COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -…

The Covid-19 (coronavirus) pandemic is impacting society and the overall economy across the world. The impact of this pandemic is growing day by day as well as affecting the supply chain. The COVID-19 crisis is creating uncertainty in the stock market, massive slowing of supply chain, falling business confidence, and increasing panic among the customer segments. The overall effect of the pandemic is impacting the production process of several industries including Life science Industry, and many more. Trade barriers are further restraining the demand- supply outlook. As government of different regions have already announced total lockdown and temporarily shutdown of industries, the overall production process being adversely affected; thus, hinder the overall Stem Cell Therapy market globally. This report on Stem Cell Therapy market provides the analysis on impact on Covid-19 on various business segments and country markets. The report also showcase market trends and forecast to 2027, factoring the impact of Covid -19 Situation.

To get sample Copy of the report, along with the TOC, Statistics, and Tables please visit @https://www.theinsightpartners.com/sample/TIPHE100000991/

Stem cell therapy is a technique which uses stem cells for the treatment of various disorders. Stem cell therapy is capable of curing broad spectrum of disorders ranging from simple to life threatening. These stem cells are obtained from different sources, such as, adipose tissue, bone marrow, embryonic stem cell and cord blood among others. Stem cell therapy is enables to treat more than 70 disorders, including degenerative as well as neuromuscular disorders. The ability of a stem cell to renew itself helps in replacing the damaged areas in the human body.

MARKET DYNAMICSIncrease in the number of stem cell banking facilities and rising awareness on the benefits of stem cell for curing various disorders are expected to drive the market during the forecast period. Rise in number of regulations to promote stem cell therapy and increase in number of funds for research in developing countries are expected to offer growth opportunities to the market during the coming years.

Key Players

The research provides answers to the following key questions:

The study conducts SWOT analysis to evaluate strengths and weaknesses of the key players in the Stem Cell Therapy market. Further, the report conducts an intricate examination of drivers and restraints operating in the market. The report also evaluates the trends observed in the parent market, along with the macro-economic indicators, prevailing factors, and market appeal according to different segments. The report also predicts the influence of different industry aspects on the Stem Cell Therapy market segments and regions.

Our reports will help clients solve the following issues:

Insecurity about the future:

Our research and insights help our clients anticipate upcoming revenue compartments and growth ranges. This will help our clients invest or divest their assets.

Understanding market opinions:

It is extremely vital to have an impartial understanding of market opinions for a strategy. Our insights provide a keen view on the market sentiment. We keep this reconnaissance by engaging with Key Opinion Leaders of a value chain of each industry we track.

Understanding the most reliable investment centers:

Our research ranks investment centers of market by considering their future demands, returns, and profit margins. Our clients can focus on most prominent investment centers by procuring our market research.

Evaluating potential business partners:

Our research and insights help our clients identify compatible business partners.

Interested in purchasing this Report? Click here @https://www.theinsightpartners.com/buy/TIPHE100000991/

Stem Cell Therapy Market Segmented by Region/Country: North America, Europe, Asia Pacific, Middle East & Africa, and Central & South America

About Us:

The Insight Partnersis a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are committed to provide highest quality research and consulting services to our customers. We help our clients understand the key market trends, identify opportunities, and make informed decisions with our market research offerings at an affordable cost.

We understand syndicated reports may not meet precise research requirements of all our clients. We offer our clients multiple ways to customize research as per their specific needs and budget

Contact Us:

The Insight Partners,

Phone: +1-646-491-9876

Email:[emailprotected]

View original post here:
COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -...

Lineage Cell Therapeutics Reports New Data With OpRegen for the Treatment of Dry AMD With Geographic Atrophy – Business Wire

CARLSBAD, Calif.--(BUSINESS WIRE)--Lineage Cell Therapeutics, Inc. (NYSE American and TASE: LCTX), a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs, today announced that updated results from a Phase I/IIa study of its lead product candidate, OpRegen, a retinal pigment epithelium (RPE) cell transplant therapy currently in development for the treatment of dry age-related macular degeneration (AMD), were published online via the ARVOLearn platform as part of the 2020 Association for Research in Vision and Ophthalmology (ARVO) Meeting. The presentation entitled, Phase I/IIa Clinical Trial of Human Embryonic Stem Cell (hESC)-Derived Retinal Pigmented Epithelium (RPE, OpRegen) Transplantation in Advanced Dry Form Age-Related Macular Degeneration (AMD): Interim Results (Abstract # 3363764), was presented by Christopher D. Riemann, M.D., Vitreoretinal Surgeon and Fellowship Director, Cincinnati Eye Institute (CEI) and University of Cincinnati School of Medicine. Dr. Riemanns presentation is available on the Media page of the Lineage website. Lineage will also host a live call with Dr. Riemann, on Monday, May 11, 2020 at 5:00 p.m. ET/2:00 p.m. PT to further discuss the results of treatment with OpRegen. Interested parties can access the call on the Events and Presentations section of Lineages website.

This update is significant as it builds on our earlier reports of gains in visual acuity and provides a more comprehensive picture of treatment with OpRegen for dry AMD, with meaningful improvements in the progression of geographic atrophy, visual acuity, and reading speed observed in our first Cohort 4 patient and first Orbit SDS with thaw-and-inject formulation dosed patient, stated Brian M. Culley, Lineage CEO. As dry AMD is a slow and progressive disease, it takes many months to observe changes to retinal anatomy or visual acuity. With the benefit of longer follow-up, we now can report that some OpRegen treated patients are able to see better, have less growth in their area of GA, and are able to read faster, all of which represent significant enhancements to vision and quality of life metrics. In addition to these individual results, the pooled data continues to suggest a treatment effect in both visual acuity and GA progression. Notably, we also are reporting additional evidence that OpRegen cells remain present for at least 4 years and hope that longer follow-up periods will reinforce a growing body of evidence that OpRegen is well-tolerated and can provide sustained and clinically meaningful benefits with a single dose of RPE cells. Our near-term objective is to treat and monitor the final four patients in Cohort 4 of the current study and utilize these data to direct our clinical, regulatory, and partnership discussions. Our goal is to combine the best cell line, the best production process, and the best delivery system, to position OpRegen as the front-runner in the race to address the unmet need in the potential billion-dollar dry AMD market.

