The American Academy of Stem Cell Physicians Will Host Its Scheduled August 1, 2020 Meeting Despite COVID 19 Crisis – Yahoo Finance

AASCP will be holding their much anticipated meeting via virtual technology

MIAMI, June 4, 2020 /PRNewswire/ --A highly anticipated and sought after AASCP meeting is back by popular demand, and topics will include a Safety StandardsPanel session as well as:Sphenopalatine Ganglion Treatment, Management of COVID-19 by PhotodynamicViral Inactivation, Caudal Block Applications, Benefits, and Indications andDiagnosis and Treatment of Extra-articular Pain in Regenerative Medicine, to name a few.

The importance of this virtual conference coincides with the ever-emerging growthof the globalregenerative medicine marketwhich is expected to reachUSD 79.8 billionby 2024, at aCAGR of 20.5%from 2018 to 2024. Factors driving the growth of the market areincreasing prevalence of degenerative and chronic diseases, technological advancements in nanotechnology, bioengineering and stem cell therapy, and increasing geriatric population across the globe.TheAASCP virtual meeting is open for registration.The meeting is set for August 1, 2020.Moderators to be announced.

Due to COVID-19, the meeting will take place virtually.Thisis an effective way to ensure that everyone that wishes to participate but cannot travel, can. It will be more easily accessible to many and more economical and students, educators and physicians will not miss out on all the important topics that AASCP has on the pipeline.Virtual Workshop Lecturers will demonstrate the techniques that they spoke on with patients brought into their office on video. These virtualinteractive workshops will feature small participant-to-instructor ratios with a customized curriculum focusing on developing hands-on skills. Each technique will be taught by experts in the field, using didactic sessions with dynamic multimedia presentations, live demonstrations and scanning on live model, as well as phantoms.Registration is now open and selling out fast.

According to AASCP, if you are using biologics in your practice, whether you are using SVF, PRP, bone marrow, UCB, amniotic products,exosomes,xenografts, or peptides, there are key considerations to take into account to achieve the best safety for your patients. Please do not miss the AASCP FDA Safety Standards panel discussion, this August 1, 2020. The panel discusses FDA safety standards in the industry and AASCP offers many recommendations. Onefor example is communication with the Chief Scientific Officer from the laboratory you work with.AASCP advises that just talking to a sales agent is not sufficient enough when determining the quality of products for your patients. Sales agents typically do not have a medical or scientific background.

The spokesman for the AASCP, Dr. AJFarshchian,said earlier: "The American Academy of Stem Cell Physicians is a group of physicians, scientists and researchers who collectively represent the most authoritativenon-federal group advocating for guidelines and education on stem cell therapy and regenerative medicine. AASCP members are experts within all fields of stem cell therapy from: SVF, BM, UCB,Exosomes, Peptides,Xenografts,Allograftsand Amniotic Fluids and are considered the most experienced leaders for proper advocacy in the field."

Dr. Farshchianexplains, "We will duplicate everything we did in our past meetings such as offer 8 CME credits, have lectures, workshops, discuss FDA safety Standards, have board examinations and a virtual graduation ceremony. AASCP is offering this virtual meeting so that nobody misses out on the education."

The American Academy of Stem Cell Physicians (AASCP) is a non-profit organization created to advance research and the development of therapeutics in regenerative medicine, including diagnosis, treatment, and prevention of disease related to or occurring within the human body. Secondarily, the AASCPaims to serve as an educational resource for physicians, scientists, and the public in diseases that can be caused by physiological dysfunction that isameliorable to medical treatment.

For further information, please contact MarieBarbaat AASCP 305-891-4686and you can also visit us at http://www.aascp.net.

Related Images

dr-farshchian-teaching-at-aaoscp.jpeg Dr. Farshchian teaching at AAOSCP workshop Meeting will now be virtual

Related Links

AASCP registration

View original content to download multimedia:http://www.prnewswire.com/news-releases/the-american-academy-of-stem-cell-physicians-will-host-its-scheduled-august-1-2020-meeting-despite-covid-19-crisis-301070934.html

SOURCE American Academy of Stem Cell Physicians

Read more from the original source:
The American Academy of Stem Cell Physicians Will Host Its Scheduled August 1, 2020 Meeting Despite COVID 19 Crisis - Yahoo Finance

Stem Cell Banking Market to Witness Huge Growth in Coming Years 2020-2027 – Jewish Life News

Stem cell banking or preservation is a combined process of extraction, processing and storage of stem cells, so that they may be used for treatment of various medical conditions in the future, when required. Stem cells have the amazing power to get transformed into any tissue or organ in the body. In recent days, stem cells are used to treat variety of life-threatening diseases such as blood and bone marrow diseases, blood cancers, and immune disorders among others.

The market of stem cell banking is anticipated to grow with a significant rate in the coming years, owing to factors such as, development of novel technologies for stem cell preservation and processing, and storage; growing awareness on the potential of stem cells for various therapeutic conditions. Moreover, increasing investments in stem cell research is also expected to propel the growth of the stem cell banking market across the globe. On other hand rising burden of major diseases and emerging economies are expected to offer significant growth opportunities for the players operating in stem cell banking market.

Get Sample PDF Copy athttps://www.theinsightpartners.com/sample/TIPBT00002082/

Key Points of the Report:

In addition, the report focuses on leading industry players with information such as company profiles, components and services offered, financial information of last 3 years, key development in past five years.

1. Cordlife2. ViaCord (A Subsidiary of PerkinElmer)3. Cryo-Save AG4. StemCyte India Therapeutics Pvt. Ltd.5. Cryo-Cell International, Inc.6. SMART CELLS PLUS.7. Vita 348. LifeCell9. Global Cord Blood Corporation10. CBR Systems, Inc.

The Insight Partners has segmented the global Stem Cell Banking Market:

The source segment includes, placental stem cells (PSCS), dental pulp-derived stem cells (DPSCS), bone marrow-derived stem cells (BMSCS), adipose tissue-derived stem cells (ADSCS), human embryo-derived stem cells (HESCS), and other stem cell sources. Based on service type the market is segmented into, sample processing, sample analysis, sample preservation and storage, sample collection and transportation. Based on application, the market is segmented as, clinical applications, research applications, and personalized banking applications.

The report covers key developments in the Stem Cell Banking market as organic and inorganic growth strategies. Various companies are focusing on organic growth strategies such as product launches, product approvals and others such as patents and events. Inorganic growth strategies witnessed in the market were acquisitions, and partnership & collaborations. These activities have paved way for expansion of business and customer base of market players.

The report provides a detailed overview of the industry including both qualitative and quantitative information. It provides overview and forecast of the global Stem Cell Banking market based on various segments. It also provides market size and forecast estimates from year 2017 to 2027 with respect to five major regions, namely; North America, Europe, Asia-Pacific (APAC), Middle East and Africa (MEA) and South & Central America. The Stem Cell Banking market by each region is later sub-segmented by respective countries and segments. The report covers analysis and forecast of 18 countries globally along with current trend and opportunities prevailing in the region.

The report analyzes factors affecting Stem Cell Banking market from both demand and supply side and further evaluates market dynamics affecting the market during the forecast period i.e., drivers, restraints, opportunities, and future trends. The report also provides exhaustive PEST analysis for all five regions namely; North America, Europe, APAC, MEA and South & Central America after evaluating political, economic, social and technological factors effecting the Stem Cell Banking market in these regions.

Purchase this Report at:https://www.theinsightpartners.com/buy/TIPBT00002082/

About Us:The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Semiconductors, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:

Contact Person: Sameer JoshiPhone: +1-646-491-9876Email Id:[emailprotected]heinsightpartners.com

The rest is here:
Stem Cell Banking Market to Witness Huge Growth in Coming Years 2020-2027 - Jewish Life News

Human interleukin-4treated regulatory macrophages promote epithelial wound healing and reduce colitis in a mouse model – Science Advances

Abstract

Murine alternatively activated macrophages can exert anti-inflammatory effects. We sought to determine if IL-4treated human macrophages [i.e., hM(IL4)] would promote epithelial wound repair and can serve as a cell transfer treatment for inflammatory bowel disease (IBD). Blood monocytes from healthy volunteers and patients with active and inactive IBD were converted to hM(IL4)s. IL-4 treatment of blood-derived macrophages from healthy volunteers and patients with inactive IBD resulted in a characteristic CD206+CCL18+CD14low/ phenotype (RNA-seq revealed IL-4 affected expression of 996 genes). Conditioned media from freshly generated or cryopreserved hM(IL4)s promoted epithelial wound healing in part by TGF, and reduced cytokine-driven loss of epithelial barrier function in vitro. Systemic delivery of hM(IL4) to dinitrobenzene sulphonic acid (DNBS)treated Rag1/ mice significantly reduced disease. These findings from in vitro and in vivo analyses provide proof-of-concept support for the development of autologous M(IL4) transfer as a cellular immunotherapy for IBD.

Elegant studies in mice have revealed the processes of tissue seeding and replenishment with macrophages, how the microenvironment affects macrophage function, and the spectrum of macrophage phenotype, ranging from the interferon- (IFN-)/lipopolysaccharide (LPS) classically activated through a variety of alternatively activated macrophage (AAM) subtypes; the most studied being interleukin-4 (IL-4)treated macrophages [M(IL4)] (13). While capable of producing pro-inflammatory mediators, the AAM, or regulatory macrophage (Mreg), is considered anti-inflammatory, with important roles in homeostasis and tissue restitution/recovery after injury (4, 5).

Adoptive transfer of M(IL4)s reduces the severity of colitis in murine animal models (6, 7), an observation recapitulated with other Mreg subtypes (8). Arginase and IL-10 and recruitment to the gut are implicated in the anti-colitic effect observed after systemic delivery of murine AAMs (7, 911). Therapeutic benefits of AAMs have also been shown in, for example, models of inflammatory renal disease and diabetes (12, 13). Furthermore, AAMs are capable of promoting induction or development of regulatory T cells (Tregs) (14), and one consequence of mesenchymal stem cell transfer (MSCT) is the induction of Mregs (15). A detailed awareness of the mouse macrophage has accrued, where, for example, stimuli such as IL-6 and dead neutrophils enhance an M(IL4) phenotype (16, 17); however, precise understanding of human AAMs has lagged significantly behind knowledge of their murine counterparts.

