As the guardian of the genome and the most frequently mutated gene in human cancer, TP53 and the p53 tumor suppressor protein it encodes make a compelling therapeutic target with the potential for broad-based activity. But p53 presents a significant challenge for investigators, and the field is littered with clinical trial failures and abandoned drug development programs.1,2
This year was shaping up to be a landmark one for this intensively researched cancer drug target, with a hotly anticipated readout from a phase 3 trial of idasanutlin, a small molecule inhibitor of the p53-regulatory protein MDM2.3,4
However, results from the phase 3 MIRROS trial in patients with relapsed/refractory acute myeloid leukemia (AML) proved yet another disappointment5 for a field that has taken more than its fair share of blows over the decades.1,2
Nevertheless, investigators continue to push the boundaries of drug development in their efforts to develop novel p53-targeting agents and potential combinatorial strategies. Several companies are pursuing drugs that reactivate mutant forms of the p53 protein, restoring its tumor-suppressive properties.
One such agent, eprenetapopt (APR-246), received a breakthrough therapy designation in January 2020 for the treatment of patients with TP53-mutant myelodysplastic syndromes (MDS).6 Promising phase 2 data for the drug were highlighted at the 2019 American Society of Hematology Annual Meeting (ASH).7
Discovered more than 4 decades ago,8 the p53 protein is best known for its role as a transcription factor. Modulating the expression of multiple important genes positions p53 as a master regulator of a range of cellular processes, the most thoroughly studied being the DNA damage response.
Levels of p53 protein are generally low; however, in response to cellular stressors such as DNA damage, p53 is activated, accumulates in the nucleus, and induces the expression of genes that contain specific response elements. Among its targets are regulators of the cell cycle, DNA repair, and apoptosis, which allow the cell to pause cycling to repair damaged DNA or induce cell death if the damage is irreparable. In this way, p53 serves as a barrier to the genomic instability that fosters cancer development, earning it the nickname guardian of the genome (FIGURE).2,9-12
The p53 protein is composed of multiple functional domains: Two transactivation domains operate together and independently to mediate the transcription of p53 target genes, a proline-rich domain is implicated in p53-mediated inhibition of cell growth and stimulation of apoptosis, and a DNA-binding domain allows p53 to bind the promoters of target genes.2
In addition, p53 contains an oligomerization domain that enables it to form a homotetramer (required for transcription factor activity), a nuclear export signal, and an unstructured C-terminal domain that is targeted by post-translational modifications that fine-tune p53s activity.2
The activity of p53 is tightly controlled by other mechanisms, most notably by 2 negative regulators, MDM2 and MDM4. MDM2 is an E3 ubiquitin ligase that tags p53 with the small molecule ubiquitin, promoting the removal of p53 from the nucleus and targeting it for degradation by the proteasