth during forecast period due to increased research in cell line development owing to rise in incidence of infectious chronic disorder, and cancer. Additionally, development of advanced preservation techniques, increasing adoption to the stem cell therapies, rise in cell bank facilities across globe, and moving focus of researcher towards stem cell therapies would drive the market. However, high cost of therapies, availability of right donors, and legal and changing ethical issues during collection across the globe are major restraint of the market. Risk associated with cell line banking is contamination of cell lines by manual errors or environmental conditions hence care should be taken during storing and handling of cells.

Major player in cell banking outsourcing market include BioOutsource (Sartorious), BioReliance, BSL Bioservice, Charles River Laboratories, Cleancells, CordLife, Covance, Cryobanks International India, Cryo-Cell International Inc., GlobalStem Inc., Goodwin Biotechnology Inc., LifeCell International Pvt. Ltd., and Lonza. Additionally, PXTherapeutics SA, Reliance Life Sciences, SGS Life Sciences, Texcell, Toxikon Corporation, Tran-Scell Biologics, Pvt. Ltd., and Wuxi Apptec are other companies in global cell banking outsourcing market.

For in-depth competitive analysis, Check Pre-Book herehttps://www.persistencemarketresearch.com/checkout/8026

Reasons to Purchase this Report:

Accuracy and Quality Our reports strive to offer superior quality reports based on authentic and accurate findings. Customer Satisfaction We aim to ensure that our clients research needs are met with customized, top-of-the-line solutions. Unmatched Expertise Our analysts and consultants are among the best in their field and promise to deliver excellent market intelligence. 360-degree Analysis We leave no stone unturned to give clients an exhaustive coverage of the industry.

Our client success stories feature a range of clients fromFortune 500 companiesto fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

About Us :

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics and market research methodology to help businesses achieve optimal performance. To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources.

Contact Us

Persistence Market Research U.S. Sales Office 305 Broadway, 7th Floor New York City, NY 10007 +1-646-568-7751 United States USA-Canada Toll-Free: 800-961-0353 E-mail id-[emailprotected] Website:www.persistencemarketresearch.com

Rustil is a regular contributor to blog , Specializing in Industry Research and Forecast

Visit link:
PMR Reveals In-Depth Analysis On The Cell Banking Outsourcing Market 2016-2022 - The Canton Independent Sentinel

Efforts at coronavirus vaccines and treatments abound in the Bay Area – San Francisco Chronicle

The frenetic search for the miracle that will rid the world of COVID-19 is branching out in a thousand directions, and a large part of the microbial treasure hunt is going on in the Bay Area, where major progress has been made in the 100 days since residents were ordered to shelter in place.

Scientists at universities, laboratories, biotechnology companies and drug manufacturers are combing through blood plasma taken from infected patients for secrets that will help them fight the disease.

The key is likely a super-strength antibody found in some patients. But researchers must first figure out how those antibodies work and how they can be harnessed and used to stop the many health problems associated with COVID-19, particularly acute respiratory distress syndrome, or ARDS, which has killed more people than any other complication connected to the disease.

Other developments showing promise include injections of mesenchymal stem cells, found in bone marrow and umbilical cords, that doctors are studying to battle inflammation caused by ARDS. And a steroid called dexamethasone reduced the number of deaths by halting the overreactive immune responses in seriously ill patients in the United Kingdom.

In all, more than 130 vaccines and 220 treatments are being tested worldwide.

What follows is a list of some of the most promising elixirs, medications and vaccines with ties to the Bay Area:

Monoclonal antibodies / Vir Biotechnology, San Francisco: Scientists at Vir and several institutions, including Stanford and UCSF, are studying monoclonal antibodies, which are clones of coronavirus-fighting antibodies produced by COVID-19 patients.

The idea is to utilize these neutralizing antibodies which bind to the virus crown-like spikes and prevent them from entering and hijacking human cells.

Only about 5% of coronavirus patients have these super-strength antibodies, and those people are believed to be immune to a second attack.

The trick for scientists at Vir is to identify these neutralizing antibodies, harvest, purify and clone them. If they succeed, the resulting monoclones could then be used to inoculate people and it is hoped give them long-term immunity against the coronavirus. The company recently signed a deal with Samsung Biologics, in South Korea, to scale up production of a temporary vaccine in the fall after clinical trials are complete.