The accumulation of macrophages in the mucosa of patients with inflammatory bowel disease (IBD) led to the concept that monocytes recruited to the gut are more pathogenic than resident macrophages that perform their phagocytic duties in a nonphlogistic manner (18). Consistent with this, patients with IBD can have elevated numbers of circulating pro-inflammatory CD14+CD16+ monocytes, and apheresis of these cells has some efficacy in Crohns disease (19). In addition, examination of biopsies from inflamed regions of the colon of patients with Crohns disease revealed reduced numbers of CD68+CD206+ cells, presumptive Mregs (6).

Thus, the goals of the current study were as follows: (i) using RNA sequence analysis, to assess the impact of IL-4 on human blood-derived macrophages and determine the ability of blood-derived macrophages from healthy donors and patients with IBD to convert to M(IL4s); (ii) to assess the human (h) M(IL4)s wound healing ability in an in vitro epithelial injury model; and (iii) to determine the hM(IL4)s capacity to alleviate colitis in T cell and B celldeficient Rag1/ mice treated with dinitrobenzene sulfonic acid (DNBS).

RNA sequence analysis revealed statistically significant changes in expression of 996 genes in IL-4treated macrophages, corroborating the changes in 90 immune-related genes reported by Martinez et al. (20) (Fig. 1A): 510 genes were up-regulated and 486 down-regulated (Fig. 1A). Consistent with various reports, markers indicative of an alternatively activated M(IL4) were altered (Fig. 1B), and a panel of genes associated with immune signaling and tissue repair was up-regulated (Fig. 1B). Increased expression of CD206 and CCL18 and down-regulation of CD14 in M(IL4)s were confirmed at the mRNA and protein levels by quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) or flow cytometry, respectively (Fig. 1, C and D). Specificity was confirmed using IFN-, which did not evoke this response from the macrophages (fig. S1, A and B). Gene pathway analytics showed up-regulation of signaling networks related to IL-4 and IL-10 signaling, fatty acid metabolism, and degranulation (Fig. 1E). Comparison of an immune-panel gene array on murine M(IL4) with the human RNA sequence data revealed significant changes in 18 common genes, and of these, 12 showed a similar increase or decrease (Fig. 1F). hM(IL4)s were hyporesponsive to LPS as defined by tumor necrosis factor (TNF), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and MCP-1 (monocyte chemoattractant protein-1) output (fig. S2).

Blood monocytes from three healthy donors were converted to macrophages (2 105) with macrophage colony-stimulating factor (M-CSF) and then left untreated [M(0)] or treated with IL-4 [M(IL4)] or IFN- [M(IFN-)] for 48 hours (both 10 ng/ml). (A) RNA sequence (RNAseq) analysis revealed IL-4evoked significant changes in 996 genes as shown in the volcano plot and confirmed some of the previously reported gene changes (Venn diagram). (B) Heat maps showing IL-4 regulation of selected genes related to M(IL4) polarization and immune function (GF, growth factors). (C) IL-4evoked increased expression of CD206 and CCL18, and decreased CD14 mRNA was confirmed by qPCR (D) and at the protein level by ELISA or flow cytometry (MFI, mean fluorescence intensity; each dot represents macrophages from an individual donor; mean SEM; *, **, and ***P < 0.05, 0.01, and 0.001 compared to M0, respectively). (E) Reactome network analysis shows clusters of gene changes increased in M(IL4). (F) Comparison of hM(IL4) RNA sequence data with murine mRNA immune array shows good alignment [, gene change is opposite direction; , no response in mouse M(IL4)].

Monolayers of Caco2 epithelia treated with hM(IL4) conditioned medium (CM) showed enhanced wound recovery compared to culture medium only, similar to that evoked by transforming growth factor (TGF) (Fig. 2, A and B) (data not shown). hM(IFN-)-CM did not enhance epithelial wound recovery (fig. S1B). Analysis of cryopreserved hM(IL4) revealed maintenance of the CD206+CCL18+CD14low/ phenotype, although expression was often less than in freshly differentiated hM(IL4) from the same individual (fig. S3A). CM from cryopreserved hM(IL4)s promoted epithelial wound repair (fig. S3B).

(A) Representative images of epithelia showing the original margin of wounds (X), leading edge of wounds (dashed line), and leading edge (le) of the control monolayer. (B) Treatment with TGF (10 ng/ml) or CM from IL-4treated macrophages [M(IL4) CM] increased epithelial repair. The M(IL4) CM was also (C) boiled or (D) treated with trypsin, which blocked repair. (E) The hM(IL4)s spontaneously produced more TGF than nonactivated macrophages (M0) from the same donor. (F) Addition of TGF-neutralizing antibodies (1D11) to the M(IL4) CM significantly impaired epithelial repair [mean SEM; n = 6 monolayers from three experiments; *, #, and P < 0.05 compared to control (culture medium only), , P < 0.01 compared to M(IL4) CM; M0 CM, and M(IL4) CM, respectively].

Boiling or trypsin treatment of the hM(IL4)-CM reduced its ability to enhance epithelial wound recovery (Fig. 2, C and D). TGF was increased in hM(IL4)-CM compared to M(0)-CM from the same individual (Fig. 2E), and immunoneutralization of TGF significantly reduced the hM(IL4)-CM capacity to promote epithelial wound recovery (Fig. 2F). Boiling the M(IL4)-CM appeared to be more effective than the immunoneutralization of TGF in reducing wound repair, and while this may represent variation between experiments, it may suggest that heat-sensitive factors other than TGF contribute to M(IL4)-CMevoked wound repair. Redundancy in wound repair in the gut would be advantageous, given the importance of gut barrier function to health.

The addition of IL-6 enhanced the M(IL4) phenotype, with the hM(IL4 + IL6) displaying increased CD206 mRNA and CCL18 production (fig. S4, A and B). hM(IL4 + IL6)-CM produced the greatest increase in epithelial monolayer repair after wounding (fig. S4C). Comparison of hM(IL4)-CM from the same donor revealed a significant increase in epithelial recovery following treatment with hM(IL4 + IL6)-CM (n = 4, P < 0.05).

IFN- decreases epithelial barrier function when applied to the basolateral side of filter-grown epithelial monolayers, as gauged by decreased transepithelial resistance (TER) and increased transcytosis of fluorescein isothiocyanate (FITC)dextran, indicators of paracellular permeability (21). This cytokine-evoked reduction in epithelial barrier function was significantly reduced by hM(IL4)-CM (Fig. 3, A and B).

Confluent, filter-grown T84 epithelial cell monolayers were treated with IFN- (10 ng/ml) 50% CM from hM(IL4)s (1 106 cultured for 24 hours), and TER was measured 24 hours later (A) (n = 17 monolayers from six experiments; ****P < 0.001 compared to control; ##P < 0.01 compared to IFN-). (B) Following 24 hours of exposure to IFN- M(IL4) CM, 70-kDa FITC-dextran was added to the lumen aspect of the monolayers, and samples from the basolateral compartment of the culture well were collected 4 hours later and assessed (n = 4 monolayers, one experiment; inset shows TER of the monolayers under the corresponding conditions; *P < 0.001 compared to control; #P < 0.01 compared to IFN-).

Macrophages differentiated from blood monocytes from patients with inactive Crohns disease or ulcerative colitis were converted to an M(IL4) that was indistinguishable from healthy donor M(IL4) based on CD206, CCL18, and CD14 mRNA expressions (Fig. 4, A to C). There was significant variability in the responses of macrophages from patients with active IBD, with results suggesting IL-4 responders and nonresponders (Fig. 4, A to C). Review of patient characteristics did not reveal any feature(s) that predicted responsiveness to IL-4. Flow cytometry of the blood-derived macrophages from healthy volunteers and patients with Crohns disease or ulcerative colitis revealed no differences in IL-4R expression (data not shown). Exposure to pro-inflammatory cytokines in the blood could render cells hyporesponsive to IL-4; macrophages from healthy volunteers were exposed to a mixture of IFN-, IL-1, and TNF for 48 hours. When challenged with IL-4, these cells still showed increases in CD206 and CCL18 mRNA (fig. S5).

Blood-derived macrophages from healthy volunteers and patients with Crohns disease (CD) or ulcerative colitic (UC) with active (CD-A) or inactive (CD-I) disease was exposed to IL-4 (10 ng/ml, 48 hours) and (A) CD206, (B) CCL18, and (C) CD14 mRNA assessed by qPCR and normalized to nontreated macrophages (M0) from the same individual. (D) Confluent monolayers of the Caco2 epithelial cell line were mechanically wounded and exposed to culture media or a 50% CM from the various macrophage groups, and the area recovered was measured 24 hours later. (E) Setting a 1.5-fold increase in CD206 mRNA in response to IL-4 predicted an M(IL4) CM that would significantly increase epithelial wound repair [mean SEM; *P < 0.05 compared to M0 (A to C) or culture medium only (D) by analysis of variance (ANOVA) followed by Tukeys test; each dot represents macrophages from a different donor]. (F) Correlation of patient mRNA expression of TGF and CD206 with their wound healing capacity (% wound healing compared to control).

Paralleling the mRNA expression analysis, M(IL4)-CM from patients with inactive Crohns disease or ulcerative colitis significantly improved repair in wounded Caco2 epithelial monolayers (Fig. 4D). While the size of repaired epithelial monolayer was on average small, this was consistent with data from healthy donor M(IL4)-CM. Addressing the variability within patient-derived M(IL4) to promote wound repair in the in vitro assay (as with mRNA responses, there appeared to be responders and nonresponders in blood monocytes from patients with active disease), CD206 and TGF mRNAs were postulated as predictive of enhanced epithelial wound healing capacity. Using CD206 expression as a canonical hM(IL4) marker, cells with 50% increase in CD206 mRNA had the ability to significantly enhance epithelial wound healing (n = 22), whereas macrophages below this threshold had a negligible capacity to promote healing (n = 10) (Fig. 4E). Adding in consideration of M(IL4) TGF mRNA returned the finding that CM from M(IL4)s with >1.5-fold increases in CD206 and TGF mRNA had the greatest ability to promote wound healing (Fig. 4F).