As a principal investigator on the OpRegen clinical study, I am excited to present this most recent update, where all Cohort 4 patients treated with OpRegen had improved Best Corrected Visual Acuity up to one year or at their last visit, demonstrating a substantial treatment response, stated Christopher D. Riemann, M.D. The pooled Cohort 4 data demonstrate a significant, greater than 10-letter sustained visual acuity improvement over the entire followup period. Reading center assessments of GA also suggest a reduction in GA progression in the OpRegen treated eye when compared to fellow eye in Cohort 4. I am encouraged by the results observed in patients treated to date with OpRegen and I look forward to dosing patients in this study at CEI.

KOL Call Information and Webcast

Lineage will host a conference call with Dr. Riemann, on Monday, May 11, 2020 at 5:00 p.m. ET/2:00 p.m. PT to further discuss the results following treatment with OpRegen. A live webcast of the conference call will be available online in the Events and Presentations section of Lineages website. Interested parties may also access the conference call by dialing (866) 888-8633 from the U.S. and Canada and (636) 812-6629 from elsewhere outside the U.S. and Canada and should request the Lineage Cell Therapeutics Call. A replay of the webcast will be available on Lineages website for 30 days and a telephone replay will be available through May 19, 2020, by dialing (855) 859-2056 from the U.S. and Canada and (404) 537-3406 from elsewhere outside the U.S. and Canada and entering conference ID number 6597936.

About Lineage Cell Therapeutics, Inc.

Lineage Cell Therapeutics is a clinical-stage biotechnology company developing novel cell therapies for unmet medical needs. Lineages programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineages clinical programs are in markets with billion dollar opportunities and include three allogeneic (off-the-shelf) product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, a leading cause of blindness in the developed world; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; and (iii) VAC2, a cancer immunotherapy of antigen-presenting dendritic cells in Phase 1 development for the treatment of non-small cell lung cancer. For more information, please visit http://www.lineagecell.com or follow the Company on Twitter @LineageCell.

Forward-Looking Statements

Lineage cautions you that all statements, other than statements of historical facts, contained in this press release, are forward-looking statements. Forward-looking statements, in some cases, can be identified by terms such as believe, may, will, estimate, continue, anticipate, design, intend, expect, could, plan, potential, predict, seek, should, would, contemplate, project, target, tend to, or the negative version of these words and similar expressions. Such statements include, but are not limited to, statements relating to Lineages objectives with respect to OpRegen. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Lineages actual results, performance or achievements to be materially different from future results, performance or achievements expressed or implied by the forward-looking statements in this press release, including risks and uncertainties inherent in Lineages business and other risks in Lineages filings with the Securities and Exchange Commission (the SEC). Lineages forward-looking statements are based upon its current expectations and involve assumptions that may never materialize or may prove to be incorrect. All forward-looking statements are expressly qualified in their entirety by these cautionary statements. Further information regarding these and other risks is included under the heading Risk Factors in Lineages periodic reports with the SEC, including Lineages Annual Report on Form 10-K filed with the SEC on March 12, 2020 and its other reports, which are available from the SECs website. You are cautioned not to place undue reliance on forward-looking statements, which speak only as of the date on which they were made. Lineage undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made, except as required by law.

Excerpt from:
Lineage Cell Therapeutics Reports New Data With OpRegen for the Treatment of Dry AMD With Geographic Atrophy - Business Wire

Protocol Management, Off-the-Shelf Therapies Help Bring CAR T Into More Settings – Targeted Oncology

Carlos R. Bachier, MD

Chimeric antigen receptor (CAR) T-cell therapies quickly burst into the spotlight of hematology-oncology disease management because of their potential to illicit deep and durable responses from patients whose disease is relapsed or refractory to multiple previous lines of therapy. Relevant professional meetings and oncology publications exploded with research and news about CAR T cells, and this cellular therapy strategy is now being explored across hematologic and solid malignancies.

CAR T cells are a scientific revolution, Tania Jain, MBBS, assistant professor of oncology at Johns Hopkins University in Baltimore, Maryland, said in an interview with Targeted Therapies in Oncology (TTO). They have brought about a paradigm shift in terms of how were treating patients.

The 2 currently FDA-approved CAR T-cell therapies, axicabtagene ciloleucel (Yescarta) and tisagenlecleucel (Kymriah), are both indicated for the treatment of adult patients with relapsed or refractory large B-cell lymphoma; additionally, tisagenlecleucel is approved for patients up to 25 years with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL).1-3 With a second wave of approvals likely on the horizon for therapies such as lisocabtagene maraleucel (liso-cel) and idecabtagene vicleucel (bb2121), CAR T is gaining traction and will likely play an increasingly prominent role in the future treatment paradigm in oncology.

CAR T-cell therapy administration is largely limited to the inpatient setting at both academic institutions and large accredited cancer centers, making such treatments unavailable to most patients. Other challenges with this type of therapy include its potential to cause serious toxicities resulting in organ damage and death.4

David G. Maloney, MD, PhD

Due to the promising efficacy of these agents, investigators have been working toward viable solutions to bring CAR T-cell therapies to more patients by alleviating difficulties associated with therapy delivery and patient care.

CAR T-cell therapies, both those currently approved and the many being explored in late-phase clinical trials, are produced from autologous T cells obtained from the patient receiving therapy. This personalization has led to tremendous success, yet it is a large part of why CAR T-cell therapy use remains limited to a select group of patients.