Another monoclonal antibody, leronlimab, is being studied in coronavirus clinical trials by its Washington state drugmaker, CytoDyn. The companys chief medical officer is in San Francisco, and the company that does laboratory tests of leronlimab is in San Carlos.

Interferon-lambda / Stanford University: Doctors at Stanford are running a trial to see if interferon-lambda, which is administered by injection, helps patients in the early stages of COVID-19. Interferon-lambda is a manufactured version of a naturally occurring protein that has been used to treat hepatitis. Stanford doctors hope it will boost the immune system response to coronavirus infections.

Dr. Upinder Singh, a Stanford infectious-disease expert, said the trial has enrolled more than 50 patients and is halfway finished. We have noted that patients tolerate the drug very well, she said.

Mesenchymal stem cells / UCSF and UC Davis Medical Center: UCSF Dr. Michael Matthay is leading a study about whether a kind of stem cell found in bone marrow can help patients with ARDS. Matthay hopes that the stem cells can help reduce the inflammation associated with some of ARDS most dire respiratory symptoms, and help patients lungs to recover.

Matthay is aiming to enroll 120 patients in San Francisco, the UC Davis Medical Center in Sacramento and hospitals in a handful of other states. He said the trial, which includes a small number ARDS patients who dont have COVID-19, should have results within a year. So far 17 patients are enrolled in the trial, most of them in San Francisco.

Remdesivir / Gilead Sciences (Foster City): Remdesivir, once conceived as a potential treatment for ebola, was the first drug to show some promise in treating COVID-19 patients. The drug interferes with the process through which the virus replicates itself. A large study led by the federal government generated excitement in late April when officials said hospitalized patients who received remdesivir intravenously recovered faster than those who received a placebo.

A later study looking at dosage showed some benefit for moderately ill COVID-19 patients who received remdesivir for five days, but improvement among those who got it for 10 days was not statistically significant. Gilead, a drug company, recently announced that it will soon launch another clinical trial to see how remdesivir works on 50 pediatric patients, from newborns to teenagers, with moderate to severe COVID-19 symptoms. More than 30 locations in the U.S. and Europe will be involved in the trial, the company said.

Coronavirus crisis: 100 days

Editors note: Its been 100 days since the Bay Area sheltered in place, protecting itself from the coronavirus pandemic. What have we learned in that time? And what does the future hold for the region and its fight against COVID-19? The Chronicle explores the past 100 days and looks to the future in this exclusive report.

Favipiravir / Fujifilm Toyama Chemical (Stanford University): This antiviral drug, developed in 2014 by a subsidiary of the Japanese film company to treat influenza, is undergoing numerous clinical studies worldwide, including a Stanford University trial that began this month. Unlike remdesivir, it can be administered orally, so it can be used to treat patients early in the disease, before hospitalization is necessary.

Stanford epidemiologists want to see if favipiravir, which has shown promising results in other trials, prevents the coronavirus from replicating in human cells, halts the shedding of the virus and reduces the severity of infection. The Stanford study, the only outpatient trial for this drug in the nation, is enrolling 120 people who have been diagnosed with COVID-19 within the past 72 hours. Half of them will get a placebo. People can enroll by emailing treatcovid@stanford.edu.

Colchicine / UCSF (San Francisco and New York): The anti-inflammatory drug commonly used to treat gout flare-ups is being studied in the U.S. by scientists at UCSF and New York University. The drug short-circuits inflammation by decreasing the bodys production of certain proteins, and researchers hope that it will reduce lung complications and prevent deaths from COVID-19. About 6,000 patients are receiving colchicine or a placebo during the clinical trial, dubbed Colcorona, which began in March and is expected to be completed in September.

Selinexor / Kaiser Permanente: Kaiser hospitals in San Francisco, Oakland and Sacramento are studying selinexor, an anticancer drug that blocks a key protein in the cellular machinery for DNA processing, as a potential COVID-19 treatment. The drug has both antiviral and anti-inflammatory properties, and its administered orally, according to Kaisers Dr. Jacek Skarbinski. The trial aims to enroll 250 patients with severe symptoms at Kaiser and other hospitals that are participating nationwide.