Intrarectal administration of DNBS to Rag1/ mice produces an acute inflammatory response as defined by macroscopic disease score, shortening of the colon, and histopathology (Fig. 5 and fig. S6). Disease was significantly less severe in mice given either freshly differentiated (Fig. 5, A to C) or cryopreserved hM(IL4)s (Fig. 5, D to F) by intraperitoneal or intravenous administration [cryopreservation of hM(IL4) resulted in 74 7% cell survival (n = 3)]. Adoptive transfer of hM(0) did not affect the outcome of DNBS-induced colitis (Fig. 5, A to C). Terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick end labeling (TUNEL) staining confirmed major cell death in DNBS-treated mice that was less apparent in the hM(IL4)-treated mice (Fig. 6A). Mice receiving hM(IL4)s had increased tissue levels of IL-10 (Fig. 6B) mRNA that resulted in a shift in the murine TNF:IL-10 mRNA ratio (Fig. 6C) in favor of anti-inflammatory conditions. In accordance, hM(IL4) + DNBStreated mice had reduced colonic protein levels of TNF (Fig. 6D). In contrast, murine TGF protein levels were increased in the colon hM(IL4)-treated mice (Fig. 7A). Murine epithelia are responsive to human TGF as demonstrated by increased SMAD-phosphorylation, which was also increased when M(IL4) CM was added to a murine epithelial cell line (Fig. 7B). In this acute model of colitis, the benefit of hM(IL4) was not accompanied by any obvious increase in markers of fibrosis in the colon (table S1), liver, lung, heart, or kidney (fig. S7A).

Male C57BL/6 Rag1/ mice were treated with freshly generated hM(IL4)s or murine (m) M(IL4)s or unstimulated macrophages (M0) [106 cells intraperitoneally (i.p.)] 48 hours before intrarectal delivery of 5 mg of DNBS. Seventy-two hours later, mice were necropsied and (A) a macroscopic disease score calculated, (B) colon length recorded, and (C) histopathology assessed on H&E sections. In separate studies, hM(IL4)s cryopreserved for 1 month were thawed and delivered by i.p. or intravenous (i.v.) injection 48 hours before DNBS and subsequently, (D) disease activity score, (E) colon length, and (F) histopathology were assessed [mean SEM; each dot represents a mouse; macrophages from 10 healthy donors in five experiments (A to C) and 5 to 6 donors in two experiments for cryopreserved hM(IL4) (D to F); * and #P < 0.05 compared to control (con) and DNBS, respectively, by ANOVA followed by Tukeys test (colon length) or the Kruskal-Wallis test (disease and histopathology scores)].

Male C57/bl6 Rag1/ were treated with cryopreserved hM(IL4)s (106 cells i.p. or i.v.) and 48 hours later received 5 mg of DNBS intrarectally. Seventy-two hours later, mice were necropsied and (A) cryosections of mid-colon assessed by TUNEL staining for apoptotic cells [red, 4,6-diamidino-2-phenylindole; green, TUNEL+; original objective, 20)], (B) murine TNF and IL-10 mRNA assessed by qPCR, (C) the ratio of TNF:IL-10, and protein levels of (D) murine TNF assessed by ELISA [mean SEM; each dot represents a mouse; macrophages from four to six healthy donors in two experiments; * and #P < 0.05 compared to control (con) and DNBS, respectively, by ANOVA followed by Tukeys test; m, muscle; l, lumen; arrow, TUNEL+ cell].

Fresh or cryopreserved hM(IL4) (106 cells i.p.) were administered to male C57BL/6 Rag1/ mice and 48 hours later received intrarectal delivery of 5 mg of DNBS. Three days later, mice were necropsied and (A) colonic protein levels of TGF assessed by ELISA (mean SEM; each dot represents a mouse; macrophages from four healthy donors in two experiments; * and #P < 0.05 compared to control and DNBS, respectively, by ANOVA followed by Tukeys test). (B) CM (50%) from unstimulated M(0)s and M(IL4)s, and mouse and human TGF (10 ng/ml) were applied to serum-starved (1 hour) confluent mouse IEC.4 cells, total protein was isolated at 30 min, and SMAD2 phosphorylation was detected by immunoblotting. -actin was used as a control.

Rag1/ mice injected (intraperitoneally) with hM(IL4)s 4 weeks before DNBS were protected from the pro-colitic stimulus as assessed by disease activity scores, colon length, and degree of histopathology (Fig. 8, A to D) [a similar phenomenon occurred with wild-type BALB/c mice treated with murine M(IL4)s (Fig. 8E)]. Analysis of lung, liver, and colon of the mice given hM(IL4)s showed no increase in markers of fibrosis compared to controls (fig. S7B) as gauged by assessment of Mason trichromestained sections.

Male C57BL/6 Rag1/ mice were administered cryopreserved hM(IL4)s (106 cells i.p.) and 30 days later received intrarectal delivery of 5 mg of DNBS. Seventy-two hours later, mice were necropsied and (A) a macroscopic disease score was calculated, (B) colon length was recorded, and (C) histopathology assessed on H&E sections was assessed [data are mean SEM; each dot represents a mouse; macrophages from three healthy donors in two experiments; * and #P < 0.05 compared to control (con) and DNBS, respectively, by ANOVA followed by Tukeys test (colon length) or the Kruskal-Wallis test (disease and histopathology scores)]. (D) presents representative histological images from the treatment groups (M, outer layers of muscle; L, gut lumen; *, ulceration; triangle, inflammatory infiltrate; original objective, 20). (E) shows that male BALB/c mice treated with murine M(IL4)s 2 to 21 days before DNBS are protected from the pro-colitic stimulus [mean SEM; * and #P < 0.05 compared to control (con) and DNBS, respectively, by ANOVA followed by Kruskal-Wallis test].

Fibrosis is not a major feature of acute models of colitis, but could be initiated by M(IL4)s. Treatment of a human fibroblast cell line with hM(IL4)-CM did not result in enhanced proliferation but did increase total protein levels in the cells (table S1). qPCR revealed no increase in smooth muscle actin (-SMA) or P4-hydroxylase mRNA in the treated fibroblasts (table S1). Assessment of murine colon 5 days after receiving hM(IL4)s revealed no increase in -SMA, P4-hydroxylase, and oe collagen type III 1 mRNA (table S1).

Despite advances in IBD treatment, the best therapies can induce and maintain remission in approximately one-third of patients leaving an unmet need for safe and effective therapies. The search for a single therapy that is transformative for all patients remains elusive, and given the heterogeneous nature of IBD, an individualized approach to the patient is desirable. A substantial body of evidence reveals that many subtypes of murine AAMs are anti-inflammatory and promote healing (6, 17, 22). However, while an hM(IL4) phenotype has been defined, little is known of its function, and the markers that distinguish it from a pro-inflammatory macrophage differ from those that characterize its murine counterpart (20). We present data in support of the hypothesis that autologous M(IL4) transfer can treat IBD.

Multiple markers have been used to define hM(IL4)s, and these were confirmed and others identified by RNA sequence analysis. Setting CD206high/CCL18+/CD14/low expression as indicating an hM(IL4), CM from these cells significantly improved epithelial wound healing in a reductionist in vitro model. In addition, CM from cyropreserved hM(IL4)s was almost as effective in promoting wound healing as freshly differentiated hM(IL4)s. This adds to the practicality of hM(IL4) therapy, such that patients M(IL4)s can be stored for use upon disease relapse (11). While the increased recovery of the damaged epithelium was small in magnitude, this was a consistent finding. Marginal, but significant, increases in wound recovery when translated to the surface area of the gut could benefit to the patient. The hM(IL4)-evoked wound recovery was mediated, at least partially by TGF, adding to the postulate that manipulating TGF signaling could be therapeutic in IBD (23). Aligning with this, the reduction in barrier function caused by exposure to IFN- was significantly reduced in T84 cell monolayers cotreated with hM(IL4)-CM: findings compatible with TGF antagonism of IFN-evoked increase in epithelial permeability (24). As a caveat, TGF therapy has the specter of fibrosis, and Mregs can be fibrotic in murine models. However, not all studies report a profibrotic effect of murine M(IL4)s, even with repeated administrations, (9), while others suggest an antifibrotic effect of mouse Mregs (10).

Distinct differences exist between circulating and tissue-resident immune cells from healthy individuals and people with IBD (19). A prerequisite for autologous cell transfer is that a patients blood-derived macrophages convert to M(IL4)s. Differentiation of M(IL4)s from monocytes of patients with inactive IBD was readily achieved, and the CM promoted epithelial wound healing to a degree not appreciably different from M(IL4)s from healthy individuals. In contrast, and not unexpectedly, ~50% of patients with active IBD had an impaired ability to produce M(IL4)s with wound healing capability, an inability that correlated with reduced expression of CD206 mRNA and, in some instances, TGF mRNA. Together, the latter suggests that M(IL4) CD206 and TGF expression could be a biomarker to predict responsiveness to hM(IL4)-transfer therapy.

Many mechanisms could account for monocytes from patients with active IBD not converting to M(IL4)s (e.g., reduced signal transducers and activators of transcription 6 signaling or increased expression of suppressor of cytokine-signaling proteins). Can this inability to produce M(IL4)s be overcome? From a translational perspective, the simplest solution would be to obtain monocytes from patients in remission for conversion to M(IL4) and cryopreservation. Alternatively, the potential to drive an M(IL4)-type cell via synergism with additional stimuli could be pursued. For instance, IL-6 increases the murine M(IL4) phenotype (16), and hM(IL4 + IL6) from healthy individuals displayed the greatest increase in CD206 mRNA expression, and hM(IL4 + IL6)-CM led to enhancement of wound recovery compared to hM(IL4)-CM from the same individual.

The use of human cells while instructive and yielding proof-of-principle data must be viewed within the limitations of in vitro analyses. Using mice lacking T and B cells, adoptive transfer of freshly differentiated or cryopreserved hM(IL4)s protected Rag1/ mice from DNBS-induced colitis. Aligning with the in vitro analyses, colon from protected mice had increased levels of TGF, which could be of mouse or human origin, and participated in the suppression of disease, noting that human TGF can activate murine cells (Fig. 7B). In demonstrating in vivo efficacy, this finding also reveals that the anti-colitic effect of hM(IL4) transfer is not dependent on adaptive immunity in the recipient (11). Extrapolating to IBD, this suggests that hM(IL4) transfer could be effective in patients with deficits in their T cells (25). Furthermore, the anti-colitic effect of hM(IL4)s occurred when transfer was performed 4 weeks before treatment with DNBS. A similar sustained response was reported for a murine Mreg in a mouse model of diabetes (13). Mechanistically, this implies either prolonged establishment of the cells (perhaps due to a lack of adaptive immunity in Rag1/ mice) or that the M(IL4) initiates a long-lived program in the recipient, rendering them less susceptible to DNBS; these possibilities should be assessed. In addition, we cannot exclude the possibility that death of M(IL4)s in vivo has an anti-colitic effect and should be addressed in subsequent mechanistic studies. The longevity of the hM(IL4) effect in the Rag1/-DNBS model, if translatable, presents the intriguing possibility that autologous transfer in patients could enhance recovery from a flare in disease and extend the period of remission. Experiments designed to determine the location of the transferred cells could be used to enhance hM(IL4) therapy by, for example, using cells in which mucosal (or gut specific) addressins are increased.

When proposing a new therapy, the issue of safety is omnipresent. Assessment of direct interaction between hM(IL4)s and human fibroblasts, albeit in an acute in vitro setting, revealed a small increase in fibroblast total protein, consistent with increased growth, but with negligible changes in markers of fibrosis. Also, Rag1/ mice displayed no overt fibrosis following hM(IL4) treatment. Nevertheless, fibrosis remains an unknown risk with hM(IL4) and requires further study. Susceptibility to bacterial infection is a concern (26), as with any immunosuppressive therapy (e.g., anti-TNF therapy), and while mouse M(IL4)s retain a phagocytic capacity that can be boosted by butyrate (27), we should be cognizant of this possibility with hM(IL4) transfers for IBD. Also, immunosuppressive macrophages can promote cancer (28), and studies to assess hM(IL4) transfer as a potential oncogenic stimulus need to be conducted.

Cellular immunotherapy for IBD is not unprecedented, such as MSCT for fistulizing disease (29). Intriguingly, murine and human MSCTs increase AAMs in mice and people, (15) which can, in turn, promote development of Tregs: (30) reciprocally, and Tregs can promote AAM development (31). Thus, AAMs may be at the center of a regulatory pathway with MSCs and Tregs that protects tissues from inflammatory damage. Many of the issues surrounding MSCT for IBD (e.g., sex, disease location, and concomitant therapy) (32) also apply to hM(IL4) transfer to treat IBD and need to be addressed in rigorous studies.

Having shown that IL-4 evokes major transcriptome changes in human blood monocytederived macrophages and that hM(IL4)s promote epithelial wound repair in an in vitro assay, reduce cytokine-induced epithelial barrier defects, and are beneficial in a murine model of acute colitis, we have demonstrated the cells pro-healing/anti-inflammatory ability and present this as proof-of-concept support for M(IL4) immunotherapy for IBD.

Our overall objective was to determine whether hM(IL4)s promote epithelial wound healing and suppress colitis, as proof-of-principle data to support future analysis of autologous cell transfer therapy with M(IL4)s for treating IBDs. Blood-derived macrophages were isolated from healthy donors and from patients with active and inactive Crohns disease and ulcerative colitis, and conversion to an M(IL4) phenotype was assessed via qPCR and flow cytometry; in addition, RNA-sequencing analysis was applied to M(IL4)s from three healthy donors for a broader appreciation of M(IL4) phenotype. An in vitro assay was used to determine the wound healing capacity of M(IL4)s by applying CM from these cells to mechanically wounded Caco2 epithelial monolayers for 48 hours, followed by measurement of total area repaired. To assess the protective effect of M(IL4)s in vivo, Rag1/ mice were administered fresh or cryopreserved hM(IL4)s (intraperitoneally or intravenously) 2 days or 1 month before intrarectal instillation of the pro-colitic agent, DNBS, and colitis was assessed 3 days later by macroscopic disease activity score, histopathology scores, TUNEL staining, and qPCR and ELISA for IL-10, TGF, and TNF. Scoring of disease was performed in a blinded fashion. The processing of samples and statistical analysis was executed simultaneously for all experimental groups. For all experiments, a minimum of three experiments and a minimum n value of four were chosen. The amount of replicates and statistics are referred to in each figure legend.

Animal experiments adhered to the Canadian Council on Animal Welfare as administered by the University of Calgary Animal Care Committee under protocol AC17-0115. Male 10- to 14-week-old C57BL/6 Rag1/ mice (breeding colony, University of Calgary) were injected intraperitoneally or intravenously with 106 hM(IL4) or hM(0) in 250 l of phosphate-buffered saline 48 hours before intrarectal delivery of 2,4-DNBS (5 mg in 100 l of 50% ethanol; MP Biomedicals) to induce colitis (11). In another set of experiments, mice received hM(IL4) 1 month before DNBS treatment. Murine M(IL4) served as a positive control (11).

On day 3 after DNBS, necropsies were performed, and disease was assessed by a macroscopic disease activity score. A segment of mid-colon was excised, fixed, and processed for H&E staining, and a histopathology score was calculated. Collagen deposition was examined in Massons trichromestained sections of formalin-fixed colon, liver, heart, lung, and kidney (6, 9). In some experiments, colonic and liver levels of collagen were measured using the Sircol Soluble Collagen Assay (Biocolor assays). Additional portions of colon were excised and extracted for total protein to determine TNF and TGF levels by ELISA or placed in TRIzol (Invitrogen) and TNF and IL-10 mRNA assessed by qPCR.

Blood from healthy volunteers [male = 15, female = 9; age range, 20 to 66, mean = 31 12 (SD)] was obtained with approval by the University of Calgary Conjoint Health Research Ethics Board (REB15-1270_REN3). Patients [table S2; male = 17, female = 16; age range, 20 to 87, mean = 47 17 (SD)] were consented, and blood was obtained through the University of Calgary Intestinal Inflammation Tissue bank (REB15-0586_REN3). Peripheral blood mononuclear cells were collected, and following a 4-hour 37C incubation on petri dishes, nonadherent cells were removed, and the adherent cells were incubated in culture medium (RPMI-1640 medium), 2% penicillin/streptomycin, Hepes (20 mM; all from Gibco), and 10% pooled normal human heat-inactivated and sterile-filtered AB serum (Innovative Research, Novi, MI) with recombinant hM-CSF (10 ng/ml) for 7 days. Medium was changed on day 5, with the addition of hM-CSF. Size, granularity, and CD68 expression by flow cytometry revealed that the cultures were 97.5 0.1% macrophages (n = 3). Macrophages (2.5 105) were differentiated for 48 hours with recombinant IL-4 (IL-6) or IFN- (all 10 ng/ml) and then assessed. Differentiated macrophages (2.5 105) received 1 ml of fresh culture medium, and 24 hours later, the CM was collected for use and cytokine determinations. Differentiated macrophages are not a rapidly dividing cell type; however, we assessed cell numbers 72 hours and 1 week after cytokine treatment and found no significant change in cell numbers [i.e., proliferation; M(0) = 2.6 0.7 compared to M(IL4) = 2.7 0.07 105] and % cell survival [i.e., viability; M(0) = 88 16 compared to M(IL4) = 95 26], respectively (n = 4; mean SD). Similarly, testing of viability via trypan blue exclusion revealed no differences between the two groups at the end of the in vitro culture when either CM was collected or cells harvested for delivery to mice.

For cryopreservation, M(IL4)s were resuspended (5 105/ml) in 10% dimethyl sulfoxide in human serum and stored at 80C overnight in Mr. Frosty containers (Thermo Fisher Scientific, Wilmington, DE) with isopropanol and then transferred to liquid nitrogen.

Macrophage RNA was isolated using the Aurum Total RNA Mini Kit (Bio-Rad Laboratories, Hercules, CA), quantified using the Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific), and 0.5 g of RNA converted to complementary DNA (cDNA) using an iScript kit (Bio-Rad Laboratories Canada, Mississauga, ON, Canada). Real-time qPCR of human and murine macrophages was performed (9) using primers listed in table S3. Data are presented as the target gene: 18S ribosomal RNA gene ratio for M(0) that was normalized to a value for 1 for comparison with M(IL4) from the same individual. A correlation graph of the expression of human TGF mRNA, CD206 mRNA, and % epithelial wound healing from M(IL4)-CM was made in R (version 3.5.3) using the ggplot2 (version 3.2.1).

RNA from M(0) and M(IL4)s from three healthy donors was quality assessed using the Agilent Tapestation 2200, with RNA integrity values 8 to 10 indicating samples free of DNA contamination (21). RNA sequencing was performed at the Centre for Health Genomics and Informatics, University of Calgary, where samples were made into libraries using the Illumina TruSeq Stranded mRNA LT library preparation kit and were sequenced on a 75-cycle high-output NextSeq 500 run. Briefly, transcripts were quantified with Kallisto 0.43.1 (33) using Homo sapiens GRCh38 (Ensembl release 90) cDNA, with sequence bias correction turned on and 50 bootstraps. All downstream analyses were done in R 3.5.1 (34). Sleuth 0.30.0 was used for differential expression, with treatment as the main effect and donor included as a covariate (35). The M(IL4)s were compared to nonstimulated M(0) using the Wald test, and differentially expressed genes were selected on the basis of a q value cutoff of 0.05. Enriched gene sets for both KEGG (36) and Reactome (37) pathways were identified with overrepresentation tests (P < 0.05) using clusterProfiler 3.10.0 (38) and ReactomePA 1.26.0 (39), respectively. Data were deposited in NCBIs Gene Expression Omnibus and are accessible through GEO Series accession number GSE132732 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132732).

Human colonderived Caco2 or T84 epithelial cells were maintained in Dulbeccos modified Eagles medium (DMEM) [supplemented with 10% fetal bovine serum (FBS), 2% penicillin/streptomycin, and 0.00144% sodium bicarbonate]. Cells (5 105) were seeded in six-well plates for 48 hours and transferred to DMEM (0.5% FBS) for 24 hours, and monolayers were wounded with a razor blade. Macrophage CM was diluted 1:1 with DMEM culture medium (0.5% human serum) and applied to wounded epithelia for 48 hours. Wounds were observed using the Nikon Eclipse Ti-U inverted microscope at 4 magnification (Melville, NY) (40). Analysis of repair was measured in three fields of view from the initial wound edge to the leading edge for total area repaired in micrometer2. When CM from patient cells was used, wound repair was normalized for % baseline increase of total area repaired compared to medium control. TGF (10 ng/ml) served as a positive control. In some experiments, CM was (i) boiled (20 min) and (ii) subjected to trypsin (2 U/l; 37C; 2 hours) and then trypsin inhibitors (2 U/l for 2 ml of CM; 37C; 30 min), or (iii) TGF-neutralizing antibodies were added (100 ng/ml; 2 hours at 37C; 1d11 clone Cedarlane Labs).