Time is an important consideration for patients who have experienced multiple relapses and may be too weakened by numerous lines of prior therapy to wait several weeks for the CAR T-cell manufacturing process. The effects of previous treatments or the disease itself can also present challenges, as manypatients are rendered lymphopenic and may be unable to produce enough T cells for harvesting. Roadblocks may remain for patients who are not limited by these factors; manufacturing success and effectiveness of the CAR T-cell product can be negatively influenced by disease-related dysfunctions of patients T cells.4

A new option, off-the-shelf CAR T-cell products, may help solve these problems. These premade products are manufactured using allogeneic donor cells (instead of autologous cells from the patient), and they present immediate advantages to clinicians, such as immediate availability, opportunity for product standardization, and decreased cost.5

The advantages [include] being able to access the cellular therapy in real time, as opposed to autologous products that havetobe manufactured,Craig S. Sauter, MD, clinical director of the Adult Bone Marrow Transplant Service at Memorial Sloan Kettering Cancer Center in New York, New York, explained in an interview withTTO. This is particularly important for patients who are not responding to therapy, which is a current requirement for treatment with CAR T cells, he added.

Findings from a phase I trial (NCT01430390) in patients with relapsed or refractory B-cell malignancies showed that patients with non-Hodgkin lymphoma (NHL) experienced durable responses with an Epstein-Barr virusspecific cytotoxic lymphocyte CAR product derived from cells harvested from third-party donors (rather than from their more precisely matched stem cell donors). All 4 patients with NHL and a single patient with chronic lymphocytic leukemia, who were treated with third-party cells, remained disease free and alive at the time of analysis, with a median follow-up of over 2 years.6

The advantages [of this type of therapy are] that it eliminates the need for apheresis [and] shipping cellular products back and forth. [Instead, clinicians] have a pharmaceutical product on the shelf for access, Sauter, who was an author on the trial, said. Another notable product being investigated in clinical trials is UCART19, an allogeneic engineered anti CD19CAR T-cell product, which is being evaluated in the phase I CALM trial in adult patients with relapsed or refractory B-cell ALL (NCT02746952) and in the phase I PALL trial of pediatric patients with relapsed or refractory CD19-positive B-cell ALL (NCT02808442). Other off-the-shelf agents are described in theTABLE.5

Issues with inpatient CAR T-cell therapy administrationinclude high demands on health care resources and strain on patients and their families. Moving treatment to the outpatient setting has the potential to reduce this strain; however,clinicians taking over care of patients receiving CAR T-cell therapy must be prepared with the proper resources to identify and manage adverse events associated with therapy.

One of the most notable risks to patients receiving CAR T-cell therapy is cytokine release syndrome (CRS), a systemic inflammatory response that is characterized by increased serum levels of inflammatory cytokines, fever, hypotension, hypoxia, and organ dysfunction.4 [CAR T] can also lead to neurological events and can cause confusion and, in some patients, seizures,Carlos R. Bachier, MD, Director of Cellular Research at Sarah Cannon Cancer Center in Nashville, Tennessee, explained in an interview with TTO.

Regardless of the infusion setting, patients require close monitoring in the hours and days following therapy administration. A review byLucrecia Yez, PhD, MS, and colleagues stated that key criteria for treating patients in the outpatient setting include an educated caregiver and necessary infrastructure allowing for outpatient visits plus adequate emergency and intensive care unit (ICU) access. Patients followed as outpatients must be given twice-daily temperature checks for a minimum of 14 days following treatment and preferably extending up to 3 to 4 weeks following infusion. Anysigns of back pain, skin rash, dizziness, chills, shortness of breath, chest pain, tachycardia, or neurological events that may indicate neurotoxicity or signs of CRS must be reported immediately so treatment can begin as quickly as possible.7

Because of the risk of CRS and neurotoxicity, both FDA-approved agents are restricted under the Risk Evaluation and Mitigation Strategy, an FDA-mandated program that builds in caution for use of agents with serious safety concerns.8,9 Therefore, 2 doses of tocilizumab (Actemra), an interleukin (IL)-6 receptor antagonistthat was approved in 2017 for management of CRS associated with CAR T-cell therapy,1,4 should be on hand for each patient before the infusion of CAR T cells. Steroids have also demonstrated efficacy against CRS, but concernssurrounding CAR T-cell suppression with these agents have established them as a second-line choice after tociluzumab.9

Immune effector cellassociated neurotoxicity syndrome (ICANS) is a group of neurologic symptoms associated with treatments such as CAR T-cell therapy. Predisposing factors include younger age, higher tumor burden, high levels of pretreatment inflammation, and history of early or high-grade CRS. Treatments for complications of ICANS vary. Some centers may prescribe prophylactic antiepileptic medications, such as levetiracetam, to prevent seizures in patients with grade 2 or higher neurologic events. AntiIL-6 therapy can be considered in patients with concurrent CRS, but corticosteroids are the preferred regimen in those with neurotoxicity alone.9

In February of this year, the investigational CAR T-cell product liso-cel was granted priority review by the FDA for the treatment of adult patients with relapsed or refractory large B-cell lymphoma who had undergone at least 2 prior therapies.10 Investigators believe that liso-cel therapy may have a place in a broad range of patients and in the outpatient setting.11

It turns out liso-cel has a low incidence of [CRS and ICANS], and they occurred relatively late compared with other products, said Bachier. Because of this low incidence, the strategy was to deliver liso-cel in an outpatient setting.

The feasibility of liso-cel administration on an outpatient basiswas evaluatedby Bachier and colleagues, and the results were presented at the 2020 Transplantation & Cellular Therapy Meetings of the American Society for Transplantation and Cellular Therapy and the Center for International Blood & Marrow Transplant Research, held February 19 to 23, 2020, in Orlando, Florida.12

The authors analyzed data from 3 clinical trials of liso-cel, with a focus on the subset of participants who were treated as outpatients. The included trials were the phase I TRANSCEND-NHL-001 (NCT02631044) and phase II OUTREACH (NCT03744676) trials in patientswhohadundergone at least 2 lines of prior treatment, as well as the PILOT study (NCT03483103), which examined liso-cel as second-line therapy in patients who were ineligible for autologous hematopoietic stem cell transplant because of age, organ function, or ECOG performance score. All 3 studies allowed outpatienttreatment, with some patients receiving their therapy in the nonuniversity setting.

