Initiation of scutellum-derived callus is regulated by an embryo-like … – Nature.com


Ikeuchi, M., Sugimoto, K. & Iwase, A. Plant callus: mechanisms of induction and repression. Plant Cell 25, 31593173 (2013).

Article CAS PubMed Central PubMed Google Scholar

Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377406 (2019).

Article CAS PubMed Google Scholar

Xu, L. & Huang, H. Genetic and epigenetic controls of plant regeneration. Curr. Top. Dev. Biol. 108, 133 (2014).

Article PubMed Google Scholar

Che, P., Lall, S. & Howell, S. H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226, 11831194 (2007).

Article CAS PubMed Google Scholar

Atta, R. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57, 626644 (2009).

Article CAS PubMed Google Scholar

Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463471 (2010).

Article CAS PubMed Google Scholar

Hu, B. et al. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration 4, 132139 (2017).

Article CAS PubMed Central PubMed Google Scholar

Abe, T. & Futsuhara, Y. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theor. Appl. Genet. 72, 310 (1986).

Article CAS PubMed Google Scholar

Bevitori, R., Popielarska-Konieczna, M., Dos Santos, E. M., Grossi-De-s, M. F. & Petrofeza, S. Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation. Protoplasma 251, 545554 (2013).

PubMed Google Scholar

Fan, M., Xu, C., Xu, K. & Hu, Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22, 11691180 (2012).

Article CAS PubMed Central PubMed Google Scholar

He, C., Chen, X., Huang, H. & Xu, L. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet. 8, e1002911 (2012).

Article CAS PubMed Central PubMed Google Scholar

Liu, J. et al. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol. 59, 734743 (2018).

Article PubMed Google Scholar

Zhai, N. & Xu, L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat. Plants 7, 14531460 (2021).

Article CAS PubMed Google Scholar

Kareem, A. et al. PLETHORA genes control regeneration by a two-step mechanism. Curr. Biol. 25, 10171030 (2015).

Article CAS PubMed Central PubMed Google Scholar

Sugimoto, K., Gordon, S. P. & Meyerowitz, E. M. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 21, 212218 (2011).

Article CAS PubMed Google Scholar

Guo, F. et al. Callus initiation from root explants employs different strategies in rice and Arabidopsis. Plant Cell Physiol. 59, 17821789 (2018).

Article CAS PubMed Google Scholar

Liu, J. et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26, 10811093 (2014).

Article CAS PubMed Central PubMed Google Scholar

Kim, J.-Y. et al. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis. EMBO J. 37, e98726 (2018).

Article PubMed Central PubMed Google Scholar

Zhai, N., Pan, X., Zeng, M. & Xu, L. Developmental trajectory of pluripotent stem cell establishment in Arabidopsis callus guided by a quiescent center-related gene network. Development 150, dev200879 (2023).

Shim, S. et al. Transcriptome comparison between pluripotent and non-pluripotent calli derived from mature rice seeds. Sci. Rep. 10, 21257 (2020).

Article CAS PubMed Central PubMed Google Scholar

Zhao, N. et al. Systematic analysis of differential H3K27me3 and H3K4me3 deposition in callus and seedling reveals the epigenetic regulatory mechanisms involved in callus formation in rice. Front. Genet. 11, 116 (2020).

Article Google Scholar

Indoliya, Y. et al. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Sci. Rep. 6, 23050 (2016).

Article CAS PubMed Central PubMed Google Scholar

Zhang, H. et al. OsHDA710-mediated histone deacetylation regulates callus formation of rice mature embryo. Plant Cell Physiol. 61, 16461660 (2020).

Article CAS PubMed Google Scholar

Guo, F. et al. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. N. Phytol. 229, 26762692 (2021).

Article CAS Google Scholar

Xia, K. et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7, e30039 (2012).

Article CAS PubMed Central PubMed Google Scholar

Zhu, Z.-X. et al. A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Mol. Plant 5, 154161 (2012).

