Genmab Announces European Marketing Authorization for the Subcutaneous Formulation of DARZALEX (daratumumab) for the Treatment of Patients with Multi…

Copenhagen, Denmark; June 4, 2020 Genmab A/S (Nasdaq: GMAB) announced today that the European Commission (EC) has granted marketing authorization for the subcutaneous (SC) formulation of DARZALEX (daratumumab), for the treatment of adult patients with multiple myeloma in all currently approved daratumumab intravenous (IV) formulation indications in frontline and relapsed / refractory settings. The approval follows a Positive Opinion by the CHMP of the European Medicines Agency (EMA) in April 2020. The SC formulation is administered as a fixed-dose over approximately three to five minutes, significantly less time than IV daratumumab, which is given over several hours. Patients currently on daratumumab IV will have the choice to switch to the SC formulation. In August 2012, Genmab granted Janssen Biotech, Inc. (Janssen) an exclusive worldwide license to develop, manufacture and commercialize daratumumab.

We are extremely pleased that patients in Europe with multiple myeloma will now, like patients in the U.S., have the opportunity for treatment with the subcutaneous formulation of daratumumab. With consistent efficacy, and greater convenience for patients and health care providers with dosing time reduced from hours to just minutes and fewer infusion-related reactions, this formulation provides significant benefits for patients, said Jan van de Winkel, Ph.D., Chief Executive Officer of Genmab

The approval was based on data from two studies: the Phase III non-inferiority COLUMBA (MMY3012) study, which compared the SC formulation of daratumumab to the IV formulation in patients with relapsed or refractory multiple myeloma, and data from the Phase II PLEIADES (MMY2040) study, which is evaluating SC daratumumab in combination with certain standard multiple myeloma regimens. The topline results from the COLUMBA study were announced in February 2019 and subsequently presented in oral sessions at the 2019 American Society of Clinical Oncology (ASCO) Annual Meeting and the 24th European Hematology Association (EHA) Annual Congress. Updated data of the COLUMBA and the PLEIADES studies were presented during poster sessions at the 61st American Society of Hematology (ASH) Annual Meeting in December 2019.

About the COLUMBA (MMY3012) studyThe Phase III trial (NCT03277105) is a randomized, open-label, parallel assignment study that included 522 adults diagnosed with relapsed and refractory multiple myeloma. Patients were randomized to receive either: SC daratumumab, as 1800 mg daratumumab with rHuPH20 2000 U/mL once weekly in Cycle 1 and 2, every two weeks in Cycles 3 to 6, every 4 weeks in Cycle 7 and thereafter until disease progression, unacceptable toxicity or the end of study; or 16 mg/kg IV daratumumab once weekly in Cycle 1 and 2, every two weeks in Cycles 3 to 6, every 4 weeks in Cycle 7 and thereafter until disease progression, unacceptable toxicity or the end of study. The co-primary endpoints of the study are overall response rate and Maximum trough concentration of daratumumab (Ctrough; defined as the serum pre-dose concentration of daratumumab on Cycle 3 Day 1).

About the PLEIADES (MMY2040) studyThe Phase II trial (NCT03412565) is a non-randomized, open-label, parallel assignment study that includes 265 adults either newly diagnosed or with relapsed or refractory multiple myeloma. Patients with newly diagnosed multiple myeloma are being treated with 1,800 mg SC daratumumab in combination with either bortezomib, lenalidomide and dexamethasone (D-VRd) or bortezomib, melphalan and prednisone (D-VMP). Patients with relapsed or refractory multiple myeloma are being treated with 1,800 mg SC daratumumab plus lenalidomide and dexamethasone (D-Rd). An additional cohort of patients with relapsed and refractory multiple myeloma treated with daratumumab plus carfilzomib and dexamethasone (D-Kd) was subsequently added to the study. The primary endpoint for the D-VMP, D-Kd and D-Rd cohorts is overall response rate. The primary endpoint for the D-VRd cohort is very good partial response or better rate.

About DARZALEX (daratumumab)DARZALEX (daratumumab) intravenous infusion is indicated for the treatment of adult patients in the United States: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least one prior therapy; in combination with pomalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor (PI); and as a monotherapy for the treatment of patients with multiple myeloma who have received at least three prior lines of therapy, including a PI and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.1 DARZALEX is the first monoclonal antibody (mAb) to receive U.S. Food and Drug Administration (U.S. FDA) approval to treat multiple myeloma.

DARZALEX is indicated for the treatment of adult patients in Europe via intravenous infusion or subcutaneous administration: in combination with bortezomib, thalidomide and dexamethasone as treatment for patients newly diagnosed with multiple myeloma who are eligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of adult patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; for use in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least one prior therapy; and as monotherapy for the treatment of adult patients with relapsed and refractory multiple myeloma, whose prior therapy included a PI and an immunomodulatory agent and who have demonstrated disease progression on the last therapy2. Daratumumab is the first subcutaneous CD38-directed antibody approved in Europe for the treatment of multiple myeloma. The option to split the first infusion of DARZALEX over two consecutive days has been approved in both Europe and the U.S.

In Japan, DARZALEX intravenous infusion is approved for the treatment of adult patients: in combination with lenalidomide and dexamethasone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with bortezomib, melphalan and prednisone for the treatment of patients with newly diagnosed multiple myeloma who are ineligible for autologous stem cell transplant; in combination with lenalidomide and dexamethasone, or bortezomib and dexamethasone for the treatment of relapsed or refractory multiple myeloma. DARZALEX is the first human CD38 monoclonal antibody to reach the market in the United States, Europe and Japan. For more information, visit http://www.DARZALEX.com.

DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), a subcutaneous formulation of daratumumab, is approved in the United States for the treatment of adult patients with multiple myeloma: in combination with bortezomib, melphalan and prednisone in newly diagnosed patients who are ineligible for ASCT; in combination with lenalidomide and dexamethasone in newly diagnosed patients who are ineligible for ASCT and in patients with relapsed or refractory multiple myeloma who have received at least one prior therapy; in combination with bortezomib and dexamethasone in patients who have received at least one prior therapy; and as monotherapy, in patients who have received at least three prior lines of therapy including a PI and an immunomodulatory agent or who are double-refractory to a PI and an immunomodulatory agent.3 DARZALEX FASPRO is the first subcutaneous CD38-directed antibody approved in the U.S. for the treatment of multiple myeloma.

Daratumumab is a human IgG1k monoclonal antibody (mAb) that binds with high affinity to the CD38 molecule, which is highly expressed on the surface of multiple myeloma cells. Daratumumab triggers a persons own immune system to attack the cancer cells, resulting in rapid tumor cell death through multiple immune-mediated mechanisms of action and through immunomodulatory effects, in addition to direct tumor cell death, via apoptosis (programmed cell death).1,4,5,6,7

Daratumumab is being developed by Janssen Biotech, Inc. under an exclusive worldwide license to develop, manufacture and commercialize daratumumab from Genmab. A comprehensive clinical development program for daratumumab is ongoing, including multiple Phase III studies in smoldering, relapsed and refractory and frontline multiple myeloma settings. Additional studies are ongoing or planned to assess the potential of daratumumab in other malignant and pre-malignant diseases in which CD38 is expressed, such as amyloidosis and T-cell acute lymphocytic leukemia (ALL). Daratumumab has received two Breakthrough Therapy Designations from the U.S. FDA for certain indications of multiple myeloma, including as a monotherapy for heavily pretreated multiple myeloma and in combination with certain other therapies for second-line treatment of multiple myeloma.

About Genmab Genmab is a publicly traded, international biotechnology company specializing in the creation and development of differentiated antibody therapeutics for the treatment of cancer. Founded in 1999, the company is the creator of three approved antibodies: DARZALEX (daratumumab, under agreement with Janssen Biotech, Inc.) for the treatment of certain multiple myeloma indications in territories including the U.S., Europe and Japan, Arzerra (ofatumumab, under agreement with Novartis AG), for the treatment of certain chronic lymphocytic leukemia indications in the U.S., Japan and certain other territories and TEPEZZA (teprotumumab, under agreement with Roche granting sublicense to Horizon Therapeutics plc) for the treatment of thyroid eye disease in the U.S. A subcutaneous formulation of daratumumab, DARZALEX FASPRO (daratumumab and hyaluronidase-fihj), has been approved in the U.S. for the treatment of adult patients with certain multiple myeloma indications. Daratumumab is in clinical development by Janssen for the treatment of additional multiple myeloma indications, other blood cancers and amyloidosis. A subcutaneous formulation of ofatumumab is in development by Novartis for the treatment of relapsing multiple sclerosis. Genmab also has a broad clinical and pre-clinical product pipeline. Genmab's technology base consists of validated and proprietary next generation antibody technologies - the DuoBody platform for generation of bispecific antibodies, the HexaBody platform, which creates effector function enhanced antibodies, the HexElect platform, which combines two co-dependently acting HexaBody molecules to introduce selectivity while maximizing therapeutic potency and the DuoHexaBody platform, which enhances the potential potency of bispecific antibodies through hexamerization. The company intends to leverage these technologies to create opportunities for full or co-ownership of future products. Genmab has alliances with top tier pharmaceutical and biotechnology companies. Genmab is headquartered in Copenhagen, Denmark with sites in Utrecht, the Netherlands, Princeton, New Jersey, U.S. and Tokyo, Japan.

See more here:
Genmab Announces European Marketing Authorization for the Subcutaneous Formulation of DARZALEX (daratumumab) for the Treatment of Patients with Multi...

Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend

Health care stakeholders need to invest in value-based care, innovative care delivery models, advanced digital technologies. XploreMR will help you to know declarative, procedural, contextual, and somatic information about the Canine Stem Cell Therapy Market. It also provides a critical assessment of the performance of emerging and mature markets in a new publication titled Global Market Study on Canine Stem Cell Therapy: Ongoing Clinical Trials and Focus on Advancements to Push Adoption in Veterinary Clinics.

A synopsis of the global canine stem cell therapy market with reference to the global healthcare pharmaceutical industry

Despite the economic and political uncertainty in the recent past, the global healthcare industry has been receiving positive nudges from reformative and technological disruptions in medical devices, pharmaceuticals and biotech, in-vitro diagnostics, and medical imaging. Key markets across the world are facing a massive rise in demand for critical care services that are pushing global healthcare spending levels to unimaginable limits.

Click HERE To get SAMPLE PDF (Including Full TOC, Table & Figures) and many more Information:https://www.xploremr.com/connectus/sample/2360

A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry. Proactive measures such as healthcare cost containment, primary care delivery, innovation in medical procedures (3-D printing, blockchain, and robotic surgery to name a few), safe and effective drug delivery, and well-defined healthcare regulatory compliance models are targeted at placing the sector on a high growth trajectory across key regional markets.

Parent Indicators Healthcare

Research Methodology

XploreMR utilizes a triangulation methodology that is primarily based on experimental techniques such as patient-level data, to obtain precise market estimations and insights on Molecule and Drug Classes, API Formulations and preferred modes of administration. Bottom-up approach is always used to obtain insightful data for the specific country/regions. The country specific data is again analysed to derive data at a global level. This methodology ensures high quality and accuracy of information.

Secondary research is used at the initial phase to identify the age specific disease epidemiology, diagnosis rate and treatment pattern, as per disease indications. Each piece of information is eventually analysed during the entire research project which builds a strong base for the primary research information.

Primary research participants include demand-side users such as key opinion leaders, physicians, surgeons, nursing managers, clinical specialists who provide valuable insights on trends and clinical application of the drugs, key treatment patterns, adoption rate, and compliance rate.

Quantitative and qualitative assessment of basic factors driving demand, economic factors/cycles and growth rates and strategies utilized by key players in the market is analysed in detail while forecasting, in order to project Year-on-Year growth rates. These Y-o-Y growth projections are checked and aligned as per industry/product lifecycle and further utilized to develop market numbers at a holistic level.