T84 epithelial cells were seeded onto 3-m porous filter supports and cultured until confluent (24) as determined by a TER of 1000 ohm.cm2. Monolayers were then treated basolaterally with IFN- (10 ng/ml) 50% M(IL4)-CM, and TER was measured 24 hours later via voltmeter and chopstick electrodes. Then, 70-kDa FITC-dextran (200 g/ml; Sigma Chemical Co.) was added to the apical side of the monolayer, samples (500 l) of basolateral medium were collected 4 hours later, fluorescence was measured, and amount of FITC-dextran was read off a standard curve.

Cell culture medium was collected from nonactivated M(0) or M(IL4) or LPS (10 ng/ml for 24 hours)activated macrophages and was subjected to the Luminex human cytokine array pro-inflammatory focused 13-plex (HDF13) panel (EveTechnologies, Calgary, Canada). ELISA DuoSet kits (R&D Systems Inc.) were used to measure CCL18, IL-10, TGF, and TNF in macrophage supernatants according to the manufacturers protocols. All samples were assessed in duplicate.

Confluent mouse IEC4.1 intestinal epithelial cells were serum starved for 1 hour and then treated with CM from hM(0) and hM(IL4)s and mouse or human recombinant TGF (10 ng/ml, 30 min; eBioscience). Whole extracts were analyzed by immunoblotting protocol with the following antibodies: rabbit polyclonal phospho-SMAD2 (1:1000, Cell Signaling Technology, #3108), rabbit polyclonal SMAD2 (1:2500, Cell Signaling Technology, #3102), and rabbit polyclonal -actin (1, 1000, Abcam, #8227).

The human colonic fibroblast cell line CCD-18Co (American Type Culture Collection, CRL-1459) was seeded (5 105) in six-well plates for 48 hours and then treated with M(0)-CM or M(IL4)-CM (50%), and mRNA, total protein, and proliferation were assessed.

Parametric data were analyzed using one-way analysis of variance (ANOVA) with Tukeys posttest or by Students t test for two group comparisons. When data were normalized, analysis was one-way ANOVA with Kruskal-Wallis posttest or Wilcoxon signed-rank test. Statistical comparisons were performed using GraphPad Prism 5.0 (GraphPad Prism Software, La Jolla, CA), and a level of statistically significant difference was accepted at P < 0.05.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: T.S.J. was supported, in part, by a stipend from the NSERC CREATE Host-Parasite Interactions (HPI) program at the University of Calgary. G.L. held an AI-HS PhD studentship. A.S. was supported by the Beverly Philips Snyder Institute University of Calgary, NSERC CREATE HPI, and the Canadian Association of Gastroenterology studentships. D.M.M. holds a Canada Research Chair (Tier 1) in Intestinal Immunophysiology in Health and Disease. We acknowledge support from the Intestinal Tissue Bank and G. Bindra at the University of Calgary for access to patient material and the flow cytometry suite (University of Calgary). Funding: Funding for this study was provided by a Crohns Colitis Canada Grant-in-Aid to D.M.M. Author contributions: T.S.J.: study concept and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, and statistical analysis; G.L.: acquisition of data and analysis and interpretation of data; A.W.: acquisition of data; B.E.C.: acquisition of data; M.L.W.: analysis and interpretation of data, statistical analysis, and technical support; S.R.: acquisition of data; A.S.: acquisition of data; N.M.: acquisition of data; P.L.B.: study concept and design and critical revision of manuscript for important intellectual content; R.P.: study concept and design and critical revision of manuscript for important intellectual content; D.M.M.: study concept and design, interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content, obtained funding, and study supervision. Competing interests: All authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Read more from the original source:
Human interleukin-4treated regulatory macrophages promote epithelial wound healing and reduce colitis in a mouse model - Science Advances

Looking to Mouse, Macaque and Human Germ Cells for New Insight into Infertility – University of Michigan Health System News

Figuring out how sperm develops in the testes is critical to understanding male-factor infertility. This process involves both the sperm-forming cells, collectively called germ cells, and supporting cells of the testis known as somatic cells. So far, much of the work around this highly regulated process, called spermatogenesis, has taken place in mice.

A group of U-M and University of Pittsburgh researchers, led by Sue Hammoud, Ph.D., Jun Li Ph.D., and Kyle Orwig Ph.D., and trainees Adrienne Shami, B.S., Xianing Zheng B.S., and Sarah Munyoki B.S., are expanding this body of knowledge by comparing cells from the testes of mice, macaques and humans. Using single-cell RNA sequencing, they analyzed the way genes are expressed in thousands of these sperm-forming cells to look for similarities and differences. This comparison provides clues about how sperm has evolved in mammals.

From the stem cell building blocks all the way up to mature sperm, there are differences between species in the number, division, and shape of germ cells. While we have learned a great deal from mouse models, sometimes that knowledge simply doesnt translate to humans. As a result, we have a limited understanding of human sperm production, and how things may go wrong to lead to infertility. By simultaneously analyzing thousands of cells throughout this process from different species, we are able to align and directly compare these populations of cells for the first time. In essence, this allows us to begin translating information across species to better understand how sperm are made, says Hammoud.

The findings could help researchers more accurately compare spermatogenesis between animal models and humans, with the ultimate goal of generating in vitro sperm to treat infertility.

Germ cells cant do it alone; they also require help from the neighboring somatic cells which provide signals and nutrients. While most research has focused on the Sertoli nurse cells or testosterone-producing Leydig cells, our study shows that many other underappreciated cell types could provide important input. Learning about these communications will be critical to identify and stimulate human cells in order to produce sperm as a future therapeutic option.

This work was supported by theMichigan Institute for Data Science, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Open Philanthropy

Paper cited: Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian Spermatogenesis. Developmental Cell. DOI: 10.1016/j.devcel.2020.05.010

View post:
Looking to Mouse, Macaque and Human Germ Cells for New Insight into Infertility - University of Michigan Health System News

The bioreactors market was valued at US$ 2,958.50 million in 2019 and is projected to reach US$ 5,169.01 million by 2027; it is expected to grow at a…

New York, June 05, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Bioreactors Market Forecast to 2027 - COVID-19 Impact and Global Analysis by Cell ; Molecule ; Technology ; End User, and Geography" - https://www.reportlinker.com/p05908638/?utm_source=GNW

A bioreactor is equipment or system engineered to provide biologically active environment for the production of various medical and pharmaceutical compounds.The vessel is used to carry out a chemical process, which involves organisms or biochemically active substances derived from such organisms.

This process can either be aerobic or anaerobic.The bioreactors are commonly cylindrical, ranging in size from liters to cubic meters, and are generally made of stainless steel.

Bioreactors provide a controllable environment, in terms of pH, temperature, nutrient supply, and shear stress for any cells.The use of single-use bioreactors has increased in the modern biopharmaceutical processes in the last few years.This can be attributed to their unique ability to allow enhanced process flexibility, reduce investment requirements, and limit operational costs.

Also, many companies have developed single-use bioreactors for the production of a wide range of therapeutics. For instance, Distek Inc., has developed a benchtop single-use bioreactor system for recombinant protein production. Single-use bioreactors reduce the risks of contamination and decrease production turnaround times. Moreover, the reduction in validation time has been one of the prime benefits of single-use bioreactors. The rising adoption of single-use bioreactors for upstream bioprocessing is driving the growth of the market. For instance, Sartorius AG offers a wide range of single-use bioreactors. The company provides ambr 15 for a 10-15 mL microbioreactor scale and Biostat STR for 50-2000 L.The global bioreactors market is segmented on the basis of cell, molecule, technology, and end user.The bioreactors market, by molecule, is segmented into monoclonal antibodies, vaccines, recombinant proteins, stem cells, gene therapy, and others.

The monoclonal antibodies segment held the largest share of the market in 2019.However, the stem cell segment is projected to register the highest CAGR in the market during the forecast period.

Based on cell, the bioreactors market is segmented into mammalian cells, bacterial cells, yeast cells, and others.Based on technology, the market is segmented into wave-induced motion sub, stirred sub, single-use bubble column, and others.

Based on end user, the market is segmented into research and development organizations, biopharma manufacturers, contract manufacturing organizations (CMOs).A few of the essential primary and secondary sources referred to while preparing the report are the Food and Drug Administration (FDA), World Health Organization (WHO), Organization for Economic Co-operation and Development, National Institutes of Health (NIH), and Centers for Disease Control and Prevention (CDC), among others.Bioreactors Market Forecast to 2027 - Covid-19 Impact and Global Analysis by Cell, Molecule, Technology, End User, and GeographyThe bioreactors market was valued at US$ 2,958.50 million in 2019 and is projected to reach US$ 5,169.01 million by 2027; it is expected to grow at a CAGR of 7.3% from 2020 to 2027. A bioreactor is equipment or system engineered to provide biologically active environment for the production of various medical and pharmaceutical compounds.The vessel is used to carry out a chemical process, which involves organisms or biochemically active substances derived from such organisms.

This process can either be aerobic or anaerobic.The bioreactors are commonly cylindrical, ranging in size from liters to cubic meters, and are generally made of stainless steel.

Bioreactors provide a controllable environment, in terms of pH, temperature, nutrient supply, and shear stress for any cells.The use of single-use bioreactors has increased in the modern biopharmaceutical processes in the last few years.This can be attributed to their unique ability to allow enhanced process flexibility, reduce investment requirements, and limit operational costs.

Also, many companies have developed single-use bioreactors for the production of a wide range of therapeutics. For instance, Distek Inc., has developed a benchtop single-use bioreactor system for recombinant protein production. Single-use bioreactors reduce the risks of contamination and decrease production turnaround times. Moreover, the reduction in validation time has been one of the prime benefits of single-use bioreactors. The rising adoption of single-use bioreactors for upstream bioprocessing is driving the growth of the market. For instance, Sartorius AG offers a wide range of single-use bioreactors. The company provides ambr 15 for a 10-15 mL microbioreactor scale and Biostat STR for 50-2000 L.The global bioreactors market is segmented on the basis of cell, molecule, technology, and end user.The bioreactors market, by molecule, is segmented into monoclonal antibodies, vaccines, recombinant proteins, stem cells, gene therapy, and others.

