In genetics, a mosaic, or mosaicism, involves the presence of two or more populations of cells with different genotypes in one individual who has developed from a single fertilized egg.[1][2] Mosaicism has been reported to be present in as high as 70% of cleavage stage embryos and 90% of blastocyst-stage embryos derived from in vitro fertilization.[3]
Genetic mosaicism can result from many different mechanisms including chromosome non-disjunction, anaphase lag, and endoreplication.[3] Anaphase lagging is the most common way by which mosaicism arises in the preimplantation embryo.[3] Mosaicism can also result from a mutation in one cell during development in which the mutation is passed on to only its daughter cells. Therefore, the mutation is only going to be present in a fraction of the adult cells.[2]
Genetic mosaics may often be confused with chimerism, in which two or more genotypes arise in one individual similarly to mosaicism. However, in chimerism the two genotypes arise from the fusion of more than one fertilized zygote in the early stages of embryonic development, rather than from a mutation or chromosome loss.
Different types of mosaicism exist, such as gonadal mosaicism (restricted to the gametes) or somatic mosaicism.
Somatic mosaicism occurs when the somatic cells of the body are of more than one genotype. In the more common mosaics, different genotypes arise from a single fertilized egg cell, due to mitotic errors at first or later cleavages.
In rare cases, intersex conditions can be caused by mosaicism where some cells in the body have XX and others XY chromosomes (46, XX/XY).[4][5] In the fruit fly Drosophila melanogaster, where a fly possessing two X chromosomes is a female and a fly possessing a single X chromosome is a sterile male, a loss of an X chromosome early in embryonic development can result in sexual mosaics, or gynandropmorphs.[6][7] Likewise, a loss of the Y chromosome can result in XY/X mosaic males.[8]
The most common form of mosaicism found through prenatal diagnosis involves trisomies. Although most forms of trisomy are due to problems in meiosis and affect all cells of the organism, there are cases where the trisomy occurs in only a selection of the cells. This may be caused by a nondisjunction event in an early mitosis, resulting in a loss of a chromosome from some trisomic cells.[9] Generally this leads to a milder phenotype than in non-mosaic patients with the same disorder.
An example of this is one of the milder forms of Klinefelter syndrome, called 46/47 XY/XXY mosaic wherein some of the patient's cells contain XY chromosomes, and some contain XXY chromosomes. The 46/47 annotation indicates that the XY cells have the normal number of 46 total chromosomes, and the XXY cells have a total of 47 chromosomes.
Around 30% of Turner's syndrome cases demonstrate mosaicism, while complete monosomy (45, X) occurs in about 5060% of cases.
But mosaicism need not necessarily be deleterious. Revertant somatic mosaicism is a rare recombination event in which there is a spontaneous correction of a mutant, pathogenic allele.[10] In revertant mosaicism, the healthy tissue formed by mitotic recombination can outcompete the original, surrounding mutant cells in tissues like blood and epithelia that regenerate often.[10] In the skin disorder ichthyosis with confetti, normal skin spots appear early in life and increase in number and size over time.[10]
Other endogenous factors can also lead to mosaicism including mobile elements, DNA polymerase slippage, and unbalanced chromosomal segregation.[11] Exogenous factors include nicotine and UV radiation.[11] Somatic mosaics have been created in Drosophila using Xray treatment and the use of irradiation to induce somatic mutation has been a useful technique in the study of genetics.[12]
True mosaicism should not be mistaken for the phenomenon of Xinactivation, where all cells in an organism have the same genotype, but a different copy of the X chromosome is expressed in different cells. The latter is the case in normal (XX) female mammals, although it is not always visible from the phenotype (like it is in calico cats). However, all multicellular organisms are likely to be somatic mosaics to some extent.[13]
Somatic mutation leading to mosaicism is prevalent in the beginning and end stages of human life.[11] Somatic mosaics are common in embryogenesis due to retrotransposition of L1 and Alu transposable elements.[11] In early development, DNA from undifferentiated cell types may be more susceptible to mobile element invasion due to long, un-methylated regions in the genome.[11] Further, the accumulation of DNA copy errors and damage over a lifetime lead to greater occurrences of mosaic tissues in aging humans. As our longevity has increased dramatically over the last century, our genome may not have had time to adapt to cumulative effects of mutagenesis.[11] Thus, cancer research has shown that somatic mutations are increasingly present throughout a lifetime and are responsible for most leukemia, lymphomas, and solid tumors.[14]
Genomic mosaiscism arises in developing and in adult brain cells leading to diverse, seemingly random, genomic changes.[15] A frequent type of neuronal genomic mosaicism is copy number variation. Possible sources of such variation were suggested to be incorrect repair of DNA damages and somatic recombination.[15][16]
One basic mechanism which can produce mosaic tissue is mitotic recombination or somatic crossover. It was first discovered by Curt Stern in Drosophila in 1936. The amount of tissue which is mosaic depends on where in the tree of cell division the exchange takes place. A phenotypic character called "Twin Spot" seen in Drosophila is a result of mitotic recombination. However, it also depends on the allelic status of the genes undergoing recombination. Twin spot occurs only if the heterozygous genes are linked in repulsion i.e. trans phase. The recombination needs to occur between the centromere the adjacent gene. This gives an appearance of yellow patches on the wild type background in Drosophila. another example of mitotic recombination is the Bloom's syndrome which happens due to the mutation in the blm gene. The resulting BLM protein is defective. the defect in RecQ an helicase facilitates the defective unwinding of DNA during replication and is thus associated with the occurrence of this disease.[17][18]
Germline or gonadal mosaicism is a special form of mosaicism, where some gametesi.e., sperm or oocytescarry a mutation, but the rest are normal.[19][20]
The cause is usually a mutation that occurred in an early stem cell that gave rise to all or part of the gametes.