On the other hand, we also analyse various companies annual reports, investor presentations, SEC filings, 10k reports and press release operating in this market segment to fetch substantial information about the market size, trends, opportunity, drivers, restraints and to analyse key players and their market shares. Key companies are segmented at Tier level based on their revenues, product portfolio and presence.

Please note that these are the partial steps that are being followed while developing the market size. Besides this, forecasting will be done based on our internal proprietary model which also uses different macro-economic factors such as per capita healthcare expenditure, disposable income, industry based demand driving factors impacting the market and its forecast trends apart from disease related factors.

Get Full Access Of This Exclusive Report Right Now: https://www.xploremr.com/cart/2360/SL

Standard Report Structure

Target Audience

Market Taxonomy

The global canine stem cell therapy market has been segmented into:

Product Type:

Application:

End User:

Region:

Continue reading here:
Canine Stem Cell Therapy Market to Expand with Significant CAGR - WorldsTrend

Human Embryonic Stem Cells Market Size Detailed Analysis …

The MarketWatch News Department was not involved in the creation of this content.

Jun 08, 2020 (Market Insight Reports) --Selbyville, Delaware, Global Human Embryonic Stem Cells Market Report added at Market Study Report LLC offers industry size, share, growth, trends and forecast analysis up to 2026. Human Embryonic Stem Cells Market Report also covers top key players, porters five forces analysis and market segmentation in detail. This report examines the global Human Embryonic Stem Cells market and provides information regarding the revenue for the period 2020 to 2026.

Due to COVID-19 pandemic, the market is facing challenges because of government protocols to stay at home across the world. Human Embryonic Stem Cells (hESCs) are derived from blastocyst and are capable of differentiating into number of cell types that make up the human body as well as it replicates indefinitely and produce non-regenerative tissues such as neural and myocardial cells.

Request a sample Report of Human Embryonic Stem Cells Market at: https://www.marketstudyreport.com/request-a-sample/2633134/?utm_source=Marketwatchtm.com/&utm_medium=SP

They are used in treating a number of blood and genetic disorders related to the immune system, cancers, and disorders as well as used in investigational studies of early human development, genetic diseases and toxicology testing. The technological advancement involving stem cells therapy, rising demand for regenerative medicines, R&D in toxicology testing, technological advancements for the production of embryonic stem cells through alternative methods and increasing prevalence of genetic disorders are the few factors responsible for growth of the market over the forecast period.

Furthermore, the introduction of innovative products and other strategic advancements by market players will create lucrative opportunities for the market. For instance, as per company's news release in January 2019, Stemcell Technologies Inc. launched mTeSR(TM) Plus, an enhanced version of mTeSR(TM)1. mTeSR(TM) Plus is the stabilized feeder-free maintenance medium for human embryonic stem (ES) and induced pluripotent stem (iPS) cells. However, ethical concern related to stem cell research is the major factor restraining the growth of global Vegetable Chips market during the forecast period.

Major market player included in this report are:

The regional analysis of global Human Embryonic Stem Cells market is considered for the key regions such as Asia Pacific, North America, Europe, Latin America and Rest of the World. Asia Pacific is the leading/significant region across the world due to the presence of several prominent entities incorporated in the U.S. Whereas, Asia-Pacific is also anticipated to exhibit highest growth rate / CAGR over the forecast period 2020-2026.

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming eight years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within each of the regions and countries involved in the study. Furthermore, the report also caters the detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, the report shall also incorporate available opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players.

By Region:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-human-embryonic-stem-cells-market-size-research?utm_source=Marketwatchtm.com/&utm_medium=SP

Related Reports:

Global Human Embryonic Stem Cells (HESC) Market Size, Status and Forecast 2025

This report studies the global Human Embryonic Stem Cells (HESC) market size, industry status and forecast, competition landscape and growth opportunity. This research report categorizes the global Human Embryonic Stem Cells (HESC) market by companies, region, type and end-use industry.

https://www.marketstudyreport.com/reports/global-human-embryonic-stem-cells-hesc-market-size-status-and-forecast-2025?utm_source=MarketwatchTM.com/&utm_medium=SP

About Us

Market Study Report, LLC. is a hub for market intelligence products and services.

We streamline the purchase of your market research reports and services through a single integrated platform by bringing all the major publishers and their services at one place.

Our customers partner with Market Study Report, LLC. to ease their search and evaluation of market intelligence products and services and in turn focus on their companys core activities.

If you are looking for research reports on global or regional markets, competitive information, emerging markets and trends or just looking to stay on top of the curve then Market Study Report, LLC. is the platform that can help you in achieving any of these objectives.

Contact Us:

Market Study Report LLC,

4 North Main Street,

Selbyville, Delaware 19975

USA

Phone: 1-302-273-0910

US Toll Free: 1-866-764-2150

Email: sales@marketstudyreport.com

Website: http://www.marketstudyreport.com

Blog: http://www.marketstudyreport.com/

COMTEX_366647094/2599/2020-06-08T05:02:06

Is there a problem with this press release? Contact the source provider Comtex at editorial@comtex.com. You can also contact MarketWatch Customer Service via our Customer Center.

The MarketWatch News Department was not involved in the creation of this content.

Read more here:
Human Embryonic Stem Cells Market Size Detailed Analysis ...

Science News Roundup: Tiny 13,500-year-old bird statuette shows origins of Chinese art; World’s largest green turtle colony nearly twice as big as…

Following is a summary of current science news briefs.

Tiny 13,500-year-old bird statuette shows origins of Chinese art

A tiny statuette of a bird carved from the burnt bone about 13,500 years ago reveals the origins of Chinese art, embodying a style different from prehistoric three-dimensional artwork by people in other parts of the world, researchers said on Wednesday. The figurine, found at a site called Lingjing in Henan Province in central China, depicts a standing bird on a pedestal and was crafted using stone tools employing four sculpting methods - abrasion, gouging, scraping, and incision, the researchers said.