The monoclonal antibodies segment held the largest share of the market in 2019.However, the stem cell segment is projected to register the highest CAGR in the market during the forecast period.

Based on cell, the bioreactors market is segmented into mammalian cells, bacterial cells, yeast cells, and others.Based on technology, the market is segmented into wave-induced motion sub, stirred sub, single-use bubble column, and others.

Based on end user, the market is segmented into research and development organizations, biopharma manufacturers, contract manufacturing organizations (CMOs).A few of the essential primary and secondary sources referred to while preparing the report are the Food and Drug Administration (FDA), World Health Organization (WHO), Organization for Economic Co-operation and Development, National Institutes of Health (NIH), and Centers for Disease Control and Prevention (CDC), among others.Read the full report: https://www.reportlinker.com/p05908638/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Original post:
The bioreactors market was valued at US$ 2,958.50 million in 2019 and is projected to reach US$ 5,169.01 million by 2027; it is expected to grow at a...

Stem Cell Therapy Market to Rise Globally During 2020-2027 with Top Key Players and Competitive Analysis – 3rd Watch News

Stem Cell Therapy

Stem Cell Therapy Market provides a birds eye view of the current proceeding within the Stem Cell Therapy market. Further, the report also takes into account the impact of the novel COVID-19 pandemic on the Stem Cell Therapy market and offers a clear assessment of the projected market fluctuations during the forecast period. The different factors that are likely to impact the overall dynamics of the Stem Cell Therapy market over the forecast period (2020-2027) including the current trends, growth opportunities, restraining factors, and more are discussed in detail in the market study.

Leading Players Of Stem Cell Therapy Market:- MEDIPOST, Pharmicell Co., Inc., RichSource, BioTime Inc. (Lineage Cell Therapeutics, Inc.), Mesoblast Limited, Holostem Terapie Avanzate Srl, U.S. Stem Cell, Inc., Caladrius Biosciences, Inc., TiGenix NV, AlloSource

Get Sample PDF Of Stem Cell Therapy Market @https://www.theinsightpartners.com/sample/TIPHE100000991/

Key Reasons to Purchase:

To gain insightful analyses of the Covid-19 Impact on Stem Cell Therapy market and have a comprehensive understanding of the global market and its commercial landscape.

Assess the production processes, major issues, and solutions to mitigate the development risk.

To understand the most affecting driving and restraining forces in the market and its impact on the global Covid-19 Impact on Stem Cell Therapy market.

Learn about the Covid-19 Impact on Stem Cell Therapy market strategies that are being adopted by leading respective organizations.

To understand the future outlook and prospects for the market.

Besides the standard structure reports, we also provide custom research according to specific requirements.

Stem Cell Therapy Market: Regional analysis includes:

An Overview of the Impact of COVID-19 on this Market:

The pandemic of COVID-19 continues to expand and impact over 175 countries and territories. Although the outbreak appears to have slowed in China, COVID-19 has impacted globally. The pandemic could affect three main aspects of the global economy: production, supply chain, and firms and financial markets. National governments have announced largely uncoordinated, country-specific responses to the virus. As authorities encourage social distancing and consumers stay indoors, several businesses are hit. However, coherent, coordinated, and credible policy responses are expected to offer the best chance at limiting the economic fallout.

National governments and international bodies are focused on adopting collaborative efforts to encourage financial institutions to meet the financial needs of customers and members affected by the coronavirus. However, there are some sectors that have remained unscathed from the impact of the pandemic and there are some that are hit the hardest.

Reasons to Purchase Stem Cell Therapy report is:

Gives a complete understanding of the Stem Cell Therapy Market to express competitor information, analysis, and insights to formulate effective RD strategies.

Collect data of the developing participants having the potentially profitable portfolio in this space and create effective counter-strategies to gain competitive benefits.

Note: Access insightful study with over 150+ pages, list of tables & figures, profiling 20+ companies.

Are you a Start-up willing to make it Big in the Business? Grab an Exclusive PDF Brochure@https://www.theinsightpartners.com/buy/TIPHE100000991/

The research study can answer the following Key questions:

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Life Science, Technology, Healthcare, Manufacturing, Automotive and Defense, Food Beverages, Chemical etc.

For More Information Kindly Contact:Call: +1-646-491-9876

Email:[emailprotected]

More:
Stem Cell Therapy Market to Rise Globally During 2020-2027 with Top Key Players and Competitive Analysis - 3rd Watch News

Cellular Reprogramming Tools Market Research Key Players, Industry Overview and forecasts to | 2026 – Weekly Wall

The market research report is a brilliant, complete, and much-needed resource for companies, stakeholders, and investors interested in the global Cellular Reprogramming Tools market. It informs readers about key trends and opportunities in the global Cellular Reprogramming Tools market along with critical market dynamics expected to impact the global market growth. It offers a range of market analysis studies, including production and consumption, sales, industry value chain, competitive landscape, regional growth, and price. On the whole, it comes out as an intelligent resource that companies can use to gain a competitive advantage in the global Cellular Reprogramming Tools market.

Key companies operating in the global Cellular Reprogramming Tools market include , Celgene, BIOTIME, Human Longevity, Advanced Cell Technology, Mesoblast, STEMCELL Technologies, Osiris Therapeutics, Cynata, Astellas Pharma, FUJIFILM Holdings, EVOTEC, Japan Tissue Engineering Cellular Reprogramming Tools

Get PDF Sample Copy of the Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart) :

https://www.qyresearch.com/sample-form/form/1803204/global-cellular-reprogramming-tools-market

Segmental Analysis

Both developed and emerging regions are deeply studied by the authors of the report. The regional analysis section of the report offers a comprehensive analysis of the global Cellular Reprogramming Tools market on the basis of region. Each region is exhaustively researched about so that players can use the analysis to tap into unexplored markets and plan powerful strategies to gain a foothold in lucrative markets.

Global Cellular Reprogramming Tools Market Segment By Type:

, Adult Stem Cells, Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, Other

Global Cellular Reprogramming Tools Market Segment By Application:

, Drug Development, Regenerative Medicine, Toxicity Test, Academic Research, Other

Competitive Landscape

Competitor analysis is one of the best sections of the report that compares the progress of leading players based on crucial parameters, including market share, new developments, global reach, local competition, price, and production. From the nature of competition to future changes in the vendor landscape, the report provides in-depth analysis of the competition in the global Cellular Reprogramming Tools market.

Key companies operating in the global Cellular Reprogramming Tools market include , Celgene, BIOTIME, Human Longevity, Advanced Cell Technology, Mesoblast, STEMCELL Technologies, Osiris Therapeutics, Cynata, Astellas Pharma, FUJIFILM Holdings, EVOTEC, Japan Tissue Engineering Cellular Reprogramming Tools

Key questions answered in the report:

For Discount, Customization in the Report: https://www.qyresearch.com/customize-request/form/1803204/global-cellular-reprogramming-tools-market