This clinical trial included sites that were not a part of a university but had experience treating patients for stem cell transplant, Bachier said. Some of these sites that participated were notyour traditional university centers that had traditionally been involved in the development of these therapies.

Much caution was required in order to maximize patient safety and treatment efficacy. The approach of doing CAR T-cell therapy, in general, in the outpatient setting requires a robust clinical ability of the centers, said coauthor David G. Maloney, MD, PhD, medical director of Cellular Immunotherapy at the Immunotherapy Integrated Research Center of Fred Hutchinson Cancer Research Center in Seattle, Washington, in an interview. We were able to get people safely to the hospital, and it was rare that you would have to do escalation of care when people were admitted. Most of the time, patients could bemanagedand wereout of the ICU, withrare exceptions. But again, you still have to have the wherewithal to get patients to the ICU pot entially for aggressive care if needed.

Results of the analysis of outpatient data from the 3 trials showed that rates of toxicity and response were similar to those previously reported for the entire patient cohort (both inpatients and outpatients) of the TRANSCEND-NHL-001 trial.

Based on these results, the indication is that you can deliver [liso-cel] in the outpatient setting and the outcomes are good compared with those treated in the inpatient setting, said Bachier. Aside from that, it also showed that liso-cel could be safely administered outside of university programs and in more community-based programs, most of them being aligned [with] or part of stem cell and bone marrow transplant programs.

When planning or setting up a CAR T-cell therapy outpatient program, investigators anticipate possible barriers to successfultreatment. The greatest barrier, according to Bachier, is access to physicians and staff who are knowledgeable and trained to manage toxicities related to CART-cell therapy. These therapies still should not, in my opinion, be delivered [by clinicians in] community centers that do not have the expertise to deliver the therapies safely, he said.

Maloney added that centers should be required to have the ability to triage patients 24/7 and allow for patients to be directly admitted to the hospital if needed. In the case of the analysis of outpatient data from the 3 liso-cel trials however, he said, We found that around 30% to 40% of patients did not actually ever require hospitalization, whichis quite interesting. Most of the 60% to 70% of patients who were hospitalized were admitted for fever, he added.

In addition, sites must gain accreditation and approval, Jain pointed out.

Every center that intends to do CAR T-cell therapy is first approved by each of the companies [that manufacturethese agents], Jain said. The centers also have to be approved by FACT [Foundation for the Accreditation of Cellular Therapy], which is the same organization that approves centers for allogeneic stem cell transplant. These are some of the largest things that a center needs to go through, which takes care of things like developing standard practices and other guidelines to make sure that these [therapies] are used safely and appropriately.

As investigators and oncologists explore the feasibility of moving CAR T-cell therapy into more settings, 2 questions arise: What settings have on this therapy?

What type of training and skills do clinicians need? Like other clinicians, Sauter has concerns about new allogeneic cellular therapies,andhe hopes future research will focus on mitigating these challenges. The concern would be that these are not autologous products and there is the risk of rejection from the host immune system, he said. Strategies to circumnavigate that risk are at the forefront of investigationin off-the-shelf CAR T cells.

The research is not stopping with CAR T-cell therapy,though. Were seeing a lot of new molecules coming in that will be challenging the roles of CAR T cells, [such as] specific antibodies, which may even work in cases of CAR T-cell failure, Maloney said. We are still learning how to make those more effective and safer.

References:

1. FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine releasesyndrome.FDAwebsite.PublishedAugust30,2017.AccessedApril14, 2020. bit.ly/2RC4eQ8

2. FDA approves axicabtagene ciloleucel for large B-cell lymphoma. FDA website. Published October 18, 2017. Accessed April 14, 2020. bit.ly/2yYIQOp

3. FDA approves tisagenlecleucel for adults with relapsed or refractory large B-cell lymphoma. FDA website. Published May 1, 2018. Accessed April 14, 2020. bit.ly/34zPoi8

4. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147167. doi: 10.1038/s41571-019-0297-y

5. DepilS,DuchateauP,GruppSA,MuftiG,PoirotL.Off-the-shelfallogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185199. doi: 10.1038/s41573-019-0051-2

6. Curran KJ, Sauter CS, Kernan CS, et al. Durable remission following off-theshelf chimeric antigen receptor (CAR) T-cells in patients with relapse/refractory (R/R) B-cell malignancies. Presented at: 2020 Transplantation & Cellular Therapy Meetings; February 19-23, 2020; Orlando, FL. Abstract 120. bit.ly/2ufDYCu

7. Yez L, Snchez-Escamilla M, Perales MA. CAR T cell toxicity: current managementandfuturedirections. Hemasphere.2019;3(2):e186.doi:10.1097/ HS9.0000000000000186

8. Risk evaluation and mitigation strategies | REMS. FDA website. Updated August 8, 2019. Accessed April 14, 2020. bit.ly/2ykhLVt

9. JainT,BarM,KansagraAJ,etal.UseofchimericantigenreceptorTcell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol Blood Marrow Transplant. 2019;25(12):2305-2321. doi: 10.1016/j.bbmt.2019.08.015

10. U.S. Food and Drug Administration (FDA) accepts for Priority Review Bristol-Myers Squibbs Biologics License Application (BLA) for lisocabtagene maraleucel (liso-cel) for adult patients with relapsed or refractory large B-cell lymphoma. News release. Bristol-Myers Squibb; February 12, 2020. Accessed April 15, 2020. bit.ly/37ruQbs

11. Helwick C. Strong activity shown for lisocabtagene maraleucel CAR T-cell therapy in aggressive large B-cell lymphoma. ASCO Post website. Published February 25, 2020. Accessed April 15, 2020. bit.ly/3eoD0pT

12. Bachier CR, Palomba ML, Abramson JA, et al. Outpatient treatment with lisocabtagene maraleucel (liso-cel) in 3 ongoing clinical studies in relapsed/refractory (R/R) large B cell non-Hodgkin lymphoma (NHL), including second-line transplant noneligible (TNE) patients: TRANSCEND NHL 001, OUTREACH, and PILOT. Presented at: 2020 Transplantation & Cellular Therapy Meetings; February 19-23, Orlando, FL. Abstract 29. bit.ly/37I7DC9

See the article here:
Protocol Management, Off-the-Shelf Therapies Help Bring CAR T Into More Settings - Targeted Oncology

BrainStorm Leases a New Cleanroom Facility at The Tel Aviv Sourasky Medical Center to Manufacture NurOwn for The European Union – Yahoo Finance

NEW YORK, N.Y., and TEL AVIV, Israel, May 07, 2020 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, announced today a lease agreement with the Tel Aviv Sourasky Medical Center (Sourasky)in Tel Aviv, Israel, to produce NurOwn in three state-of-the-art cleanrooms. The new facility will significantly increase the Companys capacity to manufacture and ship its product into the European Union and the local Israeli market. The cleanroom facility is part of Souraskys Institute for Advanced Cellular Therapies.