World's largest green turtle colony nearly twice as big as thought

The world's largest population of nesting green turtles is nearly twice as big as previously thought, scientists said on Wednesday, after drones enabled better surveys of the animals. Australian scientists determined that there were about 64,000 green turtles waiting to lay eggs on Raine Island - a vegetated coral cay on the outer edges of the Great Barrier Reef - significantly more than thought.

China set to complete Beidou network rivalling GPS in global navigation

The Chinese Beidou navigation network will be complete this month when its final satellite goes into orbit, giving China greater independence from U.S.-owned GPS and heating up competition in a sector long dominated by the United States. The idea to develop Beidou, or the Big Dipper in Chinese, took shape in the 1990s as the military sought to reduce reliance on the Global Positioning System (GPS) run by the U.S. Air Force.

Scientists create embryo-like research model from human stem cells

Scientists have used human embryonic stem cells to create an embryo-like research model to help them study some of the earliest stages of human development. The model overcomes some of the ethical restrictions on using human embryos for research and will allow scientists to study a period of human development known as the "black box" period, which they say has never been directly observed before.

Researchers in Chile unearth 74 million year old mammal teeth

Chilean and Argentine researchers have unearthed teeth in far-flung Patagonia belonging to a mammal that lived 74 million years ago, the oldest such remains yet discovered in the South American country, the Chilean Antarctic Institute reported on Thursday. Scientists uncovered the tiny teeth, which belonged to a species called Magallanodon baikashkenke, on a dig near Torres del Paine National Park, a remote area of Patagonia famous for its glacier-capped Andean spires and frigid ocean waters.

Ground-penetrating radar reveals splendor of ancient Roman city

In a glimpse into the future of archeology, researchers have used ground-penetrating radar to map an entire ancient Roman city, detecting remarkable details of buildings still deep underground including a temple and a unique public monument. The technology was used at Falerii Novi, a walled city spanning 75 acres (30.5 hectares) about 30 miles (50 km) north of Rome, researchers said on Monday.

Read this article:
Science News Roundup: Tiny 13,500-year-old bird statuette shows origins of Chinese art; World's largest green turtle colony nearly twice as big as...

EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – PRNewswire

THE HAGUE, Netherlands, June 12, 2020 /PRNewswire/ -- Treatment of childhood cancer is a success story, particularly for acute lymphoblastic leukemia (ALL). More than 90% of ALL patients below 18 years of age are rescued with contemporary chemotherapy. However, the remaining 10% have resistant or reoccurring leukemia and require alternative treatment regimens. One of the most powerful leukemia therapies is hematopoietic stem cell transplantation from a donor (allogeneic HSCT). Approximately 50-80% of pediatric ALL patients that receive allogeneic HSCT are cured, 20% experience leukemic reoccurrence (relapse), and 10% die from complications.

Allogeneic HSCT is a multistep procedure:

For high-risk leukemia, the gold standard conditioning procedure is a combination of total body irradiation (TBI) and high dose chemotherapy. This approach is very effective in controlling leukemia in the conditioning step, but patients may experience highly negative consequences of this procedure later in life: sterility, growth retardation, lung problems, and secondary cancer.

Therefore, a large consortium of pediatric transplant experts initiated a global study to investigate whether chemotherapy-based conditioning could substitute TBI. The study is called FORUM (For Omitting Radiation Under Majority Age) and had to be stopped because chemotherapy-based conditioning had significantly poorer outcomes (i.e., lower overall survival rates) than the combination of TBI and chemotherapy. The researchers will now perform prospective monitoring to better define the advantages and limitations of various conditioning approaches.

Presenter:Dr Christina PetersAffiliation:Stem Cell Transplantation Unit, St. Anna Children's Hospital, Vienna, AustriaAbstract:#S102 TBI OR CHEMOTHERAPY BASED CONDITIONING FOR CHILDREN AND ADOLESCENTS WITH ALL: A PROSPECTIVE RANDOMIZED MULTICENTER-STUDY "FORUM" ON BEHALF OF THE AIEOP-BFM-ALL-SG, IBFM-SG, INTREALL-SG AND EBMT-PD-WP

Embargo: Please note that our embargo policy applies to all selected abstracts in the Press Briefings. For more information click here.

SOURCE European Hematology Association (EHA)

Read the rest here:
EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone - PRNewswire

CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th…

-Beta thalassemia: Two patients are transfusion independent at 5 and 15 months after CTX001 infusion; data demonstrate clinical proof-of-concept for CTX001 in transfusion-dependent beta thalassemia-

-Sickle cell disease: Patient is free of vaso-occlusive crises at 9 months after CTX001 infusion-

-Five patients with beta thalassemia and two patients with sickle cell disease have been treated to date with CTX001 and all have successfully engrafted-

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, June 12, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced new clinical data for CTX001, an investigational CRISPR/Cas9 gene-editing therapy, from the CLIMB-111 and CLIMB-121 Phase 1/2 trials in transfusion-dependent beta thalassemia (TDT) and severe sickle cell disease (SCD), and highlighted recent progress in the CTX001 development program. These data were presented during an oral presentation at the European Hematology Association (EHA) virtual congress by Dr. Selim Corbacioglu, Professor of Pediatrics and the Chair of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Regensburg University Hospital, Regensburg, Germany.

CLIMB-111 Trial in Transfusion-Dependent Beta Thalassemia Updated ResultsData presented today at EHA demonstrate clinical proof-of-concept for CTX001 in TDT. Data include longer-duration follow-up data for the first patient with TDT treated with CTX001 and new data for the second TDT patient treated. CRISPR Therapeutics and Vertex announced initial data for the first TDT patient in November of 2019.

