Glossary | stemcells.nih.gov


Adult stem cellSee somatic stem cell.

AstrocyteA type of supporting (glial) cell found in the nervous system.

BlastocoelThe fluid-filled cavity inside the blastocyst, an early, preimplantation stage of the developing embryo.

BlastocystApreimplantationembryo consisting of a sphere made up of an outer layer of cells (thetrophoblast), a fluid-filled cavity (theblastocoel), and a cluster of cells on the interior (theinner cell mass).

Bone marrow stromal cellsA population of cells found in bone marrow that are different from blood cells.

Bone marrow stromal stem cells (skeletal stem cells)A multipotent subset of bone marrow stromal cells able to form bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue.

Cell-based therapiesTreatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or tissues.

Cell cultureGrowth of cells in vitro in an artificial medium for research.

Cell divisionMethod by which a single cell divides to create two cells. There are two main types of cell division depending on what happens to the chromosomes: mitosis and meiosis.

ChromosomeA structure consisting of DNA and regulatory proteins found in the nucleus of the cell. The DNA in the nucleus is usually divided up among several chromosomes.The number of chromosomes in the nucleus varies depending on the species of the organism. Humans have 46 chromosomes.

Clone (v) To generate identical copies of a region of a DNA molecule or to generate genetically identical copies of a cell, or organism; (n) The identical molecule, cell, or organism that results from the cloning process.

CloningSee Clone.

Cord blood stem cellsSee Umbilical cord blood stem cells.

Culture mediumThe liquid that covers cells in a culture dish and contains nutrients to nourish and support the cells. Culture medium may also include growth factors added to produce desired changes in the cells.

DifferentiationThe process whereby an unspecialized embryonic cell acquires the features of a specialized cell such as a heart, liver, or muscle cell. Differentiation is controlled by the interaction of a cell's genes with the physical and chemical conditions outside the cell, usually through signaling pathways involving proteins embedded in the cell surface.

Directed differentiationThe manipulation of stem cell culture conditions to induce differentiation into a particular cell type.

DNADeoxyribonucleic acid, a chemical found primarily in the nucleus of cells. DNA carries the instructions or blueprint for making all the structures and materials the body needs to function. DNA consists of both genes and non-gene DNA in between the genes.

EctodermThe outermost germ layer of cells derived from the inner cell mass of the blastocyst; gives rise to the nervous system, sensory organs, skin, and related structures.

EmbryoIn humans, the developing organism from the time of fertilization until the end of the eighth week of gestation, when it is called a fetus.

Embryoid bodiesRounded collections of cells that arise when embryonic stem cells are cultured in suspension. Embryoid bodies contain cell types derived from all threegerm layers.

Embryonic germ cellsPluripotent stem cells that are derived from early germ cells (those that would become sperm and eggs). Embryonic germ cells are thought to have properties similar to embryonic stem cells.

Embryonic stem cellsPrimitive (undifferentiated) cells that are derived from preimplantation-stageembryos, are capable of dividing without differentiating for a prolonged period in culture, and are known to develop into cells and tissues of the three primary germ layers.

Embryonic stem cell lineEmbryonic stem cells, which have been cultured under in vitro conditions that allow proliferation without differentiation for months to years.

EndodermThe innermost layer of the cells derived from the inner cell mass of the blastocyst; it gives rise to lungs, other respiratory structures, and digestive organs, or generally "the gut."

EnucleatedHaving had its nucleus removed.

EpigeneticThe process by which regulatory proteins can turn genes on or off in a way that can be passed on during cell division.

Feeder layerCells used in co-culture to maintain pluripotent stem cells. For human embryonic stem cell culture, typical feeder layers include mouse embryonic fibroblasts (MEFs) or human embryonic fibroblasts that have been treated to prevent them from dividing.

FertilizationThe joining of the male gamete (sperm) and the female gamete (egg).

FetusIn humans, the developing human from approximately eight weeks after conception until the time of its birth.

GameteAn egg (in the female) or sperm (in the male) cell. See also Somatic cell.