"Sourasky Hospital is a leader in the advancement and manufacturing of cell and gene therapy products and is well-equipped to rapidly scale up and produce NurOwn," stated Prof. Ronni Gamzu, CEO of Tel Aviv Sourasky Medical Center. "We look forward to continuing our work with BrainStorm to bring NurOwn to ALS patients and help fulfill the clinical therapy demands for the Companys pipeline programs.

"Sourasky Hospital, known for introducing pioneering solutions into clinical practice and advancing patient care, has a first rate team with the proven experience to produce regenerative products in accordance to the highest standard of cGMP manufacturing," said Chaim Lebovits, CEO of BrainStorm. "This agreement will ensure that we can provide NurOwn to patients after regulatory approval, not only in Israel but we have secured capacity to rapidly scale up production as we advance our investigational treatment across the European Union. We are very pleased to be able to expand our ongoing collaboration with Sourasky Hospital, one of the worlds most innovative and respected medical centers."

About NurOwn NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received U.S. FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began in March 2019.

About BrainStorm Cell Therapeutics Inc. BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment in March 2019. For more information, visit the company's website at http://www.brainstorm-cell.com

Safe-Harbor Statement Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

Story continues

CONTACTS

Investor Relations:Preetam Shah, MBA, PhDChief Financial OfficerBrainStorm Cell Therapeutics Inc.Phone: + 1.862.397.1860pshah@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com

Originally posted here:
BrainStorm Leases a New Cleanroom Facility at The Tel Aviv Sourasky Medical Center to Manufacture NurOwn for The European Union - Yahoo Finance

CRISPR Therapeutics and Vertex Pharmaceuticals Announce FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to CTX001 for the…

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, May 11, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced that the U.S. Food and Drug Administration (FDA) granted Regenerative Medicine Advanced Therapy (RMAT) designation to CTX001, an investigational, autologous, gene-edited hematopoietic stem cell therapy, for the treatment of severe sickle cell disease (SCD) and transfusion-dependent beta thalassemia (TDT).

RMAT designation is another important regulatory milestone for CTX001 and underscores the transformative potential of a CRISPR-based therapy for patients with severe hemoglobinopathies, said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. We expect to share additional clinical data on CTX001 in medical and scientific forums this year as we continue to work closely with global regulatory agencies to expedite the clinical development of CTX001.

The first clinical data announced for CTX001 late last year represented a key advancement in our efforts to bring CRISPR-based therapies to people with beta thalassemia and sickle cell disease and demonstrate the curative potential of this therapy, said Bastiano Sanna, Ph.D., Executive Vice President and Chief of Cell and Genetic Therapies at Vertex. We are encouraged by these recent regulatory designations from the FDA and EMA, which speak to the potential impact this therapy could have for patients.

Established under the 21st Century Cures Act, RMAT designation is a dedicated program designed to expedite the drug development and review processes for promising pipeline products, including genetic therapies. A regenerative medicine therapy is eligible for RMAT designation if it is intended to treat, modify, reverse or cure a serious or life-threatening disease or condition, and preliminary clinical evidence indicates that the drug or therapy has the potential to address unmet medical needs for such disease or condition. Similar to Breakthrough Therapy designation, RMAT designation provides the benefits of intensive FDA guidance on efficient drug development, including the ability for early interactions with FDA to discuss surrogate or intermediate endpoints, potential ways to support accelerated approval and satisfy post-approval requirements, potential priority review of the biologics license application (BLA) and other opportunities to expedite development and review.

In addition to RMAT designation, CTX001 has received Orphan Drug Designation from the U.S. FDA for TDT and from the European Commission for TDT and SCD. CTX001 also has Fast Track Designation from the U.S. FDA for both TDT and SCD.

About CTX001CTX001 is an investigational ex vivo CRISPR gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth and is then replaced by the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and painful and debilitating sickle crises for SCD patients. CTX001 is the most advanced gene-editing approach in development for beta thalassemia and SCD.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex.

About the CRISPR-Vertex CollaborationCRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic partnerships with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases) and discussions with regulatory authorities related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the benefits of RMAT designation; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: the potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, the information provided regarding the status of, and expectations with respect to, the CTX001 clinical development program and related global regulatory approvals, and expectations regarding the RMAT designation. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of factors that could cause actual events or results to differ materially from those indicated by such forward-looking statements. Those risks and uncertainties include, among other things, that the development of CTX001 may not proceed or support registration due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167 reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.com orU.S.: +1 617-341-6992orHeather Nichols: +1 617-961-0534orInternational: +44 20 3204 5275

Continue reading here:
CRISPR Therapeutics and Vertex Pharmaceuticals Announce FDA Regenerative Medicine Advanced Therapy (RMAT) Designation Granted to CTX001 for the...

Study: Want to lose weight? Get rid of that pesky nose – The Big Smoke Australia

An American study has discovered the link between a sense of smell and the rolls under ones chin. In fact, the better it smells, the fewer calories we burn.

We all have that friend, that one friend who tells you about how just the smell of food makes them put on weight, before they dig into their kale packed quinoa super salad. Much as it may hurt you to strain a disingenuous laugh at your fitness-savvy friend, there may actually be some truth to their done to death office room joking.