Patient 1 with TDT has the 0/IVS-I-110 genotype, which is associated with a severe phenotype similar to 0/0, and had a transfusion requirement of 34 units of packed red blood cells per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. As previously reported, the patient achieved neutrophil engraftment 33 days after CTX001 infusion and platelet engraftment 37 days after infusion. After CTX001 infusion, two serious adverse events (SAEs) occurred, neither of which the principal investigator (PI) considered related to CTX001: pneumonia in the presence of neutropenia, and veno-occlusive liver disease attributed to busulfan conditioning; both subsequently resolved. New data presented today show that at 15 months after CTX001 infusion, the patient was transfusion independent and had total hemoglobin levels of 14.2 g/dL, fetal hemoglobin of 13.5 g/dL, and F-cells (erythrocytes expressing fetal hemoglobin) of 100.0%. Bone marrow allelic editing was 78.1% at 6 months and 76.1% at one year.

Patient 2 with TDT has the 0/IVS-II-745 genotype and had a transfusion requirement of 61 units of packed red blood cells per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. The patient achieved neutrophil engraftment 36 days after CTX001 infusion and platelet engraftment 34 days after infusion. After CTX001 infusion, two SAEs occurred, neither of which the PI considered related to CTX001: pneumonia and an upper respiratory tract infection; both subsequently resolved. At 5 months after CTX001 infusion, the patient was transfusion independent and had total hemoglobin levels of 12.5 g/dL, fetal hemoglobin of 12.2 g/dL, and F-cells (erythrocytes expressing fetal hemoglobin) of 99.4%.

Hemoglobin data over time are presented for Patient 1 and Patient 2 below.

Figure 1accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/35581299-d683-44b0-a75e-7a1a9b9fe9eb

CLIMB-121 Trial in Severe Sickle Cell Disease Updated Results Data presented today at EHA reflect longer-duration follow-up data for the first patient with SCD treated with CTX001. CRISPR Therapeutics and Vertex announced initial data for this first SCD patient in November of 2019.

Patient 1 with SCD experienced seven vaso-occlusive crises (VOCs) and five packed red blood cell transfusions per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. As previously reported, the patient achieved neutrophil and platelet engraftment 30 days after CTX001 infusion. After CTX001 infusion, three SAEs occurred, none of which the PI considered related to CTX001: sepsis in the presence of neutropenia, cholelithiasis and abdominal pain; all subsequently resolved. New data presented today show that at 9 months after CTX001 infusion, the patient was free of VOCs, was transfusion independent and had total hemoglobin levels of 11.8 g/dL, 46.1% fetal hemoglobin, and F-cells (erythrocytes expressing fetal hemoglobin) of 99.7%. Bone marrow allelic editing was 81.4% at 6 months. Figure 2 presents the hemoglobin data over time for this patient.

Figure 2 accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/7610c5bd-25c8-4f5b-be86-8bc16ed57eb1

With these new data, we are beginning to see early evidence of the potential durability of benefit from treatment with CTX001, as well as consistency of the therapeutic effect across patients, said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. These highly encouraging early data represent one more step toward delivering on the promise and potential of CRISPR/Cas9 therapies as a new class of potentially transformative medicines to treat serious diseases.

The data announced today are remarkable, including the demonstration of clinical proof-of-concept in TDT, said Reshma Kewalramani, M.D., Chief Executive Officer and President of Vertex. While these are still early days, these data mark another important milestone for this program and for the field of gene editing. The results presented at this medical conference add to results previously shared demonstrating that CRISPR/Cas9 gene editing has the potential to be a curative therapy for severe genetic diseases like sickle cell and beta thalassemia.

In my 25 years of caring for children and young adults facing both sickle cell disease and beta thalassemia, I have seen how these diseases can adversely affect patients lives in very significant ways, said Dr. Haydar Frangoul, Medical Director of Pediatric Hematology and Oncology at Sarah Cannon Research Institute, HCA Healthcares TriStar Centennial Medical Center and senior author of the abstract presented at the EHA virtual congress. I am encouraged by the preliminary results, which demonstrate, in essence, a functional cure for patients with beta thalassemia and sickle cell disease.

Recent Progress in the Phase 1/2 Clinical TrialsCLIMB-111 for TDT has dosed a total of 5 patients, and all patients have successfully engrafted. The trial is also now open for concurrent dosing after successful dosing and engraftment of the first two patients. Additionally, CLIMB-111 has been expanded to allow enrollment of 0/0 patients and is in the process of being expanded to allow enrollment of pediatric patients ages 12 years or older.

CLIMB-121 for SCD has dosed a total of 2 patients and both patients have successfully engrafted. The trial is also now open for concurrent dosing after successful dosing and engraftment of these first two patients.

The initial safety profile in these trials appears to be consistent with myeloablative busulfan conditioning and an autologous hematopoietic stem cell transplant.

In March 2020, clinical trial sites in the U.S. and Europe temporarily paused their elective hematopoietic stem cell transplant programs due to the COVID-19 pandemic, and as a result, CRISPR and Vertex temporarily paused conditioning and dosing in these trials. Enrollment, mobilization and drug product manufacturing in each trial remains ongoing. The companies are now in the process of re-initiating dosing with CTX001 at certain clinical trial sites. The CLIMB-111 and CLIMB-121 clinical trials are ongoing, and patients will be followed for 2 years following CTX001 infusion. The companies expect to provide additional data in the second half of 2020.

About CTX001CTX001 is an investigational ex vivo CRISPR gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and reduce painful and debilitating sickle crises for SCD patients.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT) from the U.S. FDA, Orphan Drug Designation from both the FDA and the European Medicines Agency (EMA), and Fast Track Designation from the FDA for both SCD and TDT.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex. CTX001 is the most advanced gene-editing approach in development for TDT and SCD.

About CLIMB-111The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About the Gene-Editing Process in These TrialsPatients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the CRISPR-Vertex Collaboration CRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases and activities at clinical trial sites) related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the data that is being presented at the European Hematology Associations virtual congress; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, and statements regarding our plans and expectations for our clinical trials and clinical trial sites, and our expectations regarding future data announcements. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from the company's development programs may not support registration or further development of its compounds due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and subsequent quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.comorU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

Read more from the original source:
CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th...

Vancouver Island father dies of leukemia after battle to find mixed-race stem cell donor – Chilliwack Progress

A Saanich father who fought to grow the data bank of mixed-race stem cell donors has died of leukemia.

Jeremy Chow was diagnosed with acute myeloid leukemia in November 2018. While chemotherapy treatment worked and Jeremy entered remission, doctors advised that stem cell therapy would be the best possible treatment to eradicate the risk of returning cancer cells.

But when Jeremy and his wife Evelyn Chow began their quest to find a match, they learned there were virtually no donors in the national or worldwide registry who matched Jeremys genetic makeup a requirement for a successful stem cell transplant.

READ ALSO: In a fight against cancer, Victoria mans only stem cell match was his own donation

Ironically, Jeremy had applied to become a stem cell donor years earlier. When doctors searched the database they found one unusable match: his own donation. Shocked and saddened by the lack of options, the family spearheaded the Match4Jeremy campaign, organizing stem cell drives and raising awareness of the dire need for mixed race and Asian donors.

On Aug. 8, 2019, the family learned that Jeremys cancer had returned. But the Chows battle to find a match didnt slow down. They worked with the Otherhalf-Chinese Stem Cell Initiative to host an emergency stem cell drive in Vancouver that month.

Despite their tireless efforts, Jeremy did not recover from the second round of cancer. The father of two died on May 30 with his wife at his side.

On a GoFundMe page aimed at raising money for his daughters educations, family friend Jenny Leung says Jeremy fought hard and did it with grace, humour and a positive attitude.

READ ALSO: Stem cell donor with rare genetic makeup needed to save Saanich man after cancer returns

Jeremys priority was always being able to provide and take care of his family, Leung writes. He was so involved with his girls lives, from driving them to their extracurricular activities to attending school fairs, to braiding their hair and explaining to them the importance of a good education.

He was always looking for a way to care for those around him whether it meant sharing knowledge, offering a helping hand, or just being there in any way he could, she added. Jeremy was truly someone to look up to and although he was always supporting others, he rarely asked for anything in return.

While the Chow family fought for a match for Jeremy, their crusade for stem cell donors gained momentum when they realized just how dire the situation was for mixed-race and Asian Canadians. Only three per cent of the Canadian Blood Services stem cell registry is mixed race.

In March 2019, Jeremy spoke with Black Press Media.

If all of this goes well [and] I stay in remission, and the awareness is out there and other people sign up to be donors and other people are getting the help they need, then thats a win, he said.

Donations are being accepted via GoFundMe to support Jeremys family and his daughters future education.

READ ALSO: Victoria couple continues fight for increased diversity in Canadian stem cell registry

Do you have something to add to this story, or something else we should report on? Email:nina.grossman@blackpress.ca

@NinaGrossmanLike us on Facebook and follow us on Twitter

CancerDonation

Read the original:
Vancouver Island father dies of leukemia after battle to find mixed-race stem cell donor - Chilliwack Progress

New Data Show Near Elimination of Sickle Cell Disease-Related Vaso-Occlusive Crises and Acute Chest Syndrome in Phase 1/2 Clinical Study of bluebird…

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy for adult and adolescent patients with sickle cell disease (SCD) show a near-complete reduction of serious vaso-occlusive crises (VOCs) and acute chest syndrome (ACS). These data are being presented at the Virtual Edition of the 25th European Hematology Association (EHA25) Annual Congress.

Vaso-occlusive crises (VOCs) are the painful, life-threatening episodes that are the primary clinical manifestation of sickle cell disease. The nearly complete elimination of VOCs that we saw in this study is impressive and demonstrates the potential of LentiGlobin for SCD as a treatment for this serious disease, said David Davidson, M.D., chief medical officer, bluebird bio. These results illustrate the type of outcomes we believe are needed to provide truly meaningful improvements for people living with sickle cell disease. In addition, the improvement of laboratory measures of hemolysis and red cell physiology, with nearly pan-cellular distribution of the anti-sickling HbAT87Q, suggest LentiGlobin for SCD may substantially modify the causative pathophysiology of SCD. We are pleased to have reached a general agreement with the FDA on the clinical data required to support a submission for LentiGlobin for SCD and we plan to seek an accelerated approval. We look forward to working with the entire SCD community to bring forward a disease modifying option for patients.

SCD is a serious, progressive and debilitating genetic disease caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOCs. For adults and children living with SCD, this means painful crises and other life altering or life-threatening acute complicationssuch as ACS, stroke and infections. If patients survive the acute complications, vasculopathy and end-organ damage, resulting complications can lead to pulmonary hypertension, renal failure and early death; in the U.S. the median age of death for someone with sickle cell disease is 43 - 46 years.

As a physician treating sickle cell for over 10 years, the excruciating pain crises that my patients suffer from is one of the most challenging and frustrating aspects of this disease, said presenting study author Julie Kanter, M.D., University of Alabama at Birmingham. The promising results of this study, which show patients have an almost complete elimination of VOCs and ACS, suggest LentiGlobin for SCD has real potential to provide a significant impact for people living with sickle cell disease.

LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin, HbAT87Q, that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.

As of March 3, 2020, a total of 37 patients have been treated with LentiGlobin for SCD to-date in the HGB-205 (n=3) and HGB-206 (n=34) clinical studies. The HGB-206 total includes: Group A (n=7), B (n=2) and C (n=25).

HGB-206: Group C Updated Efficacy Results

In Group C of HGB-206, 25 patients were treated with LentiGlobin for SCD and have up to 24.8 months of follow-up (median of 12.1; min.-max.: 2.824.8 months). Results from Group C are as of March 3, 2020 and include efficacy data for 16 patients who had at least a Month 6 visit, and safety data for 18 patients, which includes two patients who were at least six months post-treatment but results from a Month 6 visit are not available.

In 16 patients with six or more months of follow-up, median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin. At last visit reported, total hemoglobin ranged from 9.6 16.2 g/dL and HbAT87Q levels ranged from 2.7 9.4 g/dL. At Month 6 the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin. Patients had a median of 60% HbS. All patients in Group C were able to stop regular blood transfusions and remain off transfusions at three months post-treatment.