Article CAS PubMed Google Scholar

Inukai, Y. et al. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17, 13871396 (2005).

Article CAS PubMed Central PubMed Google Scholar

Zeng, M. et al. Stem cell lineage in body layer specialization and vascular patterning of rice root and leaf. Sci. Bull. 61, 847858 (2016).

Article CAS Google Scholar

Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811814 (2007).

Article CAS PubMed Google Scholar

Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

Article Google Scholar

Guo, F. et al. Rice LEAFY COTYLEDON1 hinders embryo greening during the seed development. Front Plant Sci. https://doi.org/10.1101/2021.08.18.456739 (2022).

Yang, D. et al. Transcriptome analysis of rice response to blast fungus identified core genes involved in immunity. Plant. Cell Environ. 44, 31033121 (2021).

Article CAS PubMed Google Scholar

Liu, J., Jie, W., Shi, X., Ding, Y. & Ding, C. Transcription elongation factors OsSPT4 and OsSPT5 are essential for rice growth and development and act with APO2. Res. Sq. Prepr. https://doi.org/10.21203/rs.3.rs-2549283/v1 (2023).

Gaj, M. D., Zhang, S., Harada, J. J. & Lemaux, P. G. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222, 977988 (2005).

Article CAS PubMed Google Scholar

Wjcikowska, B. & Gaj, M. D. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep. 36, 843858 (2017).

Article PubMed Central PubMed Google Scholar

Shang, B. et al. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc. Natl Acad. Sci. USA 113, 51015106 (2016).

Article CAS PubMed Central PubMed Google Scholar

Wang, F.-X. et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev. Cell 54, 742757.e8 (2020).

Article CAS PubMed Google Scholar

Salan, C., Lepiniec, L. & Dubreucq, B. Genetic and molecular control of somatic embryogenesis. Plants 10, 1467 (2021).

Article PubMed Central PubMed Google Scholar

Mordhorst, A., Hartog, M., El Tamer, M., Laux, T. & de Vries, S. Somatic embryogenesis from Arabidopsis shoot apical meristem mutants. Planta 214, 829836 (2002).

Article CAS PubMed Google Scholar

Zuo, J., Niu, Q.-W., Frugis, G. & Chua, N.-H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349359 (2002).

Article CAS PubMed Google Scholar

Su, Y. H. et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J. 59, 448460 (2009).

Article CAS PubMed Central PubMed Google Scholar

Boutilier, K. et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 17371749 (2002).

Article CAS PubMed Central PubMed Google Scholar

Horstman, A. et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol. 175, 848857 (2017).

Article CAS PubMed Central PubMed Google Scholar

Tsuwamoto, R., Yokoi, S. & Takahata, Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol. Biol. 73, 481492 (2010).

Article CAS PubMed Google Scholar

Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 11951205 (1998).

Article CAS PubMed Google Scholar

Kwong, R. W. et al. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15, 518 (2003).

Article CAS PubMed Central PubMed Google Scholar

Kagaya, Y. et al. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol. 46, 399406 (2005).

Article CAS PubMed Google Scholar

Stone, S. L. et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl Acad. Sci. USA 98, 1180611811 (2001).

Article CAS PubMed Central PubMed Google Scholar

Stone, S. L. et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc. Natl Acad. Sci. USA 105, 31513156 (2008).

Article CAS PubMed Central PubMed Google Scholar

Braybrook, S. A. et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc. Natl Acad. Sci. USA 103, 34683473 (2006).

Article CAS PubMed Central PubMed Google Scholar

Curaba, J. et al. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol. 136, 36603669 (2004).

Article CAS PubMed Central PubMed Google Scholar

Lueren, H., Kirik, V., Herrmann, P. & Misra, S. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 15, 755764 (1998).

Read more here:
Initiation of scutellum-derived callus is regulated by an embryo-like ... - Nature.com

Related Posts