Business News: Induced Pluripotent Stem Cells Market Growth, Analysis and Forecast 2020 to 2025 | BlueRock Therapeutics, Corning Life Sciences, EMD…

Chicago, United States: The report comes out as an intelligent and thorough assessment tool as well as a great resource that will help you to secure a position of strength in the globalInduced Pluripotent Stem CellsMarket. It includes Porters Five Forces and PESTLE analysis to equip your business with critical information and comparative data about the Global Induced Pluripotent Stem Cells Market. We have provided deep analysis of the vendor landscape to give you a complete picture of current and future competitive scenarios of the global Induced Pluripotent Stem Cells market. Our analysts use the latest primary and secondary research techniques and tools to prepare comprehensive and accurate market research reports.

Top Key players cited in the report: BlueRock Therapeutics, Corning Life Sciences, EMD Millipore, Lonza Group, Promega, Thermo Fisher Scientific,

Get Free PDF Sample Copy of this Report to understand the structure of the complete report: (Including Full TOC, List of Tables & Figures, Chart)

Each segment of the global Induced Pluripotent Stem Cells market is extensively evaluated in the research study. The segmental analysis offered in the report pinpoints key opportunities available in the global Induced Pluripotent Stem Cells market through leading segments. The regional study of the global Induced Pluripotent Stem Cells market included in the report helps readers to gain a sound understanding of the development of different geographical markets in recent years and also going forth. We have provided a detailed study on the critical dynamics of the global Induced Pluripotent Stem Cells market, which include the market influence and market effect factors, drivers, challenges, restraints, trends, and prospects. The research study also includes other types of analysis such as qualitative and quantitative.

Global Induced Pluripotent Stem Cells Market: Competitive Rivalry

The chapter on company profiles studies the various companies operating in the global Induced Pluripotent Stem Cells market. It evaluates the financial outlooks of these companies, their research and development statuses, and their expansion strategies for the coming years. Analysts have also provided a detailed list of the strategic initiatives taken by the Induced Pluripotent Stem Cells market participants in the past few years to remain ahead of the competition.

Global Induced Pluripotent Stem Cells Market: Regional Segments

The chapter on regional segmentation details the regional aspects of the global Induced Pluripotent Stem Cells market. This chapter explains the regulatory framework that is likely to impact the overall market. It highlights the political scenario in the market and the anticipates its influence on the global Induced Pluripotent Stem Cells market.

The Middle East and Africa(GCC Countries and Egypt)North America(the United States, Mexico, and Canada)South America(Brazil etc.)Europe(Turkey, Germany, Russia UK, Italy, France, etc.)Asia-Pacific(Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia)

Request For Customization @ https://www.reporthive.com/request_customization/2278442

Report Highlights

Comprehensive pricing analysis on the basis of product, application, and regional segments

The detailed assessment of the vendor landscape and leading companies to help understand the level of competition in the global Induced Pluripotent Stem Cells market

Deep insights about regulatory and investment scenarios of the global Induced Pluripotent Stem Cells market

Analysis of market effect factors and their impact on the forecast and outlook of the global Induced Pluripotent Stem Cells market

A roadmap of growth opportunities available in the global Induced Pluripotent Stem Cells market with the identification of key factors

The exhaustive analysis of various trends of the global Induced Pluripotent Stem Cells market to help identify market developments

Table of Contents

Report Overview:It includes six chapters, viz. research scope, major manufacturers covered, market segments by type, Induced Pluripotent Stem Cells market segments by application, study objectives, and years considered.

Global Growth Trends:There are three chapters included in this section, i.e. industry trends, the growth rate of key producers, and production analysis.

Induced Pluripotent Stem Cells Market Share by Manufacturer:Here, production, revenue, and price analysis by the manufacturer are included along with other chapters such as expansion plans and merger and acquisition, products offered by key manufacturers, and areas served and headquarters distribution.

Market Size by Type:It includes analysis of price, production value market share, and production market share by type.

Market Size by Application:This section includes Induced Pluripotent Stem Cells market consumption analysis by application.

Profiles of Manufacturers:Here, leading players of the global Induced Pluripotent Stem Cells market are studied based on sales area, key products, gross margin, revenue, price, and production.

Induced Pluripotent Stem Cells Market Value Chain and Sales Channel Analysis:It includes customer, distributor, Induced Pluripotent Stem Cells market value chain, and sales channel analysis.

Market Forecast Production Side: In this part of the report, the authors have focused on production and production value forecast, key producers forecast, and production and production value forecast by type.

Get Free Sample Copy of this report: https://www.reporthive.com/request_sample/2232105

About Us:Report Hive Research delivers strategic market research reports, statistical survey, and Industry analysis and forecast data on products and services, markets and companies. Our clientele ranges mix of United States Business Leaders, Government Organizations, SMEs, Individual and Start-ups, Management Consulting Firms, and Universities etc. Our library of 600,000+ market reports covers industries like Chemical, Healthcare, IT, Telecom, Semiconductor, etc. in the USA, Europe Middle East, Africa, Asia Pacific. We help in business decision-making on aspects such as market entry strategies, market sizing, market share analysis, sales and revenue, technology trends, competitive analysis, product portfolio and application analysis etc.

Read the rest here:
Business News: Induced Pluripotent Stem Cells Market Growth, Analysis and Forecast 2020 to 2025 | BlueRock Therapeutics, Corning Life Sciences, EMD...

Stem Cell Therapy Market: Industry Size, Market Status, Influencing Factors, Competition, Outlook & Forecasts to 2027 – Cole of Duty

According to The Insight Partners market research study of Stem Cell Therapy Market to 2027 Global Analysis and Forecasts by Type, Treatment, Application, and End User. The global stem cell therapy market is expected to reach US$ 5,129.66 Mn in 2027 from US$ 1,534.55 Mn in 2019. The market is estimated to grow with a CAGR of 16.7% from 2020-2027. The report provides trends prevailing in the global stem cell therapy market and the factors driving market along with those that act as hindrances.

The global stem cell therapy market, based on the type, is segmented into adult stem cell, induced pluripotent stem cells, embryonic stem cell, and other stem cells. Adult stem cell therapy is further segmented into hematopoietic stem cells, mesenchymal stem cells, neuronal stem cells, and umbilical cord stem cells. The adult stem cell segment held the largest share of the market in 2019. The same segment is estimated to register the highest CAGR in the market during the forecast period due to its effectiveness for the treatment of chronic conditions coupled with higher compatibility with immunity system. The end user segment is segmented into academic and research institutes and hospitals & specialty clinics.

Request Sample Copy of this Report: https://www.theinsightpartners.com/sample/TIPHE100000991/

Major Key Players:

The report studies established names and emerging startups in the industry, to give the flavor of the entire business canvas. Different case studies from industry experts and policymakers have been mentioned for a clear understanding of the Global Stem Cell Therapy Market. It also offers comprehensive information on the product or service portfolio. All these factors which are studied in this research report are predicted to propel the Global Stem Cell Therapy Market.

Purchase This Report @ https://www.theinsightpartners.com/buy/TIPHE100000991/

Finally, all aspects of the Global Stem Cell Therapy Market are quantitatively as well qualitatively assessed to study the Global as well as regional market comparatively. This market study presents critical information and factual data about the market providing an overall statistical study of this market on the basis of market drivers, limitations and its future prospects. The report supplies the international economic competition with the assistance of Porters Five Forces Analysis and SWOT Analysis.

Following are the List of Chapter Covers in the Global Stem Cell Therapy Market:

About Us:The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Semiconductors, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:Call: +1-646-491-9876Email: [emailprotected]

Here is the original post:
Stem Cell Therapy Market: Industry Size, Market Status, Influencing Factors, Competition, Outlook & Forecasts to 2027 - Cole of Duty

CRISPR combines with stem cell therapy to reverse diabetes in mice – New Atlas

For a few years now, scientists at Washington University have been working on techniques to turn stem cells into pancreatic beta cells as a way of addressing insulin shortages in diabetics. After some promising recent strides, the team is now reporting another exciting breakthrough, combining this technique with the CRISPR gene-editing tool to reverse the disease in mice.

The pancreas contains what are known as beta cells, which secrete insulin as a way of tempering spikes in blood-sugar levels. But in those with diabetes, these beta cells either die off or dont function as they should, which means sufferers have to rely on diet and or regular insulin injections to manage their blood-sugar levels instead.

One of the ways scientists are working to replenish these stocks of pancreatic beta cells is by making them out of human stem cells, which are versatile, blank slate-like cells that can mature into almost any type of cell in the human body. The Washington University team has operated at the vanguard of this technology with a number of key breakthroughs, most recently with a cell implantation technique that functionally cured mice with diabetes.

The researchers are continuing to press ahead in search of new and improved methods, and this led them to the CRISPR gene-editing system, which itself has shown real promise as a tool to treat diabetes. The hope was that CRISPR could be used to correct genetic defects leading to diabetes, combining with the stem cell therapy to produce even more effective results.

As a proof of concept, the scientists took skin cells from a patient with a rare genetic type of diabetes called Wolfram syndrome, which develops during childhood and typically involves multiple insulin injections each day. These skin cells were converted into induced pluripotent stem cells, which were in turn converted into insulin-secreting beta cells. But as an additional step, CRISPR was used to correct a genetic mutation that causes Wolfram syndrome.

These edited beta cells were then pitted against non-edited beta cells from the same batch in test tube experiments and in mice with a severe type of diabetes. The edited cells proved more efficient at secreting insulin and when implanted under the skin in mice, reportedly caused the diabetes to quickly disappear. The rodents that received the unedited beta cells remained diabetic.

This is the first time CRISPR has been used to fix a patients diabetes-causing genetic defect and successfully reverse diabetes, said co-senior investigator Jeffrey R. Millman. For this study, we used cells from a patient with Wolfram syndrome because, conceptually, we knew it would be easier to correct a defect caused by a single gene. But we see this as a stepping stone toward applying gene therapy to a broader population of patients with diabetes.