There was a 99.5% mean reduction in annualized rate of VOC and ACS among the 14 patients who had at least six months of follow-up and a history of VOCs or ACS, defined as four or more VOC or ACS events in the two years prior to treatment. These 14 patients had a median of eight events in the two years prior to treatment (min.-max.: 4 28 events).

There were no reports of serious VOCs or ACS at up to 24 months post-treatment in patients with at least six months of follow-up (n=18). As previously reported, one non-serious Grade 2 VOC was observed in a patient approximately 3.5 months post-treatment with LentiGlobin for SCD.

In sickle cell disease, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells is hemolysis and this process occurs normally in the body. However, in sickle cell disease hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.

Patients treated with LentiGlobin for SCD demonstrated improvement in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 18 patients with 6 months of follow-up. The medians for reticulocyte counts (n=15), lactate dehydrogenase (LDH) levels (n=13) and total bilirubin (n=16) improved compared to screening and stabilized by Month 6. In patients with Month 24 data (n=5) these values approached the upper limit of normal by Month 24. These results suggest treatment with LentiGlobin for SCD is improving biological markers of sickle cell disease.

Assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells as well as to assess if HbAT87Q was pancellular, present throughout all of a patients red blood cells. Samples from a subset of patients in Group C were assessed. In nine patients who had at least six months of follow-up, the average proportion of red blood cells positive for HbAT87Q was greater than 70%, and on average more than 85% of red blood cells contained HbAT87Q at 18 months post-treatment, suggesting near-complete pancellularity of HbAT87Q distribution.

HGB-206: Group C Safety Results

As of March 3, 2020, the safety data from all patients in HGB-206 are generally reflective of underlying SCD and the known side effects of hematopoietic stem cell collection and myeloablative conditioning. There were no serious adverse events related to LentiGlobin for SCD, and the non-serious, related adverse events (AEs) were mild-to-moderate in intensity and self-limited.

One patient with a history of frequent pre-treatment VOE, pulmonary and systemic hypertension, venous thrombosis, obesity, sleep apnea and asthma had complete resolution of VOEs following treatment, but suffered sudden death 20 months after treatment with LentiGlobin for SCD. The patients autopsy revealed cardiac enlargement and fibrosis, and concluded the cause of death was cardiovascular, with contributions from SCD and asthma. The treating physician and an independent monitoring committee agreed this death was unlikely related to LentiGlobin for SCD gene therapy.

The presentation is now available on demand on the EHA25 website:

About HGB-206

HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for SCD that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=25). A refined manufacturing process that was designed to increase vector copy number (VCN) and improve engraftment potential of gene-modified stem cells was used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.

LentiGlobin for Sickle Cell Disease Regulatory Status

bluebird bio reached general agreement with the U.S. Food and Drug Administration (FDA) that the clinical data package required to support a Biologics Licensing Application (BLA) submission for LentiGlobin for SCD will be based on data from a portion of patients in the HGB-206 study Group C that have already been treated. The planned submission will be based on an analysis using complete resolution of severe vaso-occlusive events (VOEs) as the primary endpoint with at least 18 months of follow-up post-treatment with LentiGlobin for SCD. Globin response will be used as a key secondary endpoint.

bluebird bio anticipates additional guidance from the FDA regarding the commercial manufacturing process, including suspension lentiviral vector. bluebird bio announced in a May 11, 2020 press release it plans to seek an accelerated approval and expects to submit the U.S. BLA for SCD in the second half of 2021.

About LentiGlobin for Sickle Cell Disease

LentiGlobin for sickle cell disease is an investigational gene therapy being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the ongoing Phase 1/2 HGB-206 study and the ongoing Phase 3 HGB-210 study.

LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD.

The U.S. FDA granted orphan drug designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.

LentiGlobin for SCD is investigational and has not been approved in any geography.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-303) for people who have participated in bluebird bio-sponsored clinical studies of betibeglogene autotemcel for -thalassemia or LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT02633943 for LTF-303.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders, including cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using three gene therapy technologies: gene addition; cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash., Durham, N.C., and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.

bluebird bio Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the companys development and regulatory plans for the LentiGlobin for SCD product candidate, and the companys intentions regarding the timing for providing further updates on the development of the product candidate. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: the risk that the COVID-19 pandemic and resulting impact on our operations and healthcare systems will affect the execution of our development plans or the conduct of our clinical studies; the risk that even if LentiGlobin for SCD addresses ACS and VOC events, that it may not address progressive organ damage experienced by patients with SCD; the risk that the efficacy and safety results observed in the patients treated in our prior and ongoing clinical trials of LentiGlobin for SCD may not persist or be durable; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in when treating additional patients in our ongoing or planned clinical trials; the risk that the HGB-206 and HGB-210 clinical studies as currently contemplated may be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidate, resulting in a delay to our anticipated timelines for regulatory submissions, including our application for marketing approval. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

Read the original:
New Data Show Near Elimination of Sickle Cell Disease-Related Vaso-Occlusive Crises and Acute Chest Syndrome in Phase 1/2 Clinical Study of bluebird...

Saanich father dies of leukemia after battle to find mixed-race stem cell donor – Sooke News Mirror

A Saanich father who fought to grow the data bank of mixed-race stem cell donors has died of leukemia.

Jeremy Chow was diagnosed with acute myeloid leukemia in November 2018. While chemotherapy treatment worked and Jeremy entered remission, doctors advised that stem cell therapy would be the best possible treatment to eradicate the risk of returning cancer cells.

But when Jeremy and his wife Evelyn Chow began their quest to find a match, they learned there were virtually no donors in the national or worldwide registry who matched Jeremys genetic makeup a requirement for a successful stem cell transplant.