Researchers at the University of California Berkeley have found that obese mice who have lost their sense of smell do in fact lose weight.

Surely thats because without their ability to sniff out their delicious fatty food which one can only assume is some kind of deep-fried cheese, and not the local RatDonalds, or similar rodent-based fast-food chain bulkier mice lose any desire to eat their problems away, right?

Interestingly enough, thats not exactly right.

These nostril-y lacking mice ate just as much fatty food as their normally smelling peers, yet only the mice that retained their sense of smell gained any weight. Whats more, mice that were given a boosted sense of smell perhaps the most useless superpower one could ever hope for grew even fatter on the same high-fat diet than ordinarily nosed mice.

This suggests that the odour of our food has great importance in how our bodies deal with calories. If you were to lose your ability to smell your food, much like our rodent friends above, your body may burn it, rather than store it.

The results of this study show a key connection between the olfactory (or smell) system and regions of the brain that regulates metabolism, particularly the hypothalamus.

It should be noted, however, that the neural circuits involved are still unknown.

Cline Riera, a former UC Berkeley postdoctoral fellow now at Los Angeles Cedars-Sinai Medical Centre, described the study as one of the first that demonstrates how we can actually alter how the brain perceives energy balance, and how the brain regulates energy balance, by manipulating olfactory inputs our noses.

Indeed, humans who lose their sense of smell because of age, injury or diseases such as Parkinsons often become anorexic, but until this point, the cause has been unclear. This is because loss of pleasure in eating also leads to depression, which in itself can cause a loss of appetite.

This study, published in this weeks Cell Metabolism journal, indicates the loss of smell itself plays a role, and suggests possible interventions for both those who have lost their sense of smell as well as those having trouble losing weight.Sensory systems play a role in metabolism, explains senior author Andrew Dillin, the Thomas and Stacey Siebel Distinguished Chair in Stem Cell Research, professor of molecular and cell biology and Howard Hughes Medical Institute Investigator.

Weight gain isnt purely a measure of the calories taken in; its also related to how those calories are perceived.

If we can validate this in humans, perhaps we can actually make a drug that doesnt interfere with smell but still blocks that metabolic circuitry. That would be amazing.

Riera notes that mice, like humans, are more sensitive to smells when they are hungry than after they have eaten, and that as a result, it is possible that the lack of smell tricks the body into thinking it has already eaten. While we search for food, our bodies store calories in case it is unsuccessful. Once food has been successfully found, however, our bodies feel free to burn those calories away.

In order to avoid condemning their furry friends to a scent free life, researchers made use of gene therapy to destroy olfactory neutrons in the mices noses, while sparing their stem cells.

This meant the mice would only lose their sense of smell for about three weeks, before the olfactory neutrons regret. The mice turned their beige fat cells the subcutaneous fat storage cells that accumulate around our thighs and midriffs into brown fat cells, which burn fatty acids to produce heat.

In fact, some turned almost all of their beige fat into brown fat, making them as lean as any of your workplace gym junkies.

White fat cells the storage cells that cluster around our internal organs and are associated with poor health outcomes also shrank in size.

The formerly chunky mice, which had also developed glucose intolerance a condition that leads to diabetes also regained normal glucose tolerance, in addition to their weight loss.

Its not all good news, though. The loss in smell was accompanied by a large increase in levels of the hormone noradrenaline: a stress response tied to the sympathetic nervous system.

In humans, this sustained hormone rise could lead to a heart attack.

As Dillin notes, though eliminating smell in humans wanting to lose weight would be a drastic step to take, it could be a viable alternative for morbidly obese people contemplating stomach stapling or bariatric surgery, even in spite of the increase noradrenaline line.

For that small group of people, you could wipe out their smell for maybe six months and then let the olfactory neutrons grow back, after theyve got their metabolic program reworked.

Dillon and Riera developed two different techniques in blocking the sense of smell in adult mice one involving genetically engineering mice to express a diphtheria receptor in their olfactory neutrons, which reach from the noses odour receptors to the olfactory centre in the brain.

When diphtheria toxin was sprayed into their nose, the neurons died, rendering the mouse smell-free until their stem cells regenerated them.

In method two, they engineered a benign virus to carry the receptor into olfactory cells only via inhalation. Once inhaled, the diphtheria toxin would again take down their sense of smells for around three weeks.Regardless of how the mouse lost their sense of smell, they ate the same amount of high-fat food as their scent appreciative cousins.

However, while the smell-deficient mice gained at most 10 per cent more weight going from 25-30 grams to 33 grams the stock standard mice gained about 100 per cent of their normal weight, climbing up to 60 grams and giving up any hope of a summer beach bod.

The smell-free mice retained a normal insulin sensitivity and response to glucose both of which are disrupted in metabolic disorders like obesity.

Better still, mice that were already chunky lost weight after their smell was knocked out, slimming down to the size of normal mice while still eating their high-fat diet. Only fat weight was lost, with no impact on muscle, organ or bone mass.

The UC Berkeley researchers then teamed up with colleagues in Germany who had developed a super smelling strain of mice, complete with more acute olfactory nerves, where they made the discovery of their increase in weight gain.

People with eating disorders sometimes have a hard time controlling how much food they are eating and they have a lot of cravings, explained Riera.

We think olfactory neurons are very important for controlling pleasure of food, and if we have a way to modulate this pathway, we might be able to block cravings in these people and help them with managing their food intake.

Of course, before you go rushing to your shed in hopes of removing your bothersome nose, it should be noted that research is still ongoing, and that mice are, believe it or not, not identical to your average human being.

Still, if all it takes to meet your shredding goals is a few weeks without your overrated sense of smell, it might be time to cancel that gym membership.

Again.

See the rest here:
Study: Want to lose weight? Get rid of that pesky nose - The Big Smoke Australia

Platelet-rich plasma: Does the cure for hair loss lie within our blood? – Harvard Health Blog – Harvard Health

Platelet-rich plasma, or PRP, is derived from the bloodstream and has been used for years to treat musculoskeletal conditions, and more recently, skin conditions. Colloquially termed vampire treatments, PRP injected into the skin or used after microneedling (a technique that uses small needles to create microscopic skin wounds) may help to improve skin texture and appearance. Recently, PRP has garnered attention as a promising solution for one of the most challenging problems in dermatology: hair loss.