VXA-COV2-1 / Vaxart, South San Francisco: The biotechnology company Vaxart is testing this drug to see if it is as effective at controlling COVID-19 as trials have shown it to be against influenza. VXA-COV2-1, the only potential vaccine in pill form, uses the genetic code of the coronavirus to trigger a defensive response in mucous membranes. The hope is that the newly fortified membranes will prevent the virus from entering the body.

Its the only vaccine (candidate) that activates the first line of defense, which is the mucosa, said Andrei Floroiu, Vaxarts chief executive, noting that intravenous vaccines kill the virus after it is inside the body. Our vaccine may prevent you from getting infected at all.

The drug was effective against influenza and norovirus in trials and appears to work on laboratory animals, Floroiu said. He expects trials of VXA-COV2-1 on humans to begin later this summer.

VaxiPatch / Verndari (Napa and UC Davis Medical Center): Napa vaccine company Verndari makes a patented adhesive patch that can deliver a vaccine instead of a shot. Now, the company is trying to make a vaccine for COVID-19 that they can administer through that patch. At UC Davis Medical Center in Sacramento, Verndari researchers are developing a potential vaccine that relies on the coronavirus spike-shaped protein. When injected into a person, the substance would ideally train their body to recognize the virus and fight it off without becoming ill.

A spokeswoman told The Chronicle that the companys preclinical tests have shown early, positive data in developing an immune response. Verndari hopes to move into the next phase of testing in the coming weeks and start clinical trials in humans this year.

If the vaccine is proved effective and safe, patients could receive it through the mail, according to company CEO Dr. Daniel Henderson. The patch would leave a temporary mark on the skin that patients could photograph and send to their doctor as proof they have taken the vaccine, Henderson has said.

Peter Fimrite and J.D. Morris are San Francisco Chronicle staff writers. Email: pfimrite@sfchronicle.com, jd.morris@sfchronicle.com Twitter: @pfimrite, @thejdmorris

Environment

Oakland

Budget

Cases

NASCAR

Read the original:
Efforts at coronavirus vaccines and treatments abound in the Bay Area - San Francisco Chronicle

New Preclinical Data Demonstrates Immune-Enhancing Effects of Triple I/O Combination Therapy with BeyondSpring’s Plinabulin – GlobeNewswire

June 23, 2020 08:00 ET | Source: BeyondSpring, Inc.

Research Presented at 2020 AACR Virtual Annual Meeting

The Triple I/O Combination of Plinabulin, Anti-PD-1 and Radiation Achieved a 100 Percent Complete Response in Anti-PD-1 Non-responsive Animal Model

Triple I/O Combination to Be Administered to Patients Who Failed I/O in Second Half of 2020

NEW YORK, June 23, 2020 (GLOBE NEWSWIRE) -- BeyondSpring (the Company or BeyondSpring) (NASDAQ: BYSI), a global biopharmaceutical company focused on the development of innovative immuno-oncology (I/O) therapies, today announced new preclinical research findings that indicate BeyondSprings lead asset, Plinabulin, enhances immuno-radiotherapy for cancer patients. The results of this preclinical study was highlighted in a poster presentation titled, Plinabulin, a microtubule destabilizing agent, improves tumor control by enhancing dendritic cell maturation and CD8 T cell infiltration in combination with immunoradiotherapy, at this years American Association for Cancer Research (AACR) Virtual Annual Meeting on June 22, 2020.

Based on these preclinical findings, including a 100% complete response of the triple I/O combination of Plinabulin, anti-PD-1, and radiation in a PD-1 antibody non-responsive model, the compound is being advanced toward a Phase 1 clinical trial in patients who failed or progressed on PD-1 / PD-L1 antibody treatments. Principal investigator Steven H. Lin,M.D., Ph.D., associate professor of radiation oncology at The University of Texas MD Anderson Cancer Center, presented the research data.

The experiments from my lab demonstrated that Plinabulin treatment in murine cancer models leads to activation of antigen-presenting dendritic cells, said Dr. Lin. The combination therapy with Plinabulin, anti-PD-1 therapy and radiation therapy further activated the immune system, resulting in increased T-cell activation, which is associated with increased tumor regressions.

Additional data highlights include:

The above data presentation is available on the Posters page of BeyondSprings website at: https://www.beyondspringpharma.com/conferences/list.aspx?lcid=3.