READ ALSO: In a fight against cancer, Victoria mans only stem cell match was his own donation

Ironically, Jeremy had applied to become a stem cell donor years earlier. When doctors searched the database they found one unusable match: his own donation. Shocked and saddened by the lack of options, the family spearheaded the Match4Jeremy campaign, organizing stem cell drives and raising awareness of the dire need for mixed race and Asian donors.

On Aug. 8, 2019, the family learned that Jeremys cancer had returned. But the Chows battle to find a match didnt slow down. They worked with the Otherhalf-Chinese Stem Cell Initiative to host an emergency stem cell drive in Vancouver that month.

Despite their tireless efforts, Jeremy did not recover from the second round of cancer. The father of two died on May 30 with his wife at his side.

On a GoFundMe page aimed at raising money for his daughters educations, family friend Jenny Leung says Jeremy fought hard and did it with grace, humour and a positive attitude.

READ ALSO: Stem cell donor with rare genetic makeup needed to save Saanich man after cancer returns

Jeremys priority was always being able to provide and take care of his family, Leung writes. He was so involved with his girls lives, from driving them to their extracurricular activities to attending school fairs, to braiding their hair and explaining to them the importance of a good education.

He was always looking for a way to care for those around him whether it meant sharing knowledge, offering a helping hand, or just being there in any way he could, she added. Jeremy was truly someone to look up to and although he was always supporting others, he rarely asked for anything in return.

While the Chow family fought for a match for Jeremy, their crusade for stem cell donors gained momentum when they realized just how dire the situation was for mixed-race and Asian Canadians. Only three per cent of the Canadian Blood Services stem cell registry is mixed race.

In March 2019, Jeremy spoke with Black Press Media.

If all of this goes well [and] I stay in remission, and the awareness is out there and other people sign up to be donors and other people are getting the help they need, then thats a win, he said.

Donations are being accepted via GoFundMe to support Jeremys family and his daughters future education.

READ ALSO: Victoria couple continues fight for increased diversity in Canadian stem cell registry

Do you have something to add to this story, or something else we should report on? Email:nina.grossman@blackpress.ca

@NinaGrossmanLike us on Facebook and follow us on Twitter

CancerDonation

Read more:
Saanich father dies of leukemia after battle to find mixed-race stem cell donor - Sooke News Mirror

Global Stem Cell Therapy Market 2020: Growth, Demand, Service, Types, Applications, Key Players and Industry Forecast till 2025 – 3rd Watch News

Global Stem Cell Therapy market report presents an overview of the market on the basis of key parameters such as market size, revenue, sales analysis and key drivers. The market size of global Stem Cell Therapy market is anticipated to grow at large scale over the forecast period (2020-2025). The main purpose of the study report is to give users an extensive viewpoint of the market. So that users can apply strategic processes to benchmark themselves against rest of the world. Key drivers as well as challenges of the market are discussed in the report. Also reports provides an in depth analysis of the Stem Cell Therapy market with current and future trends.

Get Sample Copy of this Report:https://www.adroitmarketresearch.com/contacts/request-sample/691

In addition, study report offers an array of opportunities for the players participating in the industry. This ultimately leads into the growth of the global Stem Cell Therapy market. Furthermore, report offers a comprehensive study on market size, revenue, sales, growth factors and risks involved in the growth of the market during the forecast period. The factors which are influencing the growth the market are mentioned in the report as well as the challenges which can hamper the growth of the market over the forecast period.

The main objective of this research report is to present the comprehensive analysis about the factors which are responsible for the growth of the global Stem Cell Therapy market. The study report covers all the recent developments and innovations in the market for a Stem Cell Therapy. The global keyword market is likely to provide insights for the major strategies which is also estimated to have an impact on the overall growth of the market. Several strategies such as the PESTEL analysis and SWOT analysis is also being covered for the global market. These strategies have an impact on the overall market.

Browse the complete report @https://www.adroitmarketresearch.com/industry-reports/stem-cell-therapy-market

Global Stem Cell Therapy market is segmented based by type, application and region.

Based on cell source, the market has been segmented into,

Adipose Tissue-Derived Mesenchymal SCsBone Marrow-Derived Mesenchymal SCsEmbryonic SCsOther Sources

Based on therapeutic application, the market has been segmented into,

Musculoskeletal DisordersWounds & InjuriesCardiovascular DiseasesGastrointestinal DiseasesImmune System DiseasesOther Applications

The research report on global Stem Cell Therapy market ensures users to remain competitive in the market. Also report helps to identify the new innovations and developments by existing key players to increase the growth of the global Stem Cell Therapy market. Study report covers all the geographical regions where competitive landscape exists by the players such as North America, Europe, Latin America, Asia-Pacific and Middle East Africa. Thus report helps to identify the key growth countries and regions.

In addition, report presents quantitative as well as qualitative narration of global Stem Cell Therapy market. The research report is beneficial for educators, researchers, strategy managers, academic institutions and analysts. Thus report helps all types of users to identify the strategic initiatives so that they can understand how to expand the global Stem Cell Therapy market business across the globe for the product development. Moreover, research report provides in depth analysis of all the segments which can impact on the market growth.

For Any Query on the Stem Cell Therapy Market:https://www.adroitmarketresearch.com/contacts/enquiry-before-buying/691

About Us :

Adroit Market Research is an India-based business analytics and consulting company. Our target audience is a wide range of corporations, manufacturing companies, product/technology development institutions and industry associations that require understanding of a markets size, key trends, participants and future outlook of an industry. We intend to become our clients knowledge partner and provide them with valuable market insights to help create opportunities that increase their revenues. We follow a code Explore, Learn and Transform. At our core, we are curious people who love to identify and understand industry patterns, create an insightful study around our findings and churn out money-making roadmaps.

Contact Us :

Ryan JohnsonAccount Manager Global3131 McKinney Ave Ste 600, Dallas,TX 75204, U.S.APhone No.: USA: +1 972-362 -8199 / +91 9665341414

See more here:
Global Stem Cell Therapy Market 2020: Growth, Demand, Service, Types, Applications, Key Players and Industry Forecast till 2025 - 3rd Watch News