This can cause only some offspring to be affected, even for a dominant disease.
Genetic mosaics can be extraordinarily useful in the study of biological systems, and can be created intentionally in many model organisms in a variety of ways. They often allow for the study of genes that are important for very early events in development, making it otherwise difficult to obtain adult organisms in which later effects would be apparent. Furthermore, they can be used to determine the tissue or cell type in which a given gene is required and to determine whether a gene is cell autonomous. That is, whether or not the gene acts solely within the cell of that genotype, or if it affects the entire organism of neighboring cells which do not themselves contain that genotype.
The earliest examples of this involved transplantation experiments (technically creating chimeras) where cells from a blastula stage embryo from one genetic background are aspirated out and injected into a blastula stage embryo of a different genetic background.
Genetic mosaics are a particularly powerful tool when used in the commonly studied fruit fly, where specially-selected strains frequently lose an X[7] or a Y[8] chromosome in one of the first embryonic cell divisions. These mosaics can then be used to analyze such things as courtship behavior,[7] female sexual attraction,[21] and the autonomy or non-autonomy of particular genes.
Genetic mosaics can also be created through mitotic recombination. Such mosaics were originally created by irradiating flies heterozygous for a particular allele with X-rays, inducing double-strand DNA breaks which, when repaired, could result in a cell homozygous for one of the two alleles. After further rounds of replication, this cell would result in a patch, or "clone" of cells mutant for the allele being studied.
More recently the use of a transgene incorporated into the Drosophila genome has made the system far more flexible. The flip recombinase (or FLP) is a gene from the commonly studied yeast Saccharomyces cerevisiae which recognizes "flip recombinase target" (FRT) sites, which are short sequences of DNA, and induces recombination between them. FRT sites have been inserted transgenically near the centromere of each chromosome arm of Drosophila melanogaster. The FLP gene can then be induced selectively, commonly using either the heat shock promoter or the GAL4/UAS system. The resulting clones can be identified either negatively or positively.
In negatively marked clones the fly is transheterozygous for a gene encoding a visible marker (commonly the green fluorescent protein or GFP) and an allele of a gene to be studied (both on chromosomes bearing FRT sites). After induction of FLP expression, cells that undergo recombination will have progeny that are homozygous for either the marker or the allele being studied. Therefore, the cells that do not carry the marker (which are dark) can be identified as carrying a mutation.
It is sometimes inconvenient to use negatively marked clones, especially when generating very small patches of cells, where it is more difficult to see a dark spot on a bright background than a bright spot on a dark background. It is possible to create positively marked clones using the so-called MARCM ("mosaic analysis with a repressible cell marker", pronounced [mark-em]) system, developed by Liqun Luo, a professor at Stanford University, and his post-doc Tzumin Lee who now leads a group at Janelia Farm Research Campus. This system builds on the GAL4/UAS system, which is used to express GFP in specific cells. However a globally expressed GAL80 gene is used to repress the action of GAL4, preventing the expression of GFP. Instead of using GFP to mark the wild-type chromosome as above, GAL80 serves this purpose, so that when it is removed by mitotic recombination, GAL4 is allowed to function, and GFP turns on. This results in the cells of interest being marked brightly in a dark background.[22]
In 1929, Alfred Sturtevant studied mosaicism in Drosophila.[6] A few years later, In the 1930s, Curt Stern demonstrated that genetic recombination, normal in meiosis, can also take place in mitosis.[23][24] When it does, it results in somatic (body) mosaics. These are organisms which contain two or more genetically distinct types of tissue.[25] The term "somatic mosaicism" was used by C.W. Cotterman in 1956 in his seminal paper on antigenic variation.[11]
Continue reading here:
Mosaic (genetics) - Wikipedia
- Human oocytes reprogram adult somatic nuclei of a type 1 ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Glossary [Stem Cell Information] - Embryonic stem cell [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Somatic cell nuclear transfer - Wikipedia, the free ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Adult stem cell - ScienceDaily [Last Updated On: May 10th, 2015] [Originally Added On: May 10th, 2015]
- Somatic Cell Nuclear Transfer | Knoepfler Lab Stem Cell Blog [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- somatic stem cells - Science Daily [Last Updated On: May 24th, 2015] [Originally Added On: May 24th, 2015]