TOC

1 Report Overview1.1 Study Scope1.2 Key Market Segments1.3 Players Covered: Ranking by Cellular Reprogramming Tools Revenue1.4 Market by Type 1.4.1 Global Cellular Reprogramming Tools Market Size Growth Rate by Type: 2020 VS 2026 1.4.2 Adult Stem Cells 1.4.3 Human Embryonic Stem Cells 1.4.4 Induced Pluripotent Stem Cells 1.4.5 Other1.5 Market by Application 1.5.1 Global Cellular Reprogramming Tools Market Share by Application: 2020 VS 2026 1.5.2 Drug Development 1.5.3 Regenerative Medicine 1.5.4 Toxicity Test 1.5.5 Academic Research 1.5.6 Other 1.6 Study Objectives 1.7 Years Considered 2 Global Growth Trends2.1 Global Cellular Reprogramming Tools Market Perspective (2015-2026)2.2 Global Cellular Reprogramming Tools Growth Trends by Regions 2.2.1 Cellular Reprogramming Tools Market Size by Regions: 2015 VS 2020 VS 2026 2.2.2 Cellular Reprogramming Tools Historic Market Share by Regions (2015-2020) 2.2.3 Cellular Reprogramming Tools Forecasted Market Size by Regions (2021-2026) 2.3 Industry Trends and Growth Strategy 2.3.1 Market Top Trends 2.3.2 Market Drivers 2.3.3 Market Challenges 2.3.4 Porters Five Forces Analysis 2.3.5 Cellular Reprogramming Tools Market Growth Strategy 2.3.6 Primary Interviews with Key Cellular Reprogramming Tools Players (Opinion Leaders) 3 Competition Landscape by Key Players3.1 Global Top Cellular Reprogramming Tools Players by Market Size 3.1.1 Global Top Cellular Reprogramming Tools Players by Revenue (2015-2020) 3.1.2 Global Cellular Reprogramming Tools Revenue Market Share by Players (2015-2020) 3.1.3 Global Cellular Reprogramming Tools Market Share by Company Type (Tier 1, Tier 2 and Tier 3)3.2 Global Cellular Reprogramming Tools Market Concentration Ratio 3.2.1 Global Cellular Reprogramming Tools Market Concentration Ratio (CR5 and HHI) 3.2.2 Global Top 10 and Top 5 Companies by Cellular Reprogramming Tools Revenue in 20193.3 Cellular Reprogramming Tools Key Players Head office and Area Served3.4 Key Players Cellular Reprogramming Tools Product Solution and Service3.5 Date of Enter into Cellular Reprogramming Tools Market3.6 Mergers & Acquisitions, Expansion Plans 4 Market Size by Type (2015-2026)4.1 Global Cellular Reprogramming Tools Historic Market Size by Type (2015-2020)4.2 Global Cellular Reprogramming Tools Forecasted Market Size by Type (2021-2026) 5 Market Size by Application (2015-2026)5.1 Global Cellular Reprogramming Tools Market Size by Application (2015-2020)5.2 Global Cellular Reprogramming Tools Forecasted Market Size by Application (2021-2026) 6 North America6.1 North America Cellular Reprogramming Tools Market Size (2015-2020)6.2 Cellular Reprogramming Tools Key Players in North America (2019-2020)6.3 North America Cellular Reprogramming Tools Market Size by Type (2015-2020)6.4 North America Cellular Reprogramming Tools Market Size by Application (2015-2020) 7 Europe7.1 Europe Cellular Reprogramming Tools Market Size (2015-2020)7.2 Cellular Reprogramming Tools Key Players in Europe (2019-2020)7.3 Europe Cellular Reprogramming Tools Market Size by Type (2015-2020)7.4 Europe Cellular Reprogramming Tools Market Size by Application (2015-2020) 8 China8.1 China Cellular Reprogramming Tools Market Size (2015-2020)8.2 Cellular Reprogramming Tools Key Players in China (2019-2020)8.3 China Cellular Reprogramming Tools Market Size by Type (2015-2020)8.4 China Cellular Reprogramming Tools Market Size by Application (2015-2020) 9 Japan9.1 Japan Cellular Reprogramming Tools Market Size (2015-2020)9.2 Cellular Reprogramming Tools Key Players in Japan (2019-2020)9.3 Japan Cellular Reprogramming Tools Market Size by Type (2015-2020)9.4 Japan Cellular Reprogramming Tools Market Size by Application (2015-2020) 10 Southeast Asia10.1 Southeast Asia Cellular Reprogramming Tools Market Size (2015-2020)10.2 Cellular Reprogramming Tools Key Players in Southeast Asia (2019-2020)10.3 Southeast Asia Cellular Reprogramming Tools Market Size by Type (2015-2020)10.4 Southeast Asia Cellular Reprogramming Tools Market Size by Application (2015-2020) 11 India11.1 India Cellular Reprogramming Tools Market Size (2015-2020)11.2 Cellular Reprogramming Tools Key Players in India (2019-2020)11.3 India Cellular Reprogramming Tools Market Size by Type (2015-2020)11.4 India Cellular Reprogramming Tools Market Size by Application (2015-2020) 12 Central & South America12.1 Central & South America Cellular Reprogramming Tools Market Size (2015-2020)12.2 Cellular Reprogramming Tools Key Players in Central & South America (2019-2020)12.3 Central & South America Cellular Reprogramming Tools Market Size by Type (2015-2020)12.4 Central & South America Cellular Reprogramming Tools Market Size by Application (2015-2020) 13Key Players Profiles13.1 Celgene 13.1.1 Celgene Company Details 13.1.2 Celgene Business Overview 13.1.3 Celgene Cellular Reprogramming Tools Introduction 13.1.4 Celgene Revenue in Cellular Reprogramming Tools Business (2015-2020)) 13.1.5 Celgene Recent Development13.2 BIOTIME 13.2.1 BIOTIME Company Details 13.2.2 BIOTIME Business Overview 13.2.3 BIOTIME Cellular Reprogramming Tools Introduction 13.2.4 BIOTIME Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.2.5 BIOTIME Recent Development13.3 Human Longevity 13.3.1 Human Longevity Company Details 13.3.2 Human Longevity Business Overview 13.3.3 Human Longevity Cellular Reprogramming Tools Introduction 13.3.4 Human Longevity Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.3.5 Human Longevity Recent Development13.4 Advanced Cell Technology 13.4.1 Advanced Cell Technology Company Details 13.4.2 Advanced Cell Technology Business Overview 13.4.3 Advanced Cell Technology Cellular Reprogramming Tools Introduction 13.4.4 Advanced Cell Technology Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.4.5 Advanced Cell Technology Recent Development13.5 Mesoblast 13.5.1 Mesoblast Company Details 13.5.2 Mesoblast Business Overview 13.5.3 Mesoblast Cellular Reprogramming Tools Introduction 13.5.4 Mesoblast Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.5.5 Mesoblast Recent Development13.6 STEMCELL Technologies 13.6.1 STEMCELL Technologies Company Details 13.6.2 STEMCELL Technologies Business Overview 13.6.3 STEMCELL Technologies Cellular Reprogramming Tools Introduction 13.6.4 STEMCELL Technologies Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.6.5 STEMCELL Technologies Recent Development13.7 Osiris Therapeutics 13.7.1 Osiris Therapeutics Company Details 13.7.2 Osiris Therapeutics Business Overview 13.7.3 Osiris Therapeutics Cellular Reprogramming Tools Introduction 13.7.4 Osiris Therapeutics Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.7.5 Osiris Therapeutics Recent Development13.8 Cynata 13.8.1 Cynata Company Details 13.8.2 Cynata Business Overview 13.8.3 Cynata Cellular Reprogramming Tools Introduction 13.8.4 Cynata Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.8.5 Cynata Recent Development13.9 Astellas Pharma 13.9.1 Astellas Pharma Company Details 13.9.2 Astellas Pharma Business Overview 13.9.3 Astellas Pharma Cellular Reprogramming Tools Introduction 13.9.4 Astellas Pharma Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.9.5 Astellas Pharma Recent Development13.10 FUJIFILM Holdings 13.10.1 FUJIFILM Holdings Company Details 13.10.2 FUJIFILM Holdings Business Overview 13.10.3 FUJIFILM Holdings Cellular Reprogramming Tools Introduction 13.10.4 FUJIFILM Holdings Revenue in Cellular Reprogramming Tools Business (2015-2020) 13.10.5 FUJIFILM Holdings Recent Development13.11 EVOTEC 10.11.1 EVOTEC Company Details 10.11.2 EVOTEC Business Overview 10.11.3 EVOTEC Cellular Reprogramming Tools Introduction 10.11.4 EVOTEC Revenue in Cellular Reprogramming Tools Business (2015-2020) 10.11.5 EVOTEC Recent Development13.12 Japan Tissue Engineering 10.12.1 Japan Tissue Engineering Company Details 10.12.2 Japan Tissue Engineering Business Overview 10.12.3 Japan Tissue Engineering Cellular Reprogramming Tools Introduction 10.12.4 Japan Tissue Engineering Revenue in Cellular Reprogramming Tools Business (2015-2020) 10.12.5 Japan Tissue Engineering Recent Development 14Analysts Viewpoints/Conclusions 15Appendix15.1 Research Methodology 15.1.1 Methodology/Research Approach 15.1.2 Data Source15.2 Disclaimer15.3 Author Details

About Us:

QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

Continued here:
Cellular Reprogramming Tools Market Research Key Players, Industry Overview and forecasts to | 2026 - Weekly Wall

Cells inside Cells: The Bacteria That Live in Cancer Cells – ETHealthworld.com

In a research conducted by Dr. Ravid Straussman's supported by the Roel C. Buck Career Development Chair and the European Research Council.

Dr. Ravid Straussman stated that cancer cells are comfy havens for bacteria. The conclusion arise from a rigorous study of over 1,000 tumor samples of different human cancers. The study, headed by researchers at the Weizmann Institute of Science, found bacteria living inside the cells of all the cancer types from brain to bone to breast cancer and even identified unique populations of bacteria residing in each type of cancer. The research suggests that understanding the relationship between a cancer cell and its mini-microbiome may help predict the potential effectiveness of certain treatments or may point, in the future, to ways of manipulating those bacteria to enhance the actions of anticancer treatments. The findings of this study were published in Science.

Dr. Ravid Straussman of the Institutes Molecular Cell Biology Department had, several years ago, discovered bacteria lurking within human pancreatic tumor cells; these bacteria were shown to protect cancer cells from chemotherapy drugs by digesting and inactivating these drugs. When other studies also found bacteria in tumor cells, Straussman and his team wondered whether such hosting might be the rule, rather than the exception. To find out, Drs. Deborah Nejman and Ilana Livyatan in Straussmans group and Dr. Garold Fuks of the Physics of Complex Systems Department worked together with a team of oncologists and researchers around the world. The work was also led by Dr. Noam Shental of the Mathematics and Computer Science Department of the Open University of Israel.

Ultimately, the team would produce a detailed study describing, in high resolution, the bacteria living in these cancers brain, bone, breast, lung, ovary, pancreas, colorectal and melanoma. They discovered that every single cancer type, from brain to bone, harbored bacteria and that different cancer types harbor different bacteria species. It was the breast cancers, however, that had the largest number and diversity of bacteria. The team demonstrated that many more bacteria can be found in breast tumors compared to the normal breast tissue surrounding these tumors, and that some bacteria were preferentially found in the tumor tissue rather than in the normal tissue surrounding it.

The team also reported that bacteria can be found not only in cancer cells, but also in immune cells that reside inside tumors. Some of these bacteria could be enhancing the anticancer immune response, while others could be suppressing it a finding that may be especially relevant to understanding the effectiveness of certain immunotherapies, says Straussman. Indeed, when the team compared the bacteria from groups of melanoma samples, they found that different bacteria were enriched in those melanoma tumors that responded to immunotherapy as compared to those that had a poor response.

Straussman thinks that the study can also begin to explain why some bacteria like cancer cells and why each cancer has its own typical microbiome: The differences apparently come down to the choice of amenities offered in each kind of tumor-cell environment. That is, the bacteria may live off certain metabolites that are overproduced by or stored within the specific tumor types. For example, when the team compared the bacteria found in lung tumors from smokers with those from patients who had never smoked, they found variances. These differences stood out more clearly when the researchers compared the genes of these two groups of bacteria: Those from the smokers lung cancer cells had many more genes for metabolizing nicotine, toluene, phenol and other chemicals that are found in cigarette smoke.

In addition to showing that some of the most common cancers shelter unique populations of bacteria within their cells, the researchers believe that the methods they have developed to identify signature microbiomes with each cancer type can now be used to answer some crucial questions about the roles these bacteria play: Are the bacteria freeloaders on the cancer cells surplus metabolites, or do they provide a service to the cell? At what stage do they take up residence? How do they promote or hinder the cancers growth? What are the effects that they have on response to a wide variety of anticancer treatments?

Tumors are complex ecosystems that are known to contain, in addition to cancer cells, immune cells, stromal cells, blood vessels, nerves, and many more components, all part of what we refer to as the tumor microenvironment. Our studies, as well as studies by other labs, clearly demonstrate that bacteria are also an integral part of the tumor microenvironment. We hope that by finding out how exactly they fit into the general tumor ecology, we can figure out novel ways of treating cancer, Straussman says.