Peer-reviewed 2019 publications in Chem and Cell Reports demonstrated that Plinabulin is differentiated from all other tubulin-targeted agents through its binding site and kinetics and is among the most potent agents that induce dendritic cell maturation. Dendritic cells are key immune cell types in the activation of the immune system against cancer cells, but currently approved immuno-oncology agents, such as antibodies to PD-1, only take the brakes off of T-cells without activating antigen-presenting cells that stimulate T-cells to attack foreign proteins expressed by cancer cells.

We believe that the activation of dendritic cells is a key to unlocking the next boost to the efficacy of immuno-oncology agents, said Dr. James Tonra, BeyondSprings Chief Scientific Officer. Activated dendritic cells present foreign tumor antigens to T-cells to induce cancer-directed immune attacks. Thus, adding this critical step of dendritic cell activation in the immune cascade to the established effects of immune checkpoint inhibition therapies is expected to increase overall anti-cancer efficacy in the clinic. Our anti-cancer strategy was to activate dendritic cells and T-cells, in combination with checkpoint inhibition and to add onto the benefits of neoantigen generation and immune activation from radiotherapy, as Plinabulin serves as the key to reverse the tumor non-response to PD-1/PD-L1 antibodies. The data strongly indicates that this triple combination has enough potential to move into clinical testing to help patients who failed or had progressed on anti-PD-1/PD-L1 targeted therapy, a severely unmet medical need.

About BeyondSpring BeyondSpring is a global, clinical-stage biopharmaceutical company focused on the development of innovative immuno-oncology cancer therapies. BeyondSprings lead asset, first-in-class agent Plinabulin as an immune and stem cell modulator, is in a Phase 3 global clinical trial as a direct anticancer agent in the treatment of non-small cell lung cancer (NSCLC) and two Phase 3 clinical programs in the prevention of chemotherapy-induced neutropenia (CIN). BeyondSpring has strong R&D capabilities with a robust pipeline in addition to Plinabulin, including three immuno-oncology assets and a drug discovery platform using the ubiquitination degradation pathway. The Company also has a seasoned management team with many years of experience bringing drugs to the global market.

About Plinabulin Plinabulin, BeyondSprings lead asset, is a differentiated immune and stem cell modulator. Plinabulin is currently in late-stage clinical development to increase overall survival in cancer patients, as well as to alleviate chemotherapy-induced neutropenia (CIN). The durable anticancer benefits of Plinabulin have been associated with its effect as a potent antigen-presenting cell (APC) inducer (through dendritic cell maturation) and T-cell activation (Chem and Cell Reports, 2019). Plinabulins CIN data highlights the ability to boost the number of hematopoietic stem / progenitor cells (HSPCs), or lineage-/cKit+/Sca1+ (LSK) cells in mice. Effects on HSPCs could explain the ability of Plinabulin to not only treat CIN but also to reduce chemotherapy-induced thrombocytopenia and increase circulating CD34+ cells in patients.

Cautionary Note Regarding Forward-Looking Statements This press release includes forward-looking statements that are not historical facts. Words such as "will," "expect," "anticipate," "plan," "believe," "design," "may," "future," "estimate," "predict," "objective," "goal," or variations thereof and variations of such words and similar expressions are intended to identify such forward-looking statements. Forward-looking statements are based on BeyondSpring's current knowledge and its present beliefs and expectations regarding possible future events and are subject to risks, uncertainties and assumptions. Actual results and the timing of events could differ materially from those anticipated in these forward-looking statements as a result of several factors including, but not limited to, difficulties raising the anticipated amount needed to finance the Company's future operations on terms acceptable to the Company, if at all, unexpected results of clinical trials, delays or denial in regulatory approval process, results that do not meet our expectations regarding the potential safety, the ultimate efficacy or clinical utility of our product candidates, increased competition in the market, and other risks described in BeyondSprings most recent Form 20-F on file with the U.S. Securities and Exchange Commission. All forward-looking statements made herein speak only as of the date of this release and BeyondSpring undertakes no obligation to update publicly such forward-looking statements to reflect subsequent events or circumstances, except as otherwise required by law.