- Adult stem cell - Wikipedia, the free encyclopedia [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- Redox Signaling and Stem Cell Function - Dirk Bohmann [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- What is the difference between embryonic and somatic stem ... [Last Updated On: June 11th, 2015] [Originally Added On: June 11th, 2015]
- somatic stem cell - Learn Genetics [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Somatic cell - Wikipedia, the free encyclopedia [Last Updated On: July 15th, 2015] [Originally Added On: July 15th, 2015]
- Comparative proteomic analysis of human somatic cells ... [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Human embryonic stem cells derived by somatic cell nuclear ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics IV. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Somatic stem cells in the human endometrium. [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Adult stem cell - Wikipedia [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Somatic cell - Wikipedia [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- Embryonic and Somatic Stem Cells, Whats the Difference? [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- Somatic cell nuclear transfer - Wikipedia [Last Updated On: November 25th, 2016] [Originally Added On: November 25th, 2016]
- Characterization of Regenerative Phenotype of Unrestricted ... [Last Updated On: December 1st, 2016] [Originally Added On: December 1st, 2016]
- Cloning - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- Skin graft gene therapy could treat obesity and diabetes - ResearchGate (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- Difference Between Somatic Cells and Gametes ... [Last Updated On: June 19th, 2018] [Originally Added On: June 19th, 2018]
- What Is Another Name for Somatic Stem Cells and What Do ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- Where Do Stem Cells Come From? - verywellhealth.com [Last Updated On: July 2nd, 2018] [Originally Added On: July 2nd, 2018]
- Stem Cell Quick Reference - Learn.Genetics [Last Updated On: September 9th, 2018] [Originally Added On: September 9th, 2018]
- Somatic Cells - Definition and Examples | Biology Dictionary [Last Updated On: November 14th, 2018] [Originally Added On: November 14th, 2018]
- What is the Difference Between Embryonic and Somatic Stem Cells [Last Updated On: February 27th, 2019] [Originally Added On: February 27th, 2019]
- Difference Between Embryonic and Somatic Stem Cells ... [Last Updated On: May 3rd, 2019] [Originally Added On: May 3rd, 2019]
- Somatic Stem Cells and Cancer - Stem Cell Centers ... [Last Updated On: May 4th, 2019] [Originally Added On: May 4th, 2019]
- Direct generation of human naive induced pluripotent stem ... [Last Updated On: June 5th, 2019] [Originally Added On: June 5th, 2019]
- Zinc Finger Nuclease Technology Market Estimated to Discern 2X Expansion by 2025 - Commerce Gazette [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Tooth Regeneration Market : Huge Growth Opportunity by Trend, Key Players and Forecast 2026 - TodayTimes [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Blast Off With Rocket Pharmaceuticals - Seeking Alpha [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Significant Growth Foreseen by Stem Cell Therapies Market During 2015 2025 - Rapid News Network [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Markets Gazette [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- Stem cell therapy is for animals too - SciTech Europa [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Detection of Latent HSCs Fated to Progress to Blast Phase in Myelofibrosis Patients Several Years Before Blast Transformation - DocWire News [Last Updated On: October 25th, 2019] [Originally Added On: October 25th, 2019]
- Cell Therapy Market Forecast to 2025 | Analysis by Regions, Type, Application, and Top Key Players like Dendreon, Mesoblast, Vericel, Antibe... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Stem Cell Therapy Market : Opportunities and Challenges - MENAFN.COM [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Tooth Regeneration Industry 2019 Research on Market Sales, Revenue, Top Companies and Future Development - TheFinanceTime [Last Updated On: November 11th, 2019] [Originally Added On: November 11th, 2019]
- Cereal rust could lead to new wheat threat - Farm Weekly [Last Updated On: November 14th, 2019] [Originally Added On: November 14th, 2019]
- A short guide to regulation for disruptive technologies - Lexology [Last Updated On: November 14th, 2019] [Originally Added On: November 14th, 2019]
- Youngstown State, IBM to offer high-tech training in the Mahoning Valley - Crain's Cleveland Business [Last Updated On: November 15th, 2019] [Originally Added On: November 15th, 2019]
- US Nobel laureates tell us what they think about cancer research, moonshots, the dark side, funding, meritocracy, herd mentality, Trump, and joy - The... [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Osteonecrosis Treatment Market Benefit and Volume with Status and Prospect to 2026 - Crypto Journal [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Stem Cell Therapies Market research to Witness a Healthy Growth during 2015 2025 - Lake Shore Gazette [Last Updated On: November 25th, 2019] [Originally Added On: November 25th, 2019]
- Brave new world? Why the public might be ready for gene-edited babies - Genetic Literacy Project [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Rocket Pharmaceuticals Announces First Patient Treated in Global Registrational Phase 2 Study of RP-L102 Process B for Fanconi Anemia - BioSpace [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Techi Labs [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Orgenesis and Theracell to launch point-of-care cell and gene therapy centers in HYGEIA Group"s hospitals - Proactive Investors USA & Canada [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Cell Therapy Industry Applications 2019-Size by Type (Allogenic Therapies), by Technique (Stem Cell Therapy), Global Market Growth by Demand Analysis... [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 - PharmiWeb.com [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- Gene Therapy Market 2019-2027 / Trends, Growth, Opportunities And Top Key - Market Research Sheets [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- What a time to be alive: Reproductive breakthroughs of the 2010s that changed life as we know it - FOX 10 News Phoenix [Last Updated On: December 29th, 2019] [Originally Added On: December 29th, 2019]
- Stem Cells Market- What Are The Main Factors That Contributing Towards Industry Growth? - Industry Mirror [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Duke researchers land $6M in federal grants to advance gene editing - WRAL Tech Wire [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Allele and Astellas Enter into an Expanded License for the Development of iPSC Lines - Business Wire [Last Updated On: January 20th, 2020] [Originally Added On: January 20th, 2020]
- Going Gray Too Soon? Scientists Say It Really May Be Due to Stress - Genetic Engineering & Biotechnology News [Last Updated On: January 25th, 2020] [Originally Added On: January 25th, 2020]
- Global Gene Therapy Market is Growing to Reach 6892 Million By 2027 - Market Research News 24 [Last Updated On: January 29th, 2020] [Originally Added On: January 29th, 2020]
- Scientists finally find link between stress and grey hair - nation.co.ke [Last Updated On: January 31st, 2020] [Originally Added On: January 31st, 2020]
- Global Gene Therapy Market to Cross USD 6892 Million By 2027 - TheInfobiz [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- New research shows what happens to your lung cells once you quit smoking - Daily Gaming Worlld [Last Updated On: February 9th, 2020] [Originally Added On: February 9th, 2020]
- Global Gene Therapy Market Worth Reach USD 6892 Million By 2027 - TheInfobiz [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 - TechNews.mobi [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- Global Gene Therapy Market to Cross Around USD 6892 Million By 2027 - Global Newspaper 24 [Last Updated On: February 17th, 2020] [Originally Added On: February 17th, 2020]
- Dental Regenerative Market Size, Share 2020 Regional Trend, Future Growth, Leading Players Updates, Industry Demand, Current and Future Plans by... [Last Updated On: February 28th, 2020] [Originally Added On: February 28th, 2020]
- Researchers ID Protein-Protein Interaction That Promotes Cancer Development - BioSpace [Last Updated On: February 28th, 2020] [Originally Added On: February 28th, 2020]
- Mapping the structure and biological functions within mesenchymal bodies using microfluidics - Science Advances [Last Updated On: March 4th, 2020] [Originally Added On: March 4th, 2020]
- Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia - BioSpace [Last Updated On: March 11th, 2020] [Originally Added On: March 11th, 2020]
- Scientists 'Reset' The Age of Stem Cells From a Supercentenarian Who Lived to 114 - ScienceAlert [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Global Tooth Regeneration Market: Industry Analysis and Forecast (2020-2027) - Publicist360 [Last Updated On: April 17th, 2020] [Originally Added On: April 17th, 2020]
- Normal human uterus is colonised by clones with cancer-driving mutations that arise early in life, study finds - Cambridge Network [Last Updated On: April 24th, 2020] [Originally Added On: April 24th, 2020]
- Global Zinc Finger Nuclease Technology Market to Generate Lucrative Revenue Prospects for Manufacturers After the End of COVID-19 Crisis and Forecast... [Last Updated On: May 4th, 2020] [Originally Added On: May 4th, 2020]
- Induced Pluripotent Stem Cells Market Latest Trends and Analysis Future Growth Study by 2029 Cole Reports - Cole of Duty [Last Updated On: May 4th, 2020] [Originally Added On: May 4th, 2020]
- What is the Value of iPSC Technology in Cardiac... - The Doctor Weighs In [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Somatic Stem Cells - Methods and Protocols | Shree Ram ... [Last Updated On: May 13th, 2020] [Originally Added On: May 13th, 2020]
- Global Tooth Regeneration Market : Industry Analysis And Forecast (2020-2027) - Azizsalon News [Last Updated On: May 14th, 2020] [Originally Added On: May 14th, 2020]
- A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and C. elegans - Science Advances [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]