See the rest here:
Cells inside Cells: The Bacteria That Live in Cancer Cells - ETHealthworld.com

Bald men at higher risk of having severe coronavirus, shocking new research suggests – Express

Researchers believe the link is so strong that they have called for baldness to be listed as a risk factor called the Gabrin sign This is after Dr Frank Gabrin, the first US physician to die of coronavirus, who was also bald. Lead author of the study, Professor Carlos Wambier of Brown University, told The Telegraph: "We really think that baldness is a perfect predictor of severity."

Recently scientists have hypothesised that coronavirus is more deadlier for men due than women because of testosterone.

Italian doctors have previously found patients given androgen deprivation therapy, which radically cuts testosterone levels, were four times less likely to die from coronavirus.

A protein, TMPRSS2, is driven up by testosterone and scientists think the virus could use this protein to help it unlock cells.

Researchers at Londons Institute for Cancer Research are examining the link further, whilst the University of California, Los Angeles is looking at testosterone-blocking therapy to help with coronavirus treatment.

Testosterone can produce dihydrotestosterone (DHT) which can lead to hair loss.

Though as per South China Morning Post, it is possible to have low levels of testosterone but high levels of DHT.

The further data on baldness further raises the possibility that treatments that cut testosterone could be used to slow the virus down.

Discussions have taken place about a trial using baldness drugs to treat coronavirus.

READ MORE:Chinas Xi Jinping vows to strengthen public health system

A study of 122 patients in three Madrid hospitals found 79 percent of the men were bald.

Howard Soule, executive vice president at the Prostate Cancer Foundation, told Science Magazine: "Everybody is chasing a link between androgens and the outcome of Covid-19.

Karen Stalbow, Head of Policy at Prostate Cancer UK, said: There have been several recent pieces of research which indicate there may be a link between male hormones and increased risk of Covid-19.

This has led some researchers to investigate whether hormone therapies commonly used to treat prostate cancer, such as enzalutamide, could reduce this risk.

DON'T MISS

New Yorks coronavirus came from Europe and NOT China (LATEST)Antimalarial drug study withdrawn as authors deny its authenticity (ANALYSIS)Vaccine summit in UK exceeds target by raising nearly 7 billion(NEWS)

However, most of the research so far has been in the lab, and there is conflicting evidence over whether the hormone therapies have the same impact in the lungs as they would in prostate cells.

There are now several clinical studies starting which hope to address these issues, but much more evidence is needed before we can know whether these hormone therapies would be an effective treatment for Covid-19.

Professor Nick James of the Institute for Cancer Research has warned against using testosterone cutting treatment as a preventive measure due to their severe side effects.

He explained to the Mail on Sunday: Being on these drugs is the male equivalent of going through the menopause.

You would almost certainly cause more harm than good.

According to the NHS, the following people are considered clinically extremely vulnerable: people who have had an organ transplant, people undergoing chemotherapy or antibody treatment for cancer, intense radiotherapy, cancer treatments which affect the immune system, people who have blood or bone marrow cancer, those have had a bone marrow or stem cell transplant in the previous six months, or are still taking immunosuppressant medicine, those with a severe lung condition, those with a condition which puts them at high risk of infection or taking medicines which makes them more likely to do so and expecting mothers with heart conditions.

The list of people are considered at moderate risk includes: Those over 70, expecting mothers, those who have lung conditions which are not severe, those with heart disease, diabetics, those with chronic kidney disease, those with liver disease, those with a condition affecting the brain or nerves and those who are obese.

Previously, environmental factors were hypothesised as being behind the higher risk to men.

This includes the fact men are more likely to be smokers.

Read more from the original source:
Bald men at higher risk of having severe coronavirus, shocking new research suggests - Express

Covid19: Increase in centers moving to collect convalescent plasma is creating a new demand says Chetan Mak.. – ETHealthworld.com

By Smridhi Uppal

In an interaction with EThealthworld, Mr. Chetan Makam, Managing Director, Terumo Penpol Pvt. Ltd talks about how Covid19 has affected the essentials industry in carrying out new normals with respect to terms of supply and demand.

How has the covid-19 pandemic impacted the healthcare sector?The healthcare sector has various segments; delivery of patient care, medical devices, pharma etc. and each of them has been affected in different ways.

TerumoBCT specializes in the manufacturing of medical equipment, particularly equipments used in blood and cell collections. The need for blood never diminishes as patients need blood and blood components for a variety of treatments such as oncology, sickle cell disease, maternal and child health related intervention and for emergency surgeries.

In India, ICMR has initiated a multi-center clinical trial, titled A Phase II, Open Label, Randomized Controlled Trial to Assess the Safety and Efficacy of Convalescent Plasma to Limit COVID-19 Associated Complications in Moderate Disease. (PLACID Trial). About 35 centers across India are approved for the trials and we are supporting several of them.

What are the major investments that TerumoBCT is continuing to make?

We at Terumo Penpol conduct a couple of hundred blood donation drives and promote voluntary blood donation (VBD). Our CSR activities include support for various organizations working in Thalassemia, Hemophilia as well as in stem cell donations.

Terumo is an established company in Kerala. We continue to invest both in the well-being of our associates and in high quality medical devices that support the demands of the local market and in fact, the world. The reliability of the local supply chain, products from our facility make their way around the globe to meet essential healthcare needs.

Terumo Penpol was the first medtech company chosen to participate in the Japan-India Institute of Manufacturing (JIM) program. Overseen by the Japanese Ministry of Economy, Trade and Industry, JIM was borne out of PM Narendra Modis request to his Japanese counterpart Shinzo Abe for support to scale up industrial work skills among Indian youth. Our participation contributes to the Skill India, Make in India and Ayushman Bharat initiatives.

We have invested over the past few years in a comprehensive and established Business Continuity Policy, designed to safeguard associates around the world and ability to deliver products worldwide. Guided by this policy and social responsibility to healthcare, we are committed to providing continuous support to customers so they can continue their business operations during critical events as they rely on the quality of products and the services we provide.

How has your company contributed to combating this pandemic?We continue to operate our factories and provide products and services to our customers globally as they depend on us to collect blood, cells and now plasma, while ensuring that our employees are working in safe conditions.Our parent company, Terumo Corporation, has donated USD 2.4 million in cash and products to support COVID-19 relief efforts worldwide including a USD 1 million donation to the COVID-19 Solidarity Response Fund for WHO. The Solidarity Response Fund supports research and development of new therapies and vaccines, global response to the pandemic, such as tests and personal protective equipment, and education and communication efforts to protect individuals against the infection.

Terumo BCT specifically, focused on unlocking the potential of blood and cells and to the contributing solutions that can have an impact now to fight against COVID-19. In the current context, our products are uniquely placed to cater to various medical interventions. We have a product for convalescent plasma collection, which provides passive immunity to patients with COVID-19 and may help preventing infection in high risk groups, such as healthcare workers. Our Pathogen Reduction Technology system is already being used in many countries to add a layer of safety in blood transfusion and recently for convalescent plasma.

Similarly, we have also a product to help treat respiratory failure in adult patients with confirmed COVID-19. The treatment reduces pro-inflammatory cytokine levels, which cause cytokine storm. The cytokine storm that occurs in some COVID-19 patients, leads to severe inflammation, rapidly progressive shock, respiratory failure, organ failure and death.

What are your expectations from the government?The local government in Thiruvananthapuram, Kerala has provided us with the permissions to operate as an essential industry. Given the treatments and technologies that we can bring to serve more patients, having a process with the regulators to provide emergency use authorization would be a plus. Expedited approvals for products made at multiple locations to ensure business continuity. Relief on import duties on products for the duration of the COVID restrictions to offset the cost of increased freight. Governments can also help by paying outstanding dues immediately.

How do you think this crisis will affect the balance sheets of firms?The key for many companies will be to devise ways to conserve cash as it will allow them to be flexible and respond better to the changing scenarios. its the time to reduce 1 percent from the CSR activities and conserve money for investing tomorrow, by authorizing 2 percent from it.

What are the challenges do you see in Make in India? I am glad to see that the Government of India is bringing in policies to make India a manufacturing hub for medical devices. What is encouraging is that the government is emphasizing on the need for the products to be at par with international standards so that it can cater to the domestic as well as overseas markets. This is indeed a progressive outlook and need to be applauded. One area which needs to be addressed is absence of skilled labour to support domestic/local manufacturing of medical devices.

Hence skilling of labour force is necessary. Another area where there has been a lacuna in most cases is absence of collaborative approach wherein government, private sector and academia join forces for better outcome. However, in the fight against COVID- 19, Indias mitigation response has seen collaborative research and innovation.

Indian Government, academia, and the private sector have come together to bring in pioneering solution. Following this triple helix approach even in the long-term (post-COVID) would benefit the medical device players as well as the customers as it brings together capabilities and resources to solve common problems more efficiently. For the government, it helps address healthcare challenges through innovative and cost-effective approaches.

ICMR has initiated a multi-center clinical trial, titled A Phase II, Open Label, Randomized Controlled Trial to Assess the Safety and Efficacy of Convalescent Plasma to Limit COVID-19 Associated Complications in Moderate Disease. (PLACID Trial). About 35 centers across India are approved for the trials and we are supporting several of them. Hence, it is important to take forward this very important learning from the pandemic and MNCs and local manufacturers should work in tandem to bring in effective solutions to address healthcare challenges in India and globally.

Tell us something about the latest developments and global trends in medical devices associated with blood industry? Spectra Optia apheresis system has seen interesting developments recently. In Covid-19 patients, it aims reduce the number of cytokines and other inflammatory blood proteins that control a cells immune response, filtering the blood and returning it to the patient. The proteins that are removed are typically elevated during infections and can be associated with a cytokine storm that occurs in some COVID-19 patients, leading to severe inflammation, rapidly progressive shock, respiratory failure, organ failure and death.

Another interesting development has been that researchers have established that exposing the novel coronavirus to the vitamin riboflavin and ultraviolet light decreases the viral count in human plasma and whole-blood products, a development that may help lower the possibility of transmission of the virus via blood transfusion. The scientists from Colorado State University (CSU) in the US, has still not been able to decipher if SARS-CoV-2 could be transmitted by blood transfusion. However, it is an interesting development to watch for. The device used is the Mirasol Pathogen Reduction Technology System which has been developed by us.

Visit link:
Covid19: Increase in centers moving to collect convalescent plasma is creating a new demand says Chetan Mak.. - ETHealthworld.com