Media Contacts Caitlin Kasunich / Raquel Cona KCSA Strategic Communications 212.896.1241 / 212.896.1276 ckasunich@kcsa.com / rcona@kcsa.com

Originally posted here:
New Preclinical Data Demonstrates Immune-Enhancing Effects of Triple I/O Combination Therapy with BeyondSpring's Plinabulin - GlobeNewswire

Michael Schumacher: Everything There Is to Know About His Health, Condition, and Accident – Essentially Sports

Fate can be cruel at times. Even if youre on top of the world, having achieved everything, fate can snatch it all away in an instant. Michael Schumacher retired from F1 for the second time in 2012 but he didnt get very long to enjoy his time off from the racetrack. Heres everything we know about the F1 legend today and what happened on the fateful day of his skiing accident.

Before diving into the details, be warned that a lot of this information is mere speculation. The Schumacher family has rightfully kept the German drivers health condition under wraps. Therefore, take this information with a pinch of salt.

On December 29, 2013, mere days away from his 44th birthday, Michael Schumacher suffered a near-fatal accident whilst skiing in the French Alps. The 7 times World Champions head hit a rock while crossing an unpatrolled skiing area. Thankfully, he survived because of his ski helmet. However, his injuries were severe.

Brain injury resulted in Schumacher being placed in a medically induced coma. Michael regained consciousness only in June 2014. Following this, Schumacher left the hospital to recover and rehabilitate from his home in Switzerland.

There have been several conflicting reports regarding Schumachers condition and proceeding sequence of events. Some reports claim the 7 times World Champion is paralyzed and confined to a wheelchair. Moreover, some sources suggest Schumacher has difficulty speaking and is suffering from memory loss.

His family hasnt gone on record to speak about the F1 legends health. However, his manager revealed that Michael was slowly progressing and making small steps towards recovery.

Recently, many reports surfaced, claiming Schumacher was to undergo surgery. Allegedly, doctors planned on performing a stem cell surgery to regenerate Michaels nervous system.

The Schumacher family denied these reports, claiming they wouldnt opt for surgery, given the present condition. However, its still unclear if Schumacher does undergo surgery if and when the Coronavirus situation improves.

Michael Schumacher almost seemed immortal during his period of F1 domination. Schumacher always believed in never giving up and we can only hope The Michael conquers his injuries as soon as possible.

More:
Michael Schumacher: Everything There Is to Know About His Health, Condition, and Accident - Essentially Sports

[Herald Interview] Spinning cord blood into stem cell therapies – The Korea Herald

Medipost CEO Yang Yoon-sun (Lim Jeong-yeo/The Korea Herald)

Her journey as a professor of pathology at Samsung Medical Center to head of a cord blood stem cell research company at the age of 37 came with prejudices, challenges and pitfalls, but also with encouragement, conviction and immense potential.

Cord blood is that inside the umbilical cord that connects the baby and mother, and can be ethically, and legally, procured after a babys birth. Despite containing one of the most potent types of stem cell and possibilities for vast medicinal repurposing, cord blood has often been discarded due to a lack of technology to refine it, Yang said.

In 2000, the concept of processing raw cord blood for stem cell therapies was still in a nascent stage across the world.

Soon Yang came to realize that research on cord blood should be approached commercially rather than academically to fast-track the development of consequential treatments.

The conviction was supported by her colleagues, and further fostered by a nationwide boom in startups.

Yang met obstetricians and gynecologists nationwide to help persuade laboring mothers to donate the otherwise unusable blood.

Medipost humbly started out in a rented laboratory of a Doosan Group research facility in Yongin, Gyeonggi Province, on June 26, 2000.

The company soon got listed on Koreas tech-heavy secondary bourse Kosdaq in 2005. In 2019, the company posted roughly 45.8 billion won ($37.9 million) in revenue with a net loss of over 14.1 billion won.

Medipost now operates from a self-owned building with 14 levels in the biocluster of Pangyo, Seongnam in Gyeonggi Province. Some 200 full-time employees work for Medipost, with entities strewn in global locations such as the US, China and Japan.

It has seven subsidiaries, three of which are Medipost America, Shandong Orlife Pharmaceutical and Evastem Corp., located overseas in the US, China and Japan, respectively.

Medipost, the embodiment of Yangs visions, has three business pillars: its cord blood bank, cell therapy developments and health supplements.