Platelets are one of four primary components of blood (the other three are red blood cells, white blood cells, and plasma). Platelets promote cell growth and regeneration. As the term platelet-rich plasma suggests, platelets are generally about five times more concentrated in PRP than in regular blood. This concentration of platelets is useful, because platelets secrete growth factors than are thought to assist in wound healing and tissue regrowth.

When it comes to hair loss, the theory is that platelets, injected deep into the scalp to reach the bottom of the hair follicle, may stimulate a specialized population of cells named dermal papilla cells, which play a critical role in hair growth.

The process of obtaining PRP involves a blood draw and a centrifuge. To yield PRP, blood is drawn from your arm, then spun down in a centrifuge (a machine that spins at high speeds to help separate blood components). After centrifuging, the plasma rises to the top, and the lower part of the plasma is the PRP. Sometimes, a second spin is performed to increase the platelet concentration of the plasma.

Your own PRP is collected, then injected into multiple areas of hair loss across your scalp. The usual treatment plan involves three sessions, approximately one month apart, followed by maintenance sessions every three to six months to keep up the results.

Most research on PRP for hair loss has focused on its use to treat androgenetic alopecia (AGA). Also known as hormone-related baldness, this is a condition that can affect both men and women. In men with AGA, hair loss typically occurs on the top and front of the head. In women, thinning occurs on the top and crown of the head and often begins with the center hair part growing wider. The evidence suggests that PRP may work best when it is combined with other treatments for AGA, such as topical minoxidil (Rogaine) or oral finasteride (Propecia), which is an anti-androgenic drug.

There is not enough evidence to make conclusions about the effectiveness of PRP for other types of hair loss, like telogen effluvium (stress-related hair loss), alopecia areata (autoimmune-related non-scarring hair loss), or forms of scarring hair loss.

PRP injections are not suitable for everyone. These injections can be painful, for both your scalp and your wallet. One session can cost around $1,000, with a series of three treatments needed before improvement may be seen. These treatments are generally not covered by insurance.

PRP injections are considered safe when performed by a trained medical provider. Mild risks include pain, redness, headaches, and temporary hair shedding. PRP may not be appropriate for those with a history of bleeding disorders or autoimmune disease.

Providers currently use a variety of PRP harvesting and administration techniques. More research is needed to understand the best process for obtaining and injecting PRP. Further, more information is needed to understand how PRP helps regrow hair, and how useful it may be for less common types of hair loss.

Follow us on Twitter @NeeraNathanMD and @hairwithdrmare

Read the original here:
Platelet-rich plasma: Does the cure for hair loss lie within our blood? - Harvard Health Blog - Harvard Health

Somatic Stem Cells – Methods and Protocols | Shree Ram …

Stem cells are found in almost all organisms from the early stages of development to the end of life. There are several types of stem cells and all of them may prove useful for medical research; however, each of the different types has both promise and limitations. Somatic Stem Cells: Methods and Protocols presents selected genetic, molecular, and cellular techniques used in somatic stem cell research and its clinical application. Chapters focus on the isolation, characterization, purity, plasticity, and clinical uses of somatic stem cells from a variety of human and animal tissues. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.

Through and intuitive, Somatic Stem Cells: Methods and Protocols seeks to provides scientists with the fundamental techniques of stem cell research and its potential application in regenerative medicine.

Follow this link:
Somatic Stem Cells - Methods and Protocols | Shree Ram ...

UAE’s first Covid-19 patient to recover after stem-cell therapy tells of medical journey – The National

The first UAE patient to recover from Covid-19 after stem-cell therapy has told of his gruelling journey to "full health" after being placed in a coma to stop his organs shutting down.

Abdullahi Rodhile, 50, from Somalia, contracted the virus on March 30 and, because of an existing heart condition, his health deteriorated quickly.

The virus attacked his kidneys and lungs so badly that doctors rushed him into the intensive care unit at Sheikh Khalifa Medical City in Abu Dhabi and put him in an induced coma for 20 days.

Whenever we called the hospital to ask about him, they would say 'just pray for him', Mr Rodhile's sister Zainab, 55, told The National.

Zainab said the family braced themselves for bad news after seeing global death tolls rapidly rise.

I was brought back to life. I was dead and now I am alive

Abdullahi Rodhile

With all this news, we lost our hope," she said. "I swear to God, I thought he was going to [die]. Even his wife prepared herself that he was not coming back.

A week after Mr Rodhile was admitted into the hospital, doctors from the Abu Dhabi Stem Cell Centre proposed a new therapy they believed could help to treat the effects of Covid-19.

Eager to try any treatment that could help, the family agreed and Mr Rodhile became the first Covid-19 patient in the UAE to be given stem cell therapy.

It involves isolating then activating stem cells taken from the patient's blood before they are nebulised into a fine mist so they can be inhaled into the lungs.

The therapy has since been used on 72 other coronavirus patients with severe symptoms.

I was brought back to life. I was dead and now I am alive, said Mr Rodhile, who works as a cargo clerk.

I have never been better. Thank God."

He spent 40 days in intensive care but only after he started the stem cell therapy did his lungs begin to improve slightly.

Mr Rodhile eventually healed enough to gradually awaken from the coma.

The first thing he did after he regained consciousness was call his sister.

He asked for his cell phone and asked them to dial my number," Zainab said. "It was 12am and I saw his name and I was in shock. I couldnt even move."

Mr Rodhile was disoriented and confused at first but slowly began to recover his strength.

I do believe that, after God, stem cell made his life different, his sister said.

Mr Rodhile is father to 10 children with his youngest aged only a month. His wife and children live in Somalia.

His stem cell treatment was free, in line with an order from Sheikh Mohamed bin Zayed, Crown Prince of Abu Dhabi and Deputy Supreme Commander of the Armed Forces, that all costs be covered for any critical coronavirus cases.