The researchers are now continuing to work on improving the beta cell production technique, which in the future could involve cells taken form the blood or even urine, rather than the skin. They believe that further down the track this therapy could prove useful in treating both type 1 and type 2 diabetes, by correcting mutations that arise from genetic and environmental factors, and possibly be used to treat other conditions, as well.

We basically were able to use these cells to cure the problem, making normal beta cells by correcting this mutation, said co-senior investigator Fumihiko Urano. Its a proof of concept demonstrating that correcting gene defects that cause or contribute to diabetes in this case, in the Wolfram syndrome gene we can make beta cells that more effectively control blood sugar. Its also possible that by correcting the genetic defects in these cells, we may correct other problems Wolfram syndrome patients experience, such as visual impairment and neurodegeneration.

The research was published in the journal Science Translational Medicine.

Source: Washington University

View post:
CRISPR combines with stem cell therapy to reverse diabetes in mice - New Atlas

Graft Versus Host Disease: Opportunity Analysis and Forecasts to 2028 – ResearchAndMarkets.com – Yahoo Finance

The "Graft Versus Host Disease: Opportunity Analysis and Forecasts to 2028" report has been added to ResearchAndMarkets.com's offering.

The GvHD market is expected to undergo significant change and growth over the next 10 years across the seven major pharmaceutical markets (7MM; US, France, Germany, Italy, Spain, UK, and Japan) covered in this report.

This report analyzes the current GvHD treatment and prophylaxis landscape and provides detailed insights into the market dynamics of this newly recognized disorder. This analysis also includes the evaluation of the commercial and clinical profiles of drugs in development for GvHD, and their sales projections within GvHD over the 2018-2028 forecast period.

Key Highlights

Report Scope

The report will enable you to:

Key Topics Covered

1 Table of Contents

1.1 List of Tables

1.2 List of Figures

2 Executive Summary

2.1 Strong Growth Expected in the GvHD Marketplace from 2018-2028

2.2 Lack of Consensus on Clinical Trial Endpoints

2.3 GvHD Unmet Needs Expected to Be Partially Addressed

2.4 Opportunity Remains for GvHD Prophylaxis Candidates

2.5 Jakafi Approval for Both Acute and Chronic GvHD Will Drive Sales

2.6 What Do Physicians Think?

3 Introduction

3.1 Catalyst

3.2 Related Reports

3.3 Upcoming Related Reports

4 Disease Overview

4.1 Etiology and Pathophysiology

4.1.1 Etiology

4.1.2 Pathophysiology

4.2 Classification and Prognosis

4.2.1 Acute GvHD

4.2.2 Chronic GvHD

5 Epidemiology

6 Current Treatment Options

7 Unmet Needs and Opportunity Assessment

8 R&D Strategies

9 Pipeline Assessment

10 Pipeline Valuation Analysis

Companies Mentioned (A-Z)

For more information about this report visit https://www.researchandmarkets.com/r/50i38p

View source version on businesswire.com: https://www.businesswire.com/news/home/20200423005325/en/

Contacts

ResearchAndMarkets.comLaura Wood, Senior Press Managerpress@researchandmarkets.com For E.S.T Office Hours Call 1-917-300-0470For U.S./CAN Toll Free Call 1-800-526-8630For GMT Office Hours Call +353-1-416-8900

Go here to read the rest:
Graft Versus Host Disease: Opportunity Analysis and Forecasts to 2028 - ResearchAndMarkets.com - Yahoo Finance

Novartis’ Jakavi bests current therapy for GvHD – PharmaTimes

Results of the Phase III REACH2 study show that Novartis' Jakavi (ruxolitinib) improves outcomes across a range of efficacy measures in patients with steroid-refractory acute graft-versus-host disease (GvHD) compared to best available therapy (BAT).

In the study, patients treated with Jakavi experienced significantly greater overall response rate (ORR) compared to BAT (62% vs. 39%) at Day 28, the primary endpoint of the study.

For the key secondary endpoint, those in the Jakavi group maintained significantly higher durable ORR (40% vs. 22% at eight weeks, and Novartis' drug was associated with longer median failure free survival (FFS) than BAT (5.0 months vs. 1.0 months as well as showing a positive trend with other secondary endpoints, including duration of response.

The findings are particularly pertinent as GvHD, a serious and common complication of allogeneic stem cell transplants, has a one-year death rate as high as 80% in its acute form, and REACH2 is the first Phase III study in acute GvHD to have met its primary endpoint.

"Patients with acute graft-versus-host disease face life-threatening challenges with limited treatment options, particularly for the nearly half of individuals who do not respond to initial steroid therapy," said Robert Zeiser, University Hospital Freiburg, Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg, Germany.

"These new data from REACH2 showing superiority of Jakavi over current standard-of-care therapies add to a growing body of evidence on how targeting the JAK pathway can be an effective strategy in this difficult-to-treat condition."

Also of note, the first said no new safety signals were observed in REACH2, and adverse events (AEs) attributable to treatment were consistent with the known safety profile of Jakavi, the most common of which were thrombocytopaenia, anaemia and cytomegalovirus infection.

"Compelling results from REACH2, the first successful randomized Phase III trial in patients with steroid-refractory acute graft-versus-host-disease, give us confidence in the potential of Jakavi to confront this difficult condition," said John Tsai, head Global Drug Development and chief medical officer at Novartis. "We look forward to initiating discussions with ex-US regulatory authorities."

The results are published in The New England Journal of Medicine.

Read the rest here:
Novartis' Jakavi bests current therapy for GvHD - PharmaTimes

FDA Approves New Therapy for Triple Negative Breast Cancer That Has Spread, Not Responded to Other Treatments – Herald-Mail Media

SILVER SPRING, Md., April 22, 2020 /PRNewswire/ --Today, the U.S. Food and Drug Administration granted accelerated approval to Trodelvy (sacituzumab govitecan-hziy) for the treatment of adult patients with triple-negative breast cancer that has spread to other parts of the body. Patients must have received at least two prior therapies before taking Trodelvy.

"Metastatic triple-negative breast cancer is an aggressive form of breast cancer with limited treatment options. Chemotherapy has been the mainstay of treatment for triple-negative breast cancer. The approval of Trodelvy today represents a new targeted therapy for patients living with this aggressive malignancy," said Richard Pazdur, M.D., director of the FDA's Oncology Center of Excellence and acting director of the Office of Oncologic Diseases in the FDA's Center for Drug Evaluation and Research. "There is intense interest in finding new medications to help treat metastatic triple-negative breast cancer. Today's approval provides patients who've already tried two prior therapies with a new option."

Trodelvy is a Trop-2-directed antibody and topoisomerase inhibitor drug conjugate, meaning that the drug targets the Trop-2 receptor that helps the cancer grow, divide and spread, and is linked to topoisomerase inhibitor, which is a chemical compound that is toxic to cancer cells. Approximately two of every 10 breast cancer diagnoses worldwide are triple-negative. Triple-negative breast cancer is a type of breast cancer that tests negative for estrogen receptors, progesterone receptors and human epidermal growth factor receptor 2(HER2) protein. Therefore, triple-negative breast cancer does not respond to hormonal therapy medicines or medicines that target HER2.

"As part of FDA's ongoing and aggressive commitment to address the novel coronavirus pandemic, we continue to keep a strong focus on patients with cancer who constitute a vulnerable population at risk of contracting the disease," said Pazdur. "At this critical time, we continue to expedite oncology product development. This application was approved more than a month ahead of the FDA goal date an example of that commitment. Our staff is continuing to meet with drug developers, academic investigators, and patient advocates to push forward the coordinated review of treatments for cancer."

The FDA approved Trodelvy based on the results of a clinical trial of 108 patients with metastatic triple-negative breast cancer who had received at least two prior treatments for metastatic disease. The efficacy of Trodelvy was based on the overall response rate (ORR) which reflects the percentage of patients that had a certain amount of tumor shrinkage. The ORR was 33.3%, with a median duration of response of 7.7 months. Of the patients with a response to Trodelvy, 55.6% maintained their response for 6 or more months and 16.7% maintained their response for 12 or more months.

The prescribing information for Trodelvy includes a Boxed Warning to advise health care professionals and patients about the risk of severe neutropenia (abnormally low levels of white blood cells) and severe diarrhea. Health care professionals should monitor patient's blood cell counts periodically during treatment with Trodelvy and consider treatment with a type of therapy called granulocyte-colony stimulating factor (G-CSF), which stimulates the bone marrow to produce white blood cells called granulocytes and stem cells and releases them into the bloodstream, to help prevent infection, and should initiate anti-infective treatment in patients with febrile neutropenia (development of fever when white blood cell are abnormally low).

Additionally, health care professionals should monitor patients with diarrhea and give fluid, electrolytes, and supportive care medications, as needed. Trodelvy may need to be withheld, dose reduced or permanently discontinued for neutropenia or diarrhea. Trodelvy can cause hypersensitivy reactions including severe anaphylactic (allergic) reactions. Patients should be monitored for infusion-related reactions and health care professionals should discontinue Trodelvy if severe or life-threatening reactions occur. If patients experience nausea or vomiting while taking Trodelvy, health care professionals should use antiemetic preventive treatment, to prevent nausea and vomitting. Patients with reduced uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1) activity are at increased risk for neutropenia following initiation of Trodelvy treatment.

The most common side effects for patients taking Trodelvy were nausea, neutropenia, diarrhea, fatigue, anemia, vomiting, alopecia (hair loss), constipation, decreased appetite, rash and abdominal pain.

Women who are pregnant should not take Trodelvy because it may cause harm to a developing fetus or newborn baby. The FDA advises health care professionals to inform females of reproductive age to use effective contraception during treatment with Trodelvy and for 6 months after the last dose. Male patients with female partners of reproductive potential should also use effective contraception during treatment with Trodelvy and for three months after the last dose.

Trodelvy was granted accelerated approval, which enables the FDA to approve drugs for serious conditions to fill an unmet medical need based on a result that is reasonably likely to predict a clinical benefit to patients. Further clinical trials are required to verify and describe Trodelvy's clinical benefit.