The companys main revenue source is the cord blood bank, where over 259,000 children have their cord blood stored, with more being added. It roughly costs around 1.4 million won to store a vial containing cord blood for 15 years, and 4 million won to store it for a lifetime.

Celltree cord blood bank (Medipost)

Most recently, Winter Sonata actor Choi Ji-woo decided to store the cord blood of her first daughter, whom she gave birth to at age 45.

It was not always a smooth ride, as soon after the companys initial public offering, there broke out the ethical scandal of embryonic stem cell research that clouded the general perception of stem cell research in the public eye. More than once the companys revenue has taken a dive of 50 percent.

However, Yang has no regrets.

As for me, every step was an unexpected challenge and overcoming each hardship taught me to be prepared for anything to maintain business stability, Yang said in an interview with The Korea Herald.

Cord blood, Yang said, is an immune response-safe therapeutic insurance in case the children and their families face incurable diseases such as leukemia, refractory anemia, immune disorders, cerebral palsy, developmental disorders or various forms of cancer.

If the babys cord blood is used to treat the same baby, it would be called an autologous therapy. If used for another family member, that is an allogenic therapy.

Cartistem, an allogenic osteoarthritis treatment that was approved by the local Drug Ministry in 2012, is the next biggest contributor to Mediposts business growth, as well as a balm to the knee problems of seniors.

Celltree cord blood bank (Medipost)

Cartistem is a stem cell therapeutic agent for cartilage regeneration crafted from Mediposts pool of research-purpose cord blood. Once surgically applied to the affected region, the drug has been successful in triggering regrowth of knee cartilage in 98 percent of the 103 patients treated in clinical phase 3 trials.

Medipost counts over 16,000 patients who have so far benefited from the use of Cartistem in the eight years the drug has been in service. It is prescribed at some 550 hospitals here.

The therapy has currently finished clinical phase 1 and 2a trials in the US to launch there, and is pending phase 2 clinical trials in Japan with aims to start tests in July. As it would require a great volume of funding to carry out wide-scale clinical phase 3 trials in the US, it might be Japan where Cartistem launches first, Yang said.

SK Bioland, an SK Group subsidiary, in-licensed Cartistems indication for ankle joint inflammation at end-2019 to carry out clinical phase 3 trials and have full domestic rights to the drugs use for ankle therapy.

Other than Cartistem, Medipost has Pneumostem, Neurostem and SMUP-Cell injections under developments.

Pneumostem is a stem cell therapy for prematurely born babies lung fibrosis. Unlike adult lung fibrosis, which has numerous causes and is sometimes isolated, newborn babies lung problems have a singular cause and therefore a clearer path of tackling it.

Pneumostem is undergoing clinical phase 2 trials in Korea and has completed phase 1 and 2 clinical trials in the US. It has been designated by the US Food and Drug Administration and the European Medicines Agency as an orphan drug, granting it government assistance as it would otherwise prove unprofitable due to its limited scope, and it has the FDAs fast track designation. Once its efficacy is proved, it may attempt to expand Penumostems indications to other forms of lung inflammation, including COVID-19, Yang said.

Neurostem is a proposed Alzheimers disease stem cell therapy. It is believed to promote the degradation of beta-amyloid, and accumulation in the brain is believed to cause Alzheimers-type dementia. The pipeline has completed phase 1 and 2a clinical trials in Korea, and has been cleared for the FDAs phase 1 and 2 investigational new drug application.

SMUP-Cell, an injectable type innovative knee joint treatment, saves patients the trouble of undergoing intrusive surgery. Medipost has finished administrating the cell therapy to the first round of clinical phase 1 trials and has begun the five-year tracking of patients progress. If the drug makes it to commercial stage, it would be a groundbreaking solution for patients of joint inflammation who are in pain, but not at the stage yet to go under the knife.

At its basement in Pangyo, Medipost has enough space to install more cord blood tanks to last the next 20 years.

Our only goal should be to provide stem cell regenerative therapy to patients whose predicament previously had no life-extending solution. If we save one patient -- while to us it may just be one person, it is 100 percent to the patient themselves. That is our step-by-step approach, said Yang.

By Lim Jeong-yeo (kaylalim@heraldcorp.com)

Read more:
[Herald Interview] Spinning cord blood into stem cell therapies - The Korea Herald