The treatment is considered "supportive". It is administered to patients alongside more conventional medical support and established treatment, rather than as a replacement.

"I am grateful and want to thank every person who has supported me and has taken care of me, and for Sheikh Mohamed and the UAE government for covering my treatment," Mr Rodhile said.

____________

Sheikh Mohammed calls for UAE to make 'fastest recovery' from pandemic

A medical worker puts away a Covid-19 swab test at one of the Mussaffah testing facilities. Victor Besa / The National

An Abu Dhabi resident goes for a jog along the Corniche, as the government eases movement restrictions. Victor Besa / The National

Abu Dhabi residents wear mandatory masks as they walk in the city.Victor Besa / The National

Safety instructions are on display outside Al Awir fruit & vegetable market in Dubai. Pawan Singh / The National

DUBAI, UNITED ARAB EMIRATES , May 6 2020 :- A person wearing protective face mask and covering his face with laptop bag on a hot day in Bur Dubai area in Dubai. UAE government ease the coronavirus restriction for the residents around the country. (Pawan Singh / The National) For News/Standalone/Online/Stock/Instagram

Indian citizens queue to check in at the Dubai International Airport before leaving the UAE on a flight back totheir home country on May 7. Inbound flights for UAE residents have also begun operatingfrom select cities.Karim Sahim / AFP

Passengers from an Emirates flight from London line up before being checked by health workers at Dubai International Airport on May 8. Karim Sahib / AFP

Al Wahda Mall in Abu Dhabi has reopened to the public but with safety measures in place. toprotect shoppers and staff from contracting Covid-19. Victor Besa/The National

Yas Mall in Abu Dhabi has reopened to the public from 12pm to 9pm. Measures remain in place to keep shoppers and staff safe. Victor Besa / The National

Abu Dhabi, United Arab Emirates, May 9, 2020. Yas Mall, Abu Dhabi will be open from noon to 9pm. Supermarkets and pharmacies will be open from 9am to midnight. Victor Besa / The National

Workers pass by Al Mina Vegetables and Fruits Market in Abu Dhabi. Victor Besa / The National

A security guard is given a free Covid-19 test at one of the Mussaffah testing centres. Victor Besa / The National

Workers line up to receive a coronavirus test at Abu Dhabi'sMussafah Industrial Area in Abu Dhabi. Victor Besa / The National

Updated: May 12, 2020 09:56 AM

Read this article:
UAE's first Covid-19 patient to recover after stem-cell therapy tells of medical journey - The National

Doctors Say Inflammation Might be the Root of COVID-19 Along with Other Diseases Such as Cancer and Dementia – Tech Times

Studies show that COVID-19, cancer, Alzheimer's, heart disease, and diabetes have one common factor and root: inflammation. This is now a key factor in many other diseases that have been emerging recently, and it's a process that everybody needs to understand and study more if we want to try and reduce risks.

This root has been identified as a major problem in COVID-19 cases, which explains why older people and those who have lifestyle diseases are most at high risk.

(Photo : Screenshot from: Pexels Official Website)

Read Also: COVID-19 UPDATE: Stem Cell Clinics Offer Unproven "Immunity Booster" for COVID-19 Without Any Proof It Works, You Have Been Warned

For scientists and medical experts, inflammation is a huge clue to what lies beneath the huge number of coronavirus deaths in the United Kingdom now total 32,065 compared to Spain's 26,744, and Italy's 30,560. These numbers reflect the seriousness of the underlying chronic disease.

However, doctors are hopeful that knowledge gained from studying COVID-19 will help us further understand inflammatory processes and suggest different ways to approach this pandemic that has plagued millions of people all over the world.

When we talk about inflammation, this is a sign of the human body's natural response to an infection. When the immune system is mobilized, activity by the defensive cells causes by-products like skin redness and heat or even a fever to occur when the entire system is involved.

Read Also: COVID-19 U.K. Update: People Who Have Low Paying Jobs Are More Likely To Get Infected And Have Died More From COVID-19, Analysis States

However, it should also be noted that obesity and chronic disease can cause inflammation as well.

According to Daily Mail, "Overweight people - almost two out of three Britons fall into this group - have been shown to have higher levels of inflammatory messenger molecules called cytokines, which interfere with and damage normal cell functions. A major research review, published in 2016 by the American Society for Nutrition, concluded that obesity and the health problems associated with it - such as high blood pressure, raised blood sugar levels and tummy fat - have a 'substantial impact' on the health of the immune system and defense against disease."

Research that was published last week by an Oxford University team that identified and analyzed health records from more than 17.4 million people, has calculated that the most severely obese and overweight people are three times more likely to suffer and die of coronavirus.

The body's immune system has a total of two lines of defense, innate immunity, which includes cell types that are on the lookout for foreign fungus, bacteria, and viruses. The second line is something that is more unique to each person that has developed over time to identify and destroy any kind of invader that has tried to invade our body in the past.

"The problem is that innate immunity starts to deteriorate from the age of about 50 and goes into a steep decline from 70. Adaptive immunity also starts to fail, with specialist antibody cells 'forgetting' to recognize the invaders they are meant to protect against. This malfunction occurs even in otherwise healthy older people, and the immune system tries to compensate for the deficit by over-producing cytokines, which buzz about looking for trouble - but in doing so cause inflammation," The Daily Mail added.

A spokesperson for the World Cancer Research Fund, Kate Allen, said that having a healthy weight is very critical in trying to reduce risks from cancer.

Fifteen of the most common cancers, which include colon, prostate, and breast are more common in people who are overweight caused by the inflammation.

Read Also: After Making a "Low Risk" Contact with COVID-19 Tests Positive White House Staffer, Dr. Anthony Fauci Will Begin Modified Quarantine

2018 TECHTIMES.com All rights reserved. Do not reproduce without permission.

Read the original post:
Doctors Say Inflammation Might be the Root of COVID-19 Along with Other Diseases Such as Cancer and Dementia - Tech Times