The FDA granted this application Priority Review andBreakthrough Therapydesignation, which expedites the development and review of drugs that are intended to treat a serious condition when preliminary clinical evidence indicates that the drug may demonstrate substantial improvement over available therapies. Trodelvy was also granted Fast Trackdesignation, which expedites the review of drugs to treat serious conditions and fill an unmet medical need.

The FDA granted approval of Trodelvy to Immunomedics, Inc.

Additional Resources:

Media Contact:Nathan Arnold, 301-796-6248Consumer Inquiries: Emailor 888-INFO-FDA

The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation's food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products.

Continue reading here:
FDA Approves New Therapy for Triple Negative Breast Cancer That Has Spread, Not Responded to Other Treatments - Herald-Mail Media

Incyte Announces Pivotal REACH2 Study Data Published in NEJM Highlight Superior Efficacy of Ruxolitinib (Jakafi) versus Best Available Therapy in…

- Phase 3 REACH2 data demonstrate that ruxolitinib (Jakafi) improves outcomes across a range of efficacy measures in patients with steroid-refractory acute graft-versus-host disease (GVHD) compared to best available therapy (BAT)

- Results show a significantly greater overall response rate (ORR) in patients treated with ruxolitinib (62%) compared to BAT (39%) 1,2

- GVHD is a serious and common complication of allogeneic stem cell transplants with a one-year mortality rate as high as 80% in patients who develop acute GVHD3-5

- The results, published in The New England Journal of Medicine, were also selected for an oral presentation during the Presidential Symposium at the European Society for Blood and Marrow Transplantation (EBMT) Annual Meeting to be held 30 August to 2 September in Madrid, Spain

Incyte (Nasdaq:INCY) today announced that data from the Phase 3 REACH2 study have been published in The New England Journal of Medicine demonstrating that ruxolitinib (Jakafi) improves outcomes across a range of efficacy measures in patients with steroid-refractory acute graft-versus-host disease (GVHD) compared to best available therapy (BAT). The results of REACH2, the first Phase 3 study of ruxolitinib in acute GVHD to have met its primary endpoint, reinforce findings from the previously-reported Phase 2 REACH1 study.

In REACH2, patients treated with ruxolitinib experienced a significantly greater overall response rate (ORR) vs. BAT (62% vs. 39%; p<0.001) at Day 28, the primary endpoint of the study. For the key secondary endpoints, patients treated with ruxolitinib maintained significantly higher durable ORR (40% vs. 22%; p<0.001) at Day 56. In addition, ruxolitinib was associated with longer median failure free survival (FFS) than BAT (5.0 months vs. 1.0 months; hazard ratio 0.46, 95% CI, 0.35 to 0.60) and showed a positive trend with other secondary endpoints, including duration of response1,2.

No new safety signals were observed, and the ruxolitinib safety profile in REACH2 was consistent with that seen in previously reported studies in steroid-refractory acute GVHD. The most frequently reported adverse events among study participants were thrombocytopenia and anemia. While 38% and 9% of patients required ruxolitinib and BAT dose modifications, the number of patients who discontinued treatment due to AEs was low (11% and 5%, respectively)1,2.

"The results from the REACH2 study reinforce findings from the pivotal REACH1 trial and demonstrate the potential that ruxolitinib has to effectively and safely improve outcomes for patients with GVHD," said Peter Langmuir, M.D., Group Vice President, Oncology Targeted Therapies, Incyte. "We are committed to continuing our research in GVHD with the goal of providing more effective treatment options for patients living with this disease, and look forward to the results of the REACH3 study in steroid-refractory chronic GVHD later this year."

The REACH2 data were also accepted as an oral presentation as part of the Presidential Symposium at the European Society for Blood and Marrow Transplantation (EBMT) Annual Meeting to be held 30 August to 2 September in Madrid, Spain.

"Patients with acute graft-versus-host disease face life-threatening challenges with limited treatment options, particularly for the nearly half of individuals who do not respond to initial steroid therapy," said Robert Zeiser, University Hospital Freiburg, Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg, Germany. "These new data from REACH2 showing superiority of ruxolitinib over current standard-of-care therapies add to a growing body of evidence on how targeting the JAK pathway can be an effective strategy in this difficult-to-treat condition."

In 2019, Jakafi (ruxolitinib) was approved by the U.S. Food and Drug Administration for the treatment of steroid-refractory acute GVHD in adult and pediatric patients 12 years and older, based on the positive results of the Phase 2 REACH1 trial6. The Phase 3 REACH3 study in patients with steroid-refractory chronic GVHD is ongoing and results are expected in the second half of this year. Jakafi is marketed by Incyte in the U.S.; ruxolitinib (Jakavi) is licensed to Novartis ex-U.S.

The NEJM publication of the REACH2 results is available online.

Story continues

About REACH2

REACH2 (NCT02913261), a randomized, open-label, multicenter Phase 3 study sponsored by Novartis and conducted in collaboration with and co-funded by Incyte , is evaluating the safety and efficacy of ruxolitinib compared with best available therapy in patients with steroid-refractory acute GVHD.

The primary endpoint was overall response rate (ORR) at Day 28, defined as the proportion of patients demonstrating a best overall response (complete response or partial response). Secondary endpoints include durable ORR at Day 56, ORR at Day 14, duration of response, overall survival and event-free survival, among others. For more information about the study, please visit https://clinicaltrials.gov/ct2/show/NCT02913261.

About REACH

The REACH clinical trial program evaluating ruxolitinib in patients with steroid-refractory GVHD, includes the randomized pivotal Phase 3 REACH2 and REACH3 trials, conducted in collaboration with Novartis. The ongoing REACH3 trial is evaluating patients with steroid-refractory chronic GVHD with results expected later this year. For more information about the REACH3 study, please visit https://clinicaltrials.gov/ct2/show/NCT03112603.

The REACH program was initiated with the Incyte-sponsored REACH1 trial, a prospective, open-label, single-cohort, multicenter, pivotal Phase 2 trial (NCT02953678) evaluating Jakafi in combination with corticosteroids in patients with steroid-refractory grade II-IV acute GVHD. For more information about the study, including trial results, please visit https://clinicaltrials.gov/show/NCT02953678.

About Jakafi (ruxolitinib)

Jakafi is a first-in-class JAK1/JAK2 inhibitor approved by the U.S. FDA for the treatment of polycythemia vera (PV) in adults who have had an inadequate response to or are intolerant of hydroxyurea, in adults with intermediate or high-risk myelofibrosis (MF), including primary MF, post-polycythemia vera MF and post-essential thrombocythemia MF and for the treatment of steroid-refractory acute GVHD in adult and pediatric patients 12 years and older.

Jakafi is marketed by Incyte in the United States and by Novartis as Jakavi (ruxolitinib) outside the United States. Jakafi is a registered trademark of Incyte Corporation. Jakavi is a registered trademark of Novartis AG in countries outside the United States.

Important Safety Information

Jakafi can cause serious side effects, including:

Low blood counts: Jakafi (ruxolitinib) may cause your platelet, red blood cell, or white blood cell counts to be lowered. If you develop bleeding, stop taking Jakafi and call your healthcare provider. Your healthcare provider will perform blood tests to check your blood counts before you start Jakafi and regularly during your treatment. Your healthcare provider may change your dose of Jakafi or stop your treatment based on the results of your blood tests. Tell your healthcare provider right away if you develop or have worsening symptoms such as unusual bleeding, bruising, tiredness, shortness of breath, or a fever.

Infection: You may be at risk for developing a serious infection during treatment with Jakafi. Tell your healthcare provider if you develop any of the following symptoms of infection: chills, nausea, vomiting, aches, weakness, fever, painful skin rash or blisters.

Skin cancers: Some people who take Jakafi have developed certain types of non-melanoma skin cancers. Tell your healthcare provider if you develop any new or changing skin lesions.

Increases in cholesterol: You may have changes in your blood cholesterol levels. Your healthcare provider will do blood tests to check your cholesterol levels during your treatment with Jakafi.

The most common side effects of Jakafi include: for certain types of MF and PV - low platelet or low red blood cell counts, bruising, dizziness, headache, and diarrhea; and for acute GVHD low platelet, red or white blood cell counts, infections, and fluid retention.

These are not all the possible side effects of Jakafi. Ask your pharmacist or healthcare provider for more information. Tell your healthcare provider about any side effect that bothers you or that does not go away.

Before taking Jakafi, tell your healthcare provider about: all the medications, vitamins, and herbal supplements you are taking and all your medical conditions, including if you have an infection, have or had tuberculosis (TB), or have been in close contact with someone who has TB, have or had hepatitis B, have or had liver or kidney problems, are on dialysis, have a high level of fat in your blood (high blood cholesterol or triglycerides), had skin cancer or have any other medical condition. Take Jakafi exactly as your healthcare provider tells you. Do not change or stop taking Jakafi without first talking to your healthcare provider.

Women should not take Jakafi while pregnant or planning to become pregnant. Do not breast-feed during treatment with Jakafi and for 2 weeks after the final dose.

Full Prescribing Information, which includes a more complete discussion of the risks associated with Jakafi, is available at http://www.jakafi.com.

About Incyte

Incyte is a Wilmington, Delaware-based, global biopharmaceutical company focused on finding solutions for serious unmet medical needs through the discovery, development and commercialization of proprietary therapeutics. For additional information on Incyte, please visit Incyte.com and follow @Incyte.

Forward-Looking Statements

Except for the historical information set forth herein, the matters set forth in this press release, including statements about the REACH2 data, when results from the REACH3 study will be available, the effect of the REACH2 results on patients with GVHD, and the overall REACH program, contain predictions, estimates and other forward-looking statements.

These forward-looking statements are based on the Companys current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by the FDA; the Companys dependence on its relationships with its collaboration partners; the efficacy or safety of the Companys products and the products of the Companys collaboration partners; the acceptance of the Companys products and the products of the Companys collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; and other risks detailed from time to time in the Companys reports filed with the Securities and Exchange Commission, including its Form 10-K for the year ended December 31, 2019. The Company disclaims any intent or obligation to update these forward-looking statements.

References

View source version on businesswire.com: https://www.businesswire.com/news/home/20200422005739/en/

Contacts

Incyte Contacts Media Jenifer Antonacci+1 302 498 7036jantonacci@incyte.com

Catalina Loveman+1 302 498 6171cloveman@incyte.com

Investors Michael Booth, DPhil+1 302 498 5914mbooth@incyte.com

View original post here:
Incyte Announces Pivotal REACH2 Study Data Published in NEJM Highlight Superior Efficacy of Ruxolitinib (Jakafi) versus Best Available Therapy in...

‘I’m 28 and not ready to die yet’ – Wales Online

A young man is facing the heartbreaking reality that his life relies on a donation from a stranger.

Sheldon Donovan from Whitchurch, Cardiff, has begun a desperate search for a stem cell donor after his cancer returned for a third time and all other treatment failed to treat his Hodgkin lymphoma.

Since being initially diagnosed in 2016, the 28-year-old has relapsed twice and has now been told a stem cell transplant is his only option.

Hodgkin lymphoma is a rare form of blood cancer which is common in people under 30 and over 55.

"This would literally be life-saving for me," he said.

"I have so much more living to do and dreams to fulfil. Im only 28 and not ready to die just yet.

"It was a shock when I was first told that it was cancer, it's really difficult to process that at 25-years-old," said Sheldon.

"Throughout the whole period of diagnosis they were trying to find out what was wrong but nothing was ever mentioned that it could be cancer.

"They are very surreal words to hear, especially when they are directed at you. All I knew was that I was going to fight it with all my might."

Despite going into remission after undergoing chemotherapy from the initial diagnosis, Sheldon was dealt the devastating news in January 2019 that the cancer had returned.

After a second remission, his world fell apart again as he received the news that the cancer had returned for a third time.

Now, Sheldon has been told that a stem cell transplant is his only option as all other treatments have been exhausted.

"I really am down to my last chance now. Its simple, I want a second chance of life which means relying on the help of a stranger.

"I've been battling this for over three-and-a-half years and this is my second relapse - all of the options have been exhausted."

Sheldon is currently undergoing immunotherapy treatment to stabilise the cancer. He says he is only the second person to have the this treatment at the University Hospital of Wales.

Ultimately, only a stem cell donation will be able to save his life. But his family members are not a match.

"I'm a really positive person, I've got it in my head that something will happen and there will be somebody in the world who can help me," said Sheldon, a supermarket manager who now lives in Malvern, Worcestershire.

"I really want people to understand that, even if it isn't a match for me, by registering you could literally be saving somebody's life.

You can register to be a stem cell donor for Sheldon here.

Continue reading here:
'I'm 28 and not ready to die yet' - Wales Online

Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas – Science Advances

Abstract

Mutations in isocitrate dehydrogenase (IDH) genes occur in multiple cancer types, lead to global changes in the epigenome, and drive tumorigenesis. Yet, effective strategies targeting solid tumors harboring IDH mutations remain elusive. Here, we demonstrate that IDH-mutant gliomas and cholangiocarcinomas display elevated DNA damage. Using multiple in vitro and preclinical animal models of glioma and cholangiocarcinoma, we developed treatment strategies that use a synthetic lethality approach targeting the reduced DNA damage repair conferred by mutant IDH using poly(adenosine 5-diphosphate) ribose polymerase inhibitors (PARPis). The therapeutic effects are markedly enhanced by cotreatment with concurrent, localized radiation therapy. PARPi-buttressed multimodality therapies may represent a readily applicable approach that is selective for IDH-mutant tumor cells and has potential to improve outcomes in multiple cancers.

Neomorphic mutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) have been identified in multiple cancer types, including lower grade glioma (LGG) (1), secondary glioblastoma (2), intrahepatic cholangiocarcinoma (ICC) (3, 4), acute myeloid leukemia (AML) (5), chondrosarcoma (CS) (6), and others. The mutant IDH enzyme (IDHmut) converts the Krebs cycle intermediate -ketoglutarate (KG) into 2-hydroxyglutarate (2-HG), which functions as an oncometabolite. 2-HG can induce global DNA hypermethylation, inhibition of histone lysine demethylases, and block of cell differentiation (710). One strategy to treat IDHmut tumors is to inhibit the mutant IDH protein and 2-HG production. This is being tested in IDH-mutated cancers. Recently, inhibitors of IDH2 (enasidenib) and IDH1 (ivosidenib) have been shown to induce differentiation of cancer cells in patients with recurrent or refractory AML (11, 12). However, this approach has been much less effective for solid tumors in both clinical and experimental contexts. Paradoxically, exogenous 2-HG can cause toxicity and slow down cell proliferation by inhibiting mammalian target of rapamycin signaling and mRNA m6A modification (13, 14). Furthermore, 2-HG directly inhibits homologous recombination (HR), thus weakening DNA damage repair (DDR) and potentially improving the outcome from DNA damaging agents in patients receiving standard-of-care cytotoxic therapies (15, 16). IDH mutations are associated with better outcomes from radiation therapy (RT) and chemotherapy in patients with glioma. It has been hypothesized that therapeutic modalities that inhibit 2-HG production in gliomas may abolish such protection and promote unfavorable evolution of the disease. Our previous work demonstrated that IDHmut causes genetic instability linked to accelerated copy number alterations throughout the genome (10). Biochemical studies showed that 2-HG inhibits HR-dependent repair and confers poly(adenosine 5-diphosphate) ribose polymerase inhibitor (PARPi) sensitivity (1619). However, the therapeutic potential for this phenomenon remains ill-defined. Moreover, it remains to be seen whether this approach is sufficient by itself or needs to be combined with other therapeutic modalities.

PARP1 (and other PARPs) play critical roles in the repair of DNA single-strand breaks (SSBs) through base excision repair, nucleotide excision repair, and other DNA damage response pathways (20). PARP inhibition leads to persistence of unrepaired SSBs and cytotoxic PARP-DNA complexes, which, when encountered at the replication fork, leads to the formation of potentially lethal DNA double-strand breaks (DSBs) (21). Cells with deficient HR, the main compensatory mechanism to manage the increased DSB stress imposed by PARPi, are unable to efficiently repair these DSB and enter mitotic catastrophe and apoptosis (22). We hypothesized that the HR deficiency induced by 2-HG across different solid tumors would fit this model of synthetic lethality, leading to marked sensitivity to PARPi in IDHmut tumors. Moreover, ionizing radiation (IR), alone or in combination with surgical resection, is routinely used in the clinic as a part of standard of care in treating cancers including LGG and ICC. By rapidly introducing high numbers of exogenous DNA SSB and DSB, IR exacerbates the effects of deficiency of DDR in HR-deficient tumors. Early trials combining IR with PARPi have shown promise in the BRCA-mutant context (23). However, PARPis as radiosensitizers for other types of HR-deficient tumors have not been thoroughly tested in preclinical or clinical settings. In this study, we showed that IDHmut tumor samples from patients with LGG and ICC harbor markedly elevated levels of DNA damage. We demonstrate in multiple in vitro contexts that expression of mutant IDH1 sensitizes the cell to radiation and PARPi. Last, we used two orthotopic LGG and one heterotopic ICC xenograft animal model to show that PARPi sensitizes the tumors to IR and that this sensitization is specifically associated with IDH mutation status. Overall, our study demonstrates that IR markedly augments the therapeutic effects of PARPi and provides evidence supporting the combinatorial use of PARPi with IR to treat IDH-mutant tumors.

Previous studies have suggested that repair of DNA damage by HR is impaired by mutant IDH1 expression in a human colon cancer cell line through the oncometabolite 2-HG (16). To ascertain whether this effect is generalizable, we first used an immortalized human astrocyte (IHA) isogenic cell line system, which includes one line that expresses mutant IDH1 R132H (IHA-IDH1mut), and a matching isogenic control, which does not express mutant IDH1 (IHA-EV) (10). Expression of mutant IDH1 induces changes in the DNA methylation and histone landscape, which recapitulates those in IDH1-mutant tumors and blocks differentiation (7, 10). We first subjected IHA-EV and IHA-IDH1mut to staining of -H2AX histones. As shown, IHA-EV demonstrates low levels of -H2AXpositive foci, whereas IHA-IDH1mut exhibits elevated levels of -H2AX staining (Fig. 1A and fig. S1A). These cells were fixed at the exponentially proliferative stage without being exposed to exogenous DNA damaging agents. The DSBs marked by -H2AX positivity in IDH1mut cells indicates a higher level of unrepaired DNA damage. To further support this finding, we performed Western blots to examine the level of phosphoKRAB-associated protein 1 (KAP1), an enzyme downstream of ATM (ataxia telangiectasia mutated). IHA-IDH1mut displayed notably higher levels of KAP1 phosphorylation compared to IHA-EV, suggesting increased engagement of the replication stress pathway (Fig. 1, B and C). However, consistent with previous reports (10, 14, 16), these unrepaired DNA damage sites did not induce significant change in cell death, likely due to concurrent inactivation of p53 as a part of immortalization. IDH-dependent defects in DDR may function as a driving force to produce additional mutations in the founder population during malignant progression. Next, we hypothesized that this rescue by p53 inactivation can be overcome by excessive DNA damage that accumulates in IDH1mut cells beyond a critical threshold. As observed in BRCA-mutant malignancies, the defective DSB repair in HR-defective tumors is often compensated for by other DDR pathways such as nonhomologous end joining, which, in turn, may themselves contribute to disease progression by inaccurate repair. We reasoned that the IDH1mut-induced DDR deficiency can be targeted by PARP inhibition similar to the scenario in BRCA-mutant breast and ovarian cancer and that this synthetic lethality could be augmented by inflicting further DNA damage through radiotherapy.

(A) Quantification of -H2AX positivity based on the number of foci. Fifty nuclei were quantified under each condition. (B) Western blots of phospho-KAP1 (p-KAP1) and the loading control (-actin). Samples were loaded in duplicates. (C) Relative intensity of each condition in (B) was quantified and plotted. (D) Immunostaining of -H2AX in vehicle (veh), olaparib (ola), IR-, or IR + olaparibtreated IHA cells expressing either EV or IDH1mut. DAPI, 4,6-diamidino-2-phenylindole. Scale bar,10 m. (E) Quantification of (D), performed by measuring the percentage of nuclei with more than 10 foci (left) (the numbers at bottom of bar graphs are correspondent to numbers in the panel) or average foci number of 50 nuclei (right). (F) Neutral Comet assays determining DNA breaks in IHA-EV and IHA-IDH1mut. Scale bars, 200 m. (G) The length of comet tails was measured and represented on the plot. (H) Apoptotic activities of IHA after radiation and/or olaparib treatment were measured for annexin V and propidium iodide (PI) positivity. (I) The PI+ and annexin V+ double positive populations were plotted on the bar graph. (J) IHA, expressing EV or IDH1mut, was subjected to soft agar colony formation assay, treated with four conditions: vehicle, veliparib (20 M), IR [1 to 4 grays (Gy)], or IR + veliparib in combination. Plot showed radiosensitization by veliparib in IDH1mut IHA versus EV. Where applicable, error bars represent the SEM. P values were determined by Students t test and represented using **P < 0.01, ***P < 0.001, and ****P < 0.0001. n.s., not significant.

To test our hypothesis, we assessed whether a combination of PARPi (olaparib), with or without IR, induces significant increases in levels of DNA damage. Elevated -H2AX positivity was observed in IHA-IDH1mut compared to IHA-EV at baseline (Fig. 1, D and E). The differential DDR abilities in IHA-EV and IHA-IDH1mut were more marked when treated with olaparib, radiation, or the combination of both, leading to differences in the amount of unrepaired DSB (Fig. 1, D and E). IDH mutation was associated with a markedly reduced ability to repair DNA damage from IR and PARPi, as measured by the neutral Comet assay (Fig. 1, F and G). The combination of IR and PARPi displayed a cooperative effect. Moreover, the deficiency in DDR found in IHA-IDH1mut cells leads to a greater extent of cell death when treated with the combination as shown by annexin V flow cytometry (Fig. 1, H and I).

Mechanistic studies show that PARPis can be classified on the basis of their ability to trap PARP proteins to DNA, thus preventing the recycling of PARP (24). Olaparib has potent PARP trapping activity and consequential cytotoxicity (21). However, treatment with strong PARP-trapping agents, such as olaparib and talazoparib, tends to confer resistance through genetic mutation (25, 26). Veliparib has demonstrated weaker trapping activity but strong inhibition of PARylation, effecting an alternative type of mechanistic target manipulation (27). In addition, veliparib shows superior penetration through the blood-brain barrier (BBB) (28)a key feature that is important for brain tumor therapeutics. Therefore, we also tested the efficacy of veliparib. Similar to olaparib, IR + veliparib generated a significantly higher level of -H2AX foci in IHA-EV treated with 2-HG than IHA-EV without 2-HG receiving the same IR + veliparib treatment (fig. S1, B and C). We next compared the clonogenic ability of IHA in response to increasing doses of radiation [0, 1, 2, and 4 gray (Gy)] with or without 20 M veliparib. Under all IR conditions, IHA-EV yielded modest reduction of colonies when simultaneously treated with veliparib, while this reduction was markedly enhanced in IHA-IDH1mut (Fig. 1J and fig. S1D). Similar to our results with veliparib, IHA-IDH1mut showed enhanced sensitivity toward IR when treated with olaparib (fig. S2A). Moreover, we tested the clonogenic ability of two glioma stem cell (GSC) lines, TS543 [IDH wild-type (IDHwt)] and TS603 (IDH1mut), which provide a more clinically relevant model. TS603 GSC also showed notably amplified synthetic lethality when treated with IR and olaparib (fig. S2B). These results indicate that IR + PARPi preferentially inhibits the clonogenic growth of IDH-mutant cells.

We tested whether the synthetic lethality conferred by PARPi in the setting of mutant IDH is observed in other tumor types that commonly harbor IDH mutations. ICC is a highly lethal malignancy with a 5-year overall survival (OS) rate of less than 20% (29). The current standard of care for most patients with unresectable disease at presentation is still limited to standard chemotherapy and radiation with median overall survival of only 7 to 12 months and no currently available targeted therapy (3032). Genomic studies have observed that a substantial portion of ICCs harbor mutations in IDH genes (3, 33). We tested whether expression of mutant IDH1 sensitizes ICC cancer cells to PARPis. First, we expressed IDH1-R132H in a human cholangiocarcinoma cell line (HUCCT1) that is wild type for IDH. The expression of mutant IDH1 was confirmed by Western blot (Fig. 2A). Similar to what we observed in the IHA isogenic cell lines, IDH1mut expression significantly increased -H2AX positivity. This increase was amplified by olaparib, IR, and the combination treatment (Fig. 2, B and C). The unrepaired DSBs, in turn, led to increased fragmentation of genomic DNA shown by Comet assays (Fig. 2, D and E). Clonogenic capacity of HUCCT1 cells was severely decreased by IDH1mut expression, demonstrated by a 100-fold difference in clonogenicity when IDH1mut HUCCT1 cells were exposed to 6-Gy radiation and 4 M olaparib (Fig. 2, F and G). In addition, using patient-derived ICC cell lines of IDHwt (HUCCT1) and IDH1-R132C (SNU-1079), we showed different levels of -H2AX staining (Fig. 2H) and clonogenicity (Fig. 2, I and J) in response to IR and olaparib, consistent with the other in vitro models tested above. Together, we showed in two different cancers, using both engineered isogenic cells and native IDH-mutant tumor cell lines, that mutant IDH1 expression leads to hypersensitivity to PARPi, and this hypersensitivity is markedly amplified by radiation.

(A) Confirmation of IDH1mut expression in HUCCT1 cholangiocarcinoma cell line. Lysates from HUCCT1-EV or HUCCT1-IDH1mut were subjected to Western blots determining expression of IDH1 R132H. Loading control is performed with anti-vinculin. (B) Immunostaining of -H2AX in HUCCT1-EV and HUCCT1-IDH1mut after IR (4 Gy) or olaparib (4 M), or both, showing synergy specifically in HUCCT1-IDH1mut. Scale bar, 10 m. (C) The average number of -H2AX foci in (B) were quantified and shown as means SEM. (D) Neutral Comet assays showed different levels of DNA damage between the indicated treatments. Scale bars, 200 m. (E) The Comet tail moment lengths were individually quantified and compared. (F) Representative results of colony formation assay with HUCCT1-EV or HUCCT1-IDH1mut treated with increasing doses of IR (2, 4, and 6 Gy), with or without olaparib (4 M). (G) The colonies of all conditions were quantified and represented on a survival plot showing synergestic effect of olaparib and IR specifically in HUCCT1-IDH1mut cells. Photo credit: Yuxiang Wang, Memorial Sloan Kettering Cancer Center (MSKCC). (H) Immunostaining of -H2AX in IDHwt (HUCCT1) and IDH1mut (SNU-1079) cell lines, treated with IR (4 Gy) + olaparib (4 M). wt, wild-type. (I) Results from clonogenic assays with IDHwt (HUCCT1) and IDH1mut (SNU-1079) cholangiocarcinoma cell lines. Panel shows representative results when cells were treated with IR (4 Gy) + olaparib 4 M. Photo credit: Yuxiang Wang, MSKCC. (J) The colonies in IR (4 Gy) + olaparib (4 M) were quantified and divided by the IR-alone control. P values were determined by Students t test and represented using **P < 0.01, ***P < 0.001, and ****P < 0.0001.

Having confirmed that expression of mutant IDH1 is associated with increased levels of DNA damage in vitro, we sought to ascertain whether this is true in patient tumors. We took primary LGG and ICC specimens from patients who underwent surgical resection at Memorial Sloan Kettering Cancer Center (MSKCC) without any previous treatment. With assistance from expert clinical pathologists at MSKCC, we determined the IDH mutation status of the tumors and ensured that the IDH-mutant and wild-type tumors were matched for similar disease stage, grade, and pathologic features. We then subjected the paired tissue samples to -H2AX staining, a marker for DNA damage. IDH1mut World Health Organization (WHO) grade III glioma sections showed elevated -H2AX signals compared to their IDHwt controls, regardless of their histopathologic classification as oligodendroglioma or astrocytoma (Fig. 3, A and B). Similarly, ICC tumor pairs collected at similar disease stage (T1, no lymph node or distant metastases, no neoadjuvant therapy, and no intrahepatic therapy before resection) demonstrated that IDH mutations lead to significantly augmented -H2AX staining (Fig. 3, C and D).

(A) Frozen glioma specimens were collected during routine surgeries at MSKCC (see also the Human pathology section under Materials and Methods). Four grade III oligodendroglioma (top) and six grade III astrocytoma (bottom) samples were stained for -H2AX positivity, and representative images are shown in the panels. (B) H-scores of five 20 fields of each sample were calculated and reported on the bar graphs as means SEM. Top: Comparison of H-scores of the oligodendroglioma sample pair. Bottom: Comparison of H-scores of the astrocytoma sample pair. ****P < 0.0001, determined by Students t test. (C) Sections from six cholangiocarcinoma specimens (three IDHwt and three IDHmut) were stained for -H2AX positivity, and representative images are shown in the panels. (D) Top: For top panels of (C), H-scores of five 20 fields of each sample were calculated and represented on the bar graphs as means SEM. Bottom: Comparison of H-scores of the bottom panels in (C). ****P < 0.0001, determined by Students t test.

Next, we used several animal models to experimentally test our therapeutic approach for IDH-mutant tumors in vivo. First, we intracranially implanted glioma tumorsphere lines (TS543 and TS603) and monitored the tumor growth with bioluminescent imaging (BLI). Mice with tumors were randomized into four-armed trials: control, veliparib (25 mg/kg; 5 days per week until moribund), fractionated RT (2 Gy 5 fractions, days 1 to 5) or the combination of RT and veliparib (Fig. 4A). Veliparib was used here because of its ability to cross the BBB. Intracranial tumor growth was followed using weekly BLI, and mice were also monitored for OS. Mice with TS543 (IDHwt) tumors showed similar OS in veliparib and control groups (median OS, 11 days versus 10 days) (Fig. 4B), and while RT successfully prolonged OS (median, 19 days) compared to control, the addition of veliparib did not prolong OS (median, 17 days) (Fig. 4B). However, the IDH1mut tumors (TS603) showed significant improvement of OS in veliparib treated group (11 days) compared to control (8.5 days), as well as in RT + veliparib (21 days) versus RT alone (14 days) (Fig. 4C). At day 7 (2 days after the last RT dose), 11 of 16 mice bearing TS603 implantation that received RT and veliparib treatment had reduction in BLI signal, among which 4 of 16 mice showed marked reduction of >90% (Fig. 4, D to F), whereas only 3 of 13 mice receiving RT alone showed reduction and no mice showed >90% reduction (Fig. 4, D to F). In addition, 3 of 13 mice in the RT arm showed BLI signal increase of >800%, while none in the RT + veliparib arm showed this level of tumor growth (Fig. 4, E and F). These data suggest that combination therapy with veliparib and RT has greater efficacy against glioma than RT alone in the IDH1-mutant setting. Pathologic studies performed with tumor tissues collected at day 6 (18 hours after the last RT dose) supported the idea that synergy between RT and veliparib was specific to the IDH1-mutant context (figs. S3, A to D, and S4) as shown by quantification of mitotic index (fig. S3, A and B), apoptosis (cleaved caspase 3; fig. S3, C and D), and DNA damage (-H2AX; fig. S4).

(A) Work flow of treatments. Mice received GSC implantation. All mice received weekly BLI scans, and the results were recorded. All mice with established tumors (over the defined threshold) were equally distributed to vehicle, veliparib (veli), RT, or RT + veliparib arms. TX, treatment; PATH, pathologic analysis. (B) Kaplan-Meier analysis of mice bearing TS543 GSC (IDHwt) cells, starting from the day they entered trials. P values were determined by log-rank (Mantel-Cox) test. (C) Kaplan-Meier analysis of mice bearing TS603 GSC (IDH1mut), starting from the day they entered trials. (D) Representative BLI scans of paired mice receiving RT or RT + veliparib. Top: BLI scans at day 0. Bottom: Scans at day 7. (E) Responses based on BLI reads for RT + veliparibtreated (left) (n = 16) and RT-treated (right) (n = 13) mice. Dashed line indicates a 90% reduction in tumor BLI signal. (F) Pie graphs showing the percentage of any reduction (top), >90% reduction (middle), or increase of >800% (bottom) in BLI. Statistics were performed with chi-square test, and the P values are presented. D, day.

To rule out the possibility that the observed sensitivity could be due to different genetic backgrounds (i.e., TS543 and TS603), we performed similar trials in a genetically engineered mouse model of glioma with RCAS-TVA (replication competent avian sarcoma-leukosis virus long terminal repeat with a splice acceptor)mediated gene transfer of mutant IDH in an isogenic setting (34, 35). This is a previously established model where mutant IDH is expressed in endogenously generated gliomas. In these animal models, tumors that express the wild-type or mutant IDH1 were generated through intracranial injection of DF1 cells that carry the corresponding expression cassette (Fig. 5A). The brain tumors were allowed to grow for 5 weeks before magnetic resonance imaging (MRI) scans (Fig. 5A). After the initial MRI scan, the mice were randomized to one of four treatment arms testing tumor sensitivity to veliparib and radiation with MRI scans every week for follow-up (Fig. 5A). The data showed that IDHwt gliomas are sensitive to radiation but relatively insensitive to PARPi, either as monotherapy or in combination with RT (Fig. 5B). On the contrary, IDH1mut gliomas are somewhat sensitive to both RT or veliparib as monotherapy (median OS, 22 days versus 22 days versus 14 days for vehicle control) and the combination of RT and veliparib substantially extended OS (median, 66 days, >4-fold longer OS than vehicle control and 3-fold longer than RT or veliparib alone) (Fig. 5C). Representative MRI images of IDH1mut gliomas show similar initial sizes (Fig. 5D, circled areas) and demonstrate that veliparib limited the tumor growth compared to vehicle-treated tumors (Fig. 5D). Combination treatment with RT and veliparib was able to achieve marked tumor regression over time with some tumors undergoing reduction in tumor size so that they became undetectable at 3 weeks from the start of treatment (Fig. 5D).

(A) Mice receiving intracranial injection of RCAS virus-producing cells carrying platelet-derived growth factor A (PDGFA), shTP53, and either IDHwt or IDHmut expression cassettes were maintained for 5 weeks before their initial MRI scans. After MRI, mice were equally distributed into four-arm treatment groups based on tumor volume. (B) Kaplan-Meier analysis of mice bearing IDHwt gliomas, starting from the day they entered trials. P values were determined by log-rank (Mantel-Cox) test. (C) Kaplan-Meier analysis of mice bearing IDH1mut gliomas. (D) Representative images of MRI scans from (C) at days 0, 7, and 21, showing overall effect of treatments. (E) Kaplan-Meier analysis of mice bearing IDH1mut gliomas, receiving BGB PARPi + RT treatments. (F) Representative images of MRI scans from (E) at days 0, 7, and 21, showing overall effect of treatments.

BGB-290 (Pamiparib) is a potent PARPi with good oral bioavailability and excellent BBB penetration (36). In contrast to veliparib, BGB-290 displayed potent PARP-trapping activity at nanomolar level (36). Thus, we also tested BGB-290 in our RCAS-IDH glioma model. BGB-290 prolonged the OS of mice with IDH1mut glioma, both as monotherapy (median OS, 28 days) or in combination with RT (median OS, 44 days), with 4 of 13 mice living more than 90 days (Fig. 5E). MRI also showed decelerated tumor growth in the BGB-290treated group and marked reduction of tumor volume in the RT + BGB-290 group (Fig. 5F). Histopathologic studies showed reduced mitotic activity (fig. S5, A and B), as well as increased apoptotic activity (fig. S5, C and D) and accumulation of DSB (fig. S6) specifically in veliparib- and BGB-290treated tumors. Again, these findings suggest cooperativity between PARPi and radiation in the setting of IDHmut tumors.

Last, we tested our synthetic lethal approach in the context of IDH-mutant ICC in vivo using an animal model. As shown above (Fig. 2, H to J), the IDH1-mutant SNU-1079 ICC line showed increased sensitivity to olaparib. Unfortunately, none of the mice (n = 40) that received subcutaneous injection of SNU-1079 cells developed detectable tumor after 3 months, making it impossible to test the effect of PARPi on this ICC cell line in vivo. However, HUCCT1 cells competently form subcutaneous tumors in athymic nude mice regardless of the mutational status of IDH1. Therefore, we subcutaneously implanted isogenic IDHwt and IDH1mut tumors in the hind flank region and treated mice with vehicle, olaparib, RT, or RT + olaparib (Fig. 6A). The IDH1mut tumors grew slightly slower than the wild-type tumors (median survival, 31 days versus 21 days; Fig. 6, B and D), consistent with previously reported 2-HG toxicity. Measurements of tumor volume over time showed that the IDH1wt tumors are insensitive to olaparib treatment. Moreover, although RT slowed down tumor growth, addition of olaparib failed to further delay tumor growth (Fig. 6, B and C). However, the HUCCT1-IDH1mut tumors grew slower when treated with olaparib alone (median time to reach four times initial tumor volume, 41 days versus 31 days). Moreover, RT and olaparib treatment (median OS, 60 days) significantly delayed growth compared to RT alone (median OS, 47 days) (Fig. 6, D and E). Histopathologic analyses with tumor tissues collected at day 6 showed, specifically in IDH1mut tumors, greater reduction in mitotic index (Fig. 6, F and G), increase in apoptosis (fig. S7A), reduction in Ki-67 positivity (fig. S7B), and increase in DSB (fig. S7C). Together, these in vivo findings support, in ICC cells, that IDH mutations confer vulnerability to PARPi, which can be further exploited by introducing DNA damaging agents, such as radiation.

(A) Mice received subcutaneous injection of HUCCT1 cells expressing EV or IDH1mut. Three weeks after injection, the hind flank tumors were measured and equally distributed to four-arm treatment groups when tumors exceeded the defined threshold of 100 mm3. The tumor sizes were measured twice a week. (B) Tumor growth of HUCCT1-EV xenografts with the indicated treatments. P values were calculated using two-way ANOVA. (C) Kaplan-Meier analysis of HUCCT1-EV xenografts with the indicated treatments. P values were determined by log-rank (Mantel-Cox) test. (D) Tumor growth of HUCCT1-IDH1mut xenografts with the indicated treatments. (E) Kaplan-Meier analysis of HUCCT1-IDH1mut xenografts. (F) Mice were sacrificed at day 6, and tumor tissues were subjected to pathological analyses. Hematoxylin and eosin (H&E) staining was performed. (G) The mitotic cell numbers per 400 field were counted, and means SEM was shown on the bar graphs. For each condition, 10 400 fields were quantified. *P < 0.05 and **P < 0.01. P values were determined by Students t test.

Despite current standard-of-care multimodal treatment approaches for glioma, including surgery, radiation, and chemotherapy, the outcomes for these patients remain poor (37). The case for ICC is similar, and researchers have struggled to find effective targeted therapies with none standardly in clinical use for these diseases at the present time. The low patient survival is multifactorial but likely stems from the similar clinical challenges presented by LGG and ICC. Both diseases occur in critical organs, often cannot be completely resected, tend to recur locally, and commonly cause death through local progression. Furthermore, both diseases have complicated tumor microenvironments and heterogenicity predisposing to therapeutic resistance. Although directly targeting the mutant IDH enzyme with small-molecule inhibitors has been shown to have benefits in patients with AML, concerns exist regarding their application to solid tumors, such as systemic availability of the drug, ability to penetrate into tumor, and lack of efficacy. In vitro studies of IDH1 inhibitor AGI-5027 have failed to show increased sensitivity in IDH1mut versus IDH1wt ICC cells (38). Moreover, in solid tumors, mutation of IDH typically portends a better prognosis compared to tumors with wild-type IDH. This has been shown to be the case for both glioma (2) and ICC (4), which begs the question of whether targeting the IDH phenotype for reversal makes sense. We examine an approach to treating IDHmut tumors that takes advantage of their unique metabolic, genomic, and epigenetic state through exploitation of impaired HR associated with mutations in IDH1. While a randomized phase 1/2 study of temozolomide (TMZ) veliparib showed no benefit in recurrent TMZ-refractory glioblastoma, IDH mutation status was not considered in the enrollment criteria nor reported in the manuscript (39). To our knowledge, combined treatment with PARPi + RT has not been examined in the specific setting of IDH-mutant tumors at either the laboratory or clinical level.

We developed both in vitro and in vivo models that mimic IDH-mutant tumors found in the patients. Using these models, we were able to determine that IDH mutation confers sensitivity to DNA damaging agents and PARP inhibitors, and we established preclinical strategies to target these therapeutic vulnerabilities. Most LGG recurrences (up to 92%) occur within the RT field (40). Our results nominate PARPi-based systemic therapy as a way to increase control of IDHmut gliomas. We hypothesize that combination therapy with PARPi + RT, as evaluated in our study, could substantially lengthen OS and progression-free survival for patients with IDHmut LGG. In the setting of ICC, unresectable and recurrent intrahepatic disease poses an imminent threat to patient lives, given their proclivity to cause liver failure through biliary, portal vein, or hepatic vein obstruction. Nonoperative therapies produce median OS of only 7 to 12 months (31, 41). Conventional RT doses, even with concurrent chemotherapy, achieve only modest improvement in outcomes and few long-term survivors (32) with most patients experiencing local progression as site of first failure (42). Similar to LGGs, given the propensity of ICCs to cause death through local progression, the ability to further increase tumor cell killing within the RT field for unresectable and recurrent intrahepatic disease through combined PARPi + RT in the IDHmut setting can be explored.

Ongoing clinical trials have been set up to test this concept (e.g., NCT03212274, NCT03561870, NCT03749187, etc.), yet the strategies and designs of these trials still lack critical rationale or insights from preclinical studies. For example, in our animal studies, PARPi alone, whether it is veliparib, BGB-290, or olaparib, provided modest benefit for OS. Yet, the combination with radiation markedly amplified this benefit. Our data suggest that concurrent RT needs to be considered to yield maximal benefit of PARPi therapy for IDHmut tumors. While the mechanisms underlying this are still being worked out, Sulkowski et al. (16) show that 2-HGdependent inhibition of KDM4A and KDM4B may contribute to the observed synthetic lethality. These two proteins are key KG-dependent histone demethylases that are important for proper DNA damage response. Our study suggests that these biological phenomena may potentially be clinically actionable and should be tested.

The objective of this study was to determine the therapeutic efficacy of PARPis, as monoagent or in combination with IR, for IDH-mutant tumors. This was a controlled, laboratory-based, experimental study using cell line models in culture, tumor specimens, tumor cell xenograft, and genetically engineered mouse models. Isogenic cell lines and genetically engineered tumors were produced by introducing mutant IDH1, along with appropriate controls. IDHwt and IDHmut patient-derived glioma and cholangiocarcinoma cell lines were compared and provided additional, disease-related evidence. Randomization of animals varied depending on individual assays and is described separately below. Pharmaceutical agents against PARP and/or IR were applied. Sample sizes were determined independently for each experiment without formal power calculation. No data were excluded from analyses. Unless otherwise specified, experiments used three replicates per sample. End points varied by experiment and are described below, in figure legends, or in Results. Histopathological and immunohistochemical review of xenografts was conducted by pathologist (C.S., D.S.K., and J.T.H.) in a nonblinded fashion. Quantification of mitotic index, -H2AX, Ki67 and cleaved caspase 3 immunostaining, length of Comet tails, colony numbers, and BLI signals was blinded.

The source of antibodies, chemicals, plasmids, cell lines, and mouse strains used in this study are listed in table S1.

All cell lines used in this study were regularly tested for mycoplasma contamination at the Antibody and Bioresource Core of MSKCC. Parental IHAs (a gift from R. O. Peiper, University of California, San Francisco) were infected with a viral vector carrying expression cassette for IDH1-R132H or the empty vector control (10). TS543 and TS603 are patient-derived GSCs (4345) maintained in NeuroCult NS-A Proliferation media (no. 05751, STEMCELL Technologies). For intracranial injection, TS543 or TS603 was infected with pHIV-Luc-ZsGreen (a gift from B. Welm; no. 39196, Addgene) and fluorescence-activated cell sortingsorted for top 10% ZsGreen expression. Two well-characterized patient-derived human ICC cell lines were obtained as follows: (i) SNU-1079 (endogenous R132C mutation in IDH1) was purchased from the Korean Cell Line Bank (Cancer Research Institute, Seoul National University, Seoul, Korea; http://cellbank.snu.ac.kr), and (ii) HUCCT1 was purchased from the RIKEN BioResource Research Center Cell Bank (Tsukuba, Japan; https://en.brc.riken.jp/). To generate HUCCT1 isogenic cells, the parental HUCCT1 cells were infected with pLNCX2 retroviruses expressing IDH1-R132H or the empty vector control (7). Olaparib (no. S1060) and veliparib (no. S1004) were purchased from Selleckchem. BGB-290 (no. C-1286) was purchased from Chemgood. For in vitro use, olaparib, veliparib, and BGB-290 were diluted with dimethyl sulfoxide (DMSO). For in vivo use, olaparib was diluted with DMSO as a stock and further diluted with 10% (w/v) 2-hydroxy-propyl--cyclodextrin (no. H107, Sigma-Aldrich). Veliparib and BGB-290 were diluted with DMSO and further diluted with phosphate-buffered saline (PBS). The final solutions were prepared fresh before each injection. For 2-HG treatment, Octyl-d-2-HG (no. 16366, Cayman Chemical, MI) was initially diluted into DMSO and further diluted with culture medium to achieve a final concentration of 1 mM.

All mouse experiments were approved by Institutional Animal Care and Use Committee at MSKCC strictly following its guidelines. Female nude mice (age 4 to 6 weeks) were purchased from Taconic Biosciences and maintained in the xenograft suite. Nestin-TVA mice were obtained from E. Holland (Fred Hutchinson).

All tumors were obtained following surgical resection at the MSKCC as part of routine clinical care in accordance with the Institutional Review Board policies at the MSKCC. Informed consent was obtained from all patients. Ten glioma (five wild-type and six mutant) and six cholangiocarcinoma (three wild-type and three mutant) samples were included in this study. The clinical determination, classification, and grouping were performed by pathologists at MSKCC and MD Anderson. For glioma patient samples, 10-m sections of frozen tissues was directly fixed with 4% paraformaldehyde in PBS for 30 min, followed by staining procedures as described below in the Immunofluorescent imaging section. For cholangiocarcinoma patient samples, formalin-fixed paraffin-embedded (FFPE) sections were stained following antigen retrieval with boiling citrate buffer (10 mM) (pH 6), following procedures in the Immunofluorescent imaging section. After staining, the sections were scanned with Pannoramic 250 (3DHISTECH, Budapest, Hungary) using Zeiss 20/0.8 numerical aperture objective. The scans were viewed and exported to .tif images using CaseViewer software (3DHISTECH, Budapest, Hungary). -H2AX positivity was quantified as H-score (1 A + 2 B + 3 C), where A is the percentage of cells with no staining, B is the percentage of cells with weak to moderate staining, and C is the percentage of cells with strong staining. The quantification was performed by the Molecular Cytology Core, and the score determination was double checked by Y.W.

For soft agar colony formation assays, 50,000 cells were seeded in six-well plates containing 1% bottom layer and 0.5% top layer soft agar. Cells were then cultured in growth media with or without olaparib (1 M) or veliparib (20 M). Radiation dosing of 0, 1, 2, or 4 Gy was immediately applied after plating. The 1.5 ml of growth media covering the agar cultures was replenished every week. At day 21, colonies were fixed with 4% paraformaldehyde for 30 min and stained with 0.005% crystal violet in PBS overnight. Stained colonies were then washed extensively in PBS and water and quantified on a GelCount colony counter (Oxford Optronix).

Clonogenic assays were performed by plating cells in exponential growth phase at 125 to 1000 cells per 10-cm dish depending on the radiation dose level. Olaparib (4 M) was added 24 hours after plating with IR (0 to 6 Gy) delivered 24 hours later. Colonies (>50 cells) were counted with GelCount colony counter (Oxford Optronix) 10 to 14 days after IR by fixing and staining with a solution of 0.1% crystal violet in 4% paraformaldehyde in PBS. Surviving fraction was calculated by dividing colonies by cells plated with adjustment for plating efficiency.

Comet assays were performed using OxiSelect Comet Assay Kit (STA-350, Cell Biolabs) according to the manufacturers instruction. Briefly, cells were mixed with agarose, dropped onto the glass slides provided by the kit, and lysed with prechilled lysis buffer for 60 min at 4C in the dark. The electrophoresis was performed with prechilled tris-borate EDTA buffer, followed by five times washes with ddH2O. The slides were then incubated in cold 70% ethanol for 5 min and air-dried. Representative pictures were taken with a wide-field microscope with fluorescein isothiocyanate channel (Nikon) and analyzed with OpenComet plug-in in ImageJ (46).

Cells were grown in chamber slides (Nunc Lab-Tek II, cat no. 154526, Thermo Fisher Scientific) before fixation (4% paraformaldehyde in PBS for 10 min) and permeabilization (0.5% Tween 20 and 0.2% Triton X-100 in PBS for 10 min). Cells were blocked with goat serum (Sigma-Aldrich) for 4 hours at room temperature and incubated with -H2AX antibody (1:500; no. 05-636, Millipore) overnight at 4C and secondary antibody (1:2000; goat anti-mouse Alexa Fluor 488 or Alexa Fluor 568) for 2 hours. The slides were mounted with coverslips using ProLong Gold antifade reagent and 4,6-diamidino-2-phenylindole counterstain (Invitrogen).

BLI was performed weekly following intraperitoneal injection of d-luciferin (PerkinElmer) and measured using Xenogen IVIS Spectrum in vivo imaging system (PerkinElmer). Living Image software (PerkinElmer) was used to acquire and analyze the BLI data.

Brains of injected mice were scanned on a 200-MHz Bruker 4.7 T Biospec MRI scanner (Bruker Biospin Corp., Ettlingen, Germany) and equipped with a 300-mT/m ID 20-cm gradient (Resonance Research Inc., Billerica, MA). Mice were anaesthetized by 2% isoflurane in oxygen. Sedated animals were physiologically monitored during scan period (SA Instruments Inc., Stony Brook, NY). For mouse brain imaging, brain axial T2-weighted images using fast spin-echo RARE (Rapid Acquisition with Relaxation Enhancement) sequence were acquired by sequential scanning with a slice thickness of 1 mm.

TS543 or TS603 cells expressing pHIV-Luc-ZsGreen (described above) were implanted into the brain of nude mice (5 105 cells per brain), with a fixed stereotactic device (Stoelting, Illinois). Injections were made to the right frontal cortex, 3-mm lateral and 3-mm caudal, and at a depth of 3 mm with respect to bregma. Two weeks after the implantation, the tumor growth is monitored by BLI and MRI once every week, respectively. Tumors over the BLI threshold were correlated with MRI signal for confirmation of location and actual volume. The mice with confirmed tumors enter a randomized trial consists of the following: (i) vehicle; (ii) intraperitoneal injection of veliparib (25 mg/kg, 5 days per week); (iii) RT (2 Gy 5 fractions), delivered to the whole head using an X-RAD 320 Irradiation Platform (Precision X-Ray Inc., North Branford, CT; http://www.pxinc.com) in combination with a QUAD Fixture and Shield Set specifically designed with lead shielding of the body to allow for cranial irradiation (Precision X-Ray Inc., Connecticut); and (iv) RT + veliparib (concurrent treatment for the initial 5 days and then veliparib injection 5 days per week). The BLI signals were continuingly followed up weekly until defined end of trial (death). For pathological analyses, three mice of each group were sacrificed at day 6 after the initial trial start, and the brains were collected and subjected to standard FFPE processing.

Nestin-TVA mice were a gift from E. Holland (Fred Hutchinson, Seattle, WA) (47). RCAS vectors carrying expression cassette for platelet-derived growth factor A (PDGFA), IDH1wt-shTP53, and IDH1R132H-shTP53 were gifts from E. Holland (35). RCAS viral vectors were introduced into DF1 cells separately, and the expression of PDGFA, IDH1wt, and IDH1-R132H was verified by Western blots. Cells expressing PDGFA were mixed with cells expressing IDH1wt-shTP53 or IDH1R132H-shTP53 at a ratio of 1:1 (3 105 total) and intracranially injected as described above. Mice received MRI at week 5 after the initial injection, and the tumors were randomized on the basis of size so that tumors of different sizes are equally distributed across groups: (i) vehicle; (ii) intraperitoneal injection of veliparib (25 mg/kg, 5 days per week) or BGB-290 (6 mg/kg, 5 days per week); (iii) RT (2 Gy 5 days), delivered to the whole head using X-RAD 320 Irradiation Platform; and (iv) RT + veliparib or BGB-290 (concurrent treatment with RT delivered 1 hour after veliparib/BGB-290 injection for the initial 5 days and then veliparib/BGB-290 injection 5 days per week). The MRI signals were followed weekly until defined end of trial (death). For pathological analyses, three mice from each group were sacrificed at day 6 after the initial trial start, and the brains were collected and subjected to standard FFPE processing.

HUCCT1 cells expressing IDH1R132H or the empty vector control were harvested at exponentially proliferative stage and mixed 1:1 (v/v) with Matrigel (no. 356231, Corning). A total of 5 106 cells were injected into nude mice flanks in a 100-l volume. The size of tumors was measured with caliber and calculated using the formula (l w2)/2, where w is width and l is length in millimeters. Tumors that reached threshold (100 mm3) were randomized to the following: (i) vehicle; (ii) intraperitoneal injection of olaparib (50 mg/kg, 5 days per week); (iii) RT (2 Gy 5 days), delivered to the posterior through the X-RAD 320 Irradiation Platform; and (iv) RT + olaparib (concurrent treatment for the initial 5 days and then olaparib injection 5 days per week). The tumor volume was continuingly measured twice a week until the defined end of trial (400 mm3). For pathological analyses, three mice of each group were sacrificed at day 6 after the initial trial start, and the xenograft tumors were collected and subjected to standard FFPE processing.

Statistical analysis was performed using GraphPad Prism 7. Where applicable, P value was determined by unpaired, two-tailed t tests, if not otherwise specified. Difference of tumor growth curves was determined by two-way analysis of variance (ANOVA). Log-rank (Mantel-Cox) test were used to determine the significance of differences in Kaplan-Meier analysis of GSC xenograft, RCAS-induced gliomas, and ICC hind flank xenograft experiments. Unless otherwise stated, all results, representing at least three independent experiments, were plotted as means SEM. P values are represented either directly on figures or using *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: We thank the Chan lab for discussions. We thank C. Thompson for advice. Funding: This work was supported in part by the U.S. NIH (R01 CA177828) (to T.A.C.) and NIH Core Grant P30 CA008748. Author contributions: The study was designed by T.A.C., Y.W., and A.T.W. Experiments were performed by Y.W., A.T.W., S.T., W.H.W., X.M., and Y.G. Results were interpreted by T.A.C., Y.W., A.T.W., and J.T.H. Pathologic samples were provided and characterized by D.S.K. and C.S. T.A.C., Y.W., and A.T.W. wrote the paper with input from all authors. Competing interests: T.A.C. is an inventor on provisional patent application (62/569,053) submitted by MSKCC that covers use of tumor mutational burden as a predictive biomarker for cancer immunotherapy. T.A.C. is an inventor on patent application (PCT/US2015/062208) filed by MSKCC, relating to the use of TMB in lung cancer immunotherapy that has been licensed to Personal Genome Diagnostics, and MSKCC and T.A.C. receive royalties. T.A.C. is a cofounder of Gritstone Oncology and holds equity in An2H. T.A.C. has served as an advisor for Bristol-Myers Squibb, Illumina, Eisai, and An2H. The other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

See the rest here:
Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas - Science Advances

Scientists in Singapore to Use Immunotherapy Cells in Targeting COVID-19 as It Works with SARS – Science Times

(Photo : fernandozhiminaicela from Pixabay)

Scientists from Duke-NUS Medical School in Singapore are exploring the body's immunotherapy cells as a way to destroy the Coronavirus Disease 2019 (COVID-19).

According to the Daily Mail, the team will use chimeric antigen receptors (CAR) and T cell receptors (TCR T) to control the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and protect patients from its symptomatic effects.

In the study Challenges of CAR- and TCR-T cell-based therapy for chronic infections published in the Journal of Experimental Medicine (JEM), the aforementioned cells are engineered to lyse the targeted cells directly. Their purpose is to lessen or completely eliminate a tumor.

According to Dr. Anthony Tanoto Tan, a senior research fellow at Duke's Emerging Infectious Diseases (EID) program, "This therapy is classically used in cancer treatment, where the lymphocytes of the patients are redirected to find and kill the cancer cells."

However, these have to be used with caution. The study mentioned, "In an infectious disease setting where organs essential for life are infected and where the T cells mediate protection but also organ pathology, the use of CAR/TCR-T cells has to be evaluated with caution."

Read now: CDC Director Warns A Second Wave of Coronavirus May Happen This Winter As It Coincides With the Flu Season

The laboratory generates CARs, which are artificial T-cell receptors that allow the immune system to recognize cells that have been infected by the virus. Antiviral bodies coupled with CAR/TCR T cells are the most cost-effective way of eliminating them.

The study said, "It is logical that research efforts targeting these pathogens are diverted mainly toward vaccine development or therapeutic small molecules that target their replication. However, in some infectious diseases, CAR/TCR-T cells might offer a rational and practical approach despite the inherent drawbacks."

According to the study, some of these drawbacks were viral infections and relapses. These were seen in immunosuppressed patients that had "hematopoietic stem cell or organ transplantation with human cytomegalovirus or EBV ( Epstein-Barr Virus) reactivation.

The researchers said, "there's no timeline for how long a patient would need to take the treatment so it could be indefinitely." Fortunately for government and health agencies, it will be easier because the therapy is not that expensive.

Read now: Contaminated Coronavirus Testing Kits from China Force UW School of Medicine to Pull Out Use Despite Limited Supply

The process was published in the Journal of Experimental Medicine. The therapy will extract immune cells called T lymphocytes from the patient's bloodstream. It will train the cells to recognize the virus once it enters the body.

With over 800,000 cases and almost 43,000 deaths in the US because of COVID-19, going anywhere is a risk. Using this therapy, the patient will not go to a hospital anymore, lowering the risk of spreading and acquiring the disease.

The therapy, while it's in the works, has not yet been tested against other infectious diseases and viruses. Dr. Tan said, "We argue that some infections, such as HIV and [Hepatitis B virus], can be a perfect target for this therapy, especially if lymphocytes are engineered using an approach that keeps them active for a limited amount of time to minimize potential side effects."

However, what researchers are sure of is the therapy works against SARS, the cousin of COVID-19. The study's senior author Dr. Antonio Bertoletti, also from the EID said, "We demonstrated that T cells can be redirected to target the coronavirus responsible for SARS.

See original here:
Scientists in Singapore to Use Immunotherapy Cells in Targeting COVID-19 as It Works with SARS - Science Times