GastrulationThe process in which cells proliferate and migrate within the embryo to transform the inner cell mass of the blastocyst stage into an embryo containing all three primary germ layers.

GeneA functional unit of heredity that is a segment of DNA found on chromosomes in the nucleus of a cell. Genes direct the formation of an enzyme or other protein.

Germ layersAfter the blastocyst stage of embryonic development, the inner cell mass of the blastocyst goes through gastrulation, a period when the inner cell mass becomes organized into three distinct cell layers, called germ layers. The three layers are the ectoderm, the mesoderm, and the endoderm.

Hematopoietic stem cellA stem cell that gives rise to all red and white blood cells and platelets.

Human embryonic stem cell (hESC)A type of pluripotent stem cell derived from early stage human embryos, up to and including the blastocyststage. hESCs are capable of dividing without differentiating for a prolonged period in culture and are known to develop into cells and tissues of the three primary germ layers.

Induced pluripotent stem cell (iPSC)A type of pluripotent stem cell, similar to an embryonic stem cell, formed by the introduction of certain embryonic genes into a somatic cell.

In vitroLatin for "in glass;" in a laboratory dish or test tube; an artificial environment.

In vitro fertilizationA technique that unites the egg and sperm in a laboratory instead of inside the female body.

Inner cell mass (ICM)The cluster of cells inside the blastocyst. These cells give rise to the embryo and ultimately the fetus. The ICM may be used to generate embryonic stem cells.

Long-term self-renewalThe ability of stem cells to replicate themselves by dividing into the same non-specialized cell type over long periods (many months to years) depending on the specific type of stem cell.

MeiosisThe type of cell division a diploid germ cell undergoes to produce gametes (sperm or eggs) that will carry half the normal chromosome number. This is to ensure that when fertilization occurs, the fertilized egg will carry the normal number of chromosomes rather than causing aneuploidy (an abnormal number of chromosomes).

Mesenchymal stem cellsA term that is currently used to define non-blood adult stem cells from a variety of tissues, although it is not clear that mesenchymal stem cells from different tissues are the same.

MesodermMiddle layer of a group of cells derived from the inner cell mass of the blastocyst; it gives rise to bone, muscle, connective tissue, kidneys, and related structures.

MicroenvironmentThe molecules and compounds such as nutrients and growth factors in the fluid surrounding a cell in an organism or in the laboratory, which play an important role in determining the characteristics of the cell.

MitosisThe type of cell division that allows a population of cells to increase its numbers or to maintain its numbers. The number of chromosomes in each daughter cell remains the same in this type of cell division.

MultipotentHaving the ability to develop into more than one cell type of the body. See also pluripotent and totipotent.

Neural stem cellA stem cell found in adult neural tissue that can give rise to neurons and glial (supporting) cells. Examples of glial cells include astrocytes and oligodendrocytes.

NeuronsNerve cells, the principal functional units of the nervous system. A neuron consists of a cell body and its processesan axon and one or more dendrites. Neurons transmit information to other neurons or cells by releasing neurotransmitters at synapses.

OligodendrocyteA supporting cell that provides insulation to nerve cells by forming a myelin sheath (a fatty layer) around axons.

ParthenogenesisThe artificial activation of an egg in the absence of a sperm; the egg begins to divide as if it has been fertilized.

PassageIn cell culture, the process in which cells are disassociated, washed, and seeded into new culture vessels after a round of cell growth and proliferation. The number of passages a line of cultured cells has gone through is an indication of its age and expected stability.

PluripotentThe state of a single cell that is capable of differentiating into all tissues of an organism, but not alone capable of sustaining full organismal development.

Scientists demonstrate pluripotency by providing evidence of stable developmental potential, even after prolonged culture, to form derivatives of all three embryonic germ layers from the progeny of a single cell and to generate a teratoma after injection into an immunosuppressed mouse.

Polar bodyA polar body is a structure produced when an early egg cell, or oogonium, undergoes meiosis. In the first meiosis, the oogonium divides its chromosomes evenly between the two cells but divides its cytoplasm unequally. One cell retains most of the cytoplasm, while the other gets almost none, leaving it very small. This smaller cell is called the first polar body. The first polar body usually degenerates. The ovum, or larger cell, then divides again, producing a second polar body with half the amount of chromosomes but almost no cytoplasm. The second polar body splits off and remains adjacent to the large cell, or oocyte, until it (the second polar body) degenerates. Only one large functional oocyte, or egg, is produced at the end of meiosis.

PreimplantationWith regard to an embryo, preimplantation means that the embryo has not yet implanted in the wall of the uterus. Human embryonic stem cells are derived from preimplantation-stage embryos fertilized outside a woman's body (in vitro).

ProliferationExpansion of the number of cells by the continuous division of single cells into two identical daughter cells.

Regenerative medicineA field of medicine devoted to treatments in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cell populations or tissues. (See also cell-based therapies).

Reproductive cloningThe process of using somatic cell nuclear transfer (SCNT) to produce a normal, full grown organism (e.g., animal) genetically identical to the organism (animal) that donated the somatic cell nucleus. In mammals, this would require implanting the resulting embryo in a uterus where it would undergo normal development to become a live independent being. The firstmammal to be created by reproductive cloning was Dolly the sheep, born at the Roslin Institute in Scotland in 1996. See also Somatic cell nuclear transfer (SCNT).

SignalsInternal and external factors that control changes in cell structure and function. They can be chemical or physical in nature.

Somatic cellAny body cell other than gametes (egg or sperm); sometimes referred to as "adult" cells. See also Gamete.

Somatic cell nuclear transfer (SCNT)A technique that combines an enucleated egg and the nucleus of a somatic cell to make an embryo. SCNT can be used for therapeutic or reproductive purposes, but the initial stage that combines an enucleated egg and a somatic cell nucleus is the same. See also therapeutic cloning and reproductive cloning.

Somatic (adult) stem cellA relatively rare undifferentiated cell found in many organs and differentiated tissues with a limited capacity for both self renewal (in the laboratory) and differentiation. Such cells vary in their differentiation capacity, but it is usually limited to cell types in the organ of origin. This is an active area of investigation.

Stem cellsCells with the ability to divide for indefinite periods in culture and to give rise to specialized cells.

Stromal cellsConnective tissue cells found in virtually every organ. In bone marrow, stromal cells support blood formation.

SubculturingTransferring cultured cells, with or without dilution, from one culture vessel to another.

Surface markersProteins on the outside surface of a cell that are unique to certain cell types and that can be visualized using antibodies or other detection methods.

TeratomaA multi-layered benign tumor that grows from pluripotent cells injected into mice with a dysfunctional immune system. Scientists test whether they have established a human embryonic stem cell (hESC) line by injecting putative stem cells into such mice and verifying that the resulting teratomas contain cells derived from all three embryonic germ layers.

Therapeutic cloningThe process of using somatic cell nuclear transfer (SCNT) to produce cells that exactly match a patient. By combining a patient's somatic cell nucleus and an enucleated egg, a scientist may harvest embryonic stem cells from the resulting embryo that can be used to generate tissues that match a patient's body. This means the tissues created are unlikely to be rejected by the patient's immune system. See also Somatic cell nuclear transfer (SCNT).

TotipotentThe state of a cell that is capable of giving rise to all types of differentiated cells found in an organism, as well as the supporting extra-embryonic structures of the placenta. A single totipotent cell could, by division in utero, reproduce the whole organism. (See also Pluripotent and Multipotent).

TransdifferentiationThe process by which stem cells from one tissue differentiate into cells of another tissue.

TrophoblastThe outer cell layer of the blastocyst. It is responsible for implantation and develops into the extraembryonic tissues, including the placenta, and controls the exchange of oxygen and metabolites between mother and embryo.

Umbilical cord blood stem cellsStem cells collected from the umbilical cord at birth that can produce all of the blood cells in the body. Cord blood is currently used to treat patients who have undergone chemotherapy to destroy their bone marrow due to cancer or other blood-related disorders.

UndifferentiatedA cell that has not yet developed into a specialized cell type.

View post:
Glossary | stemcells.nih.gov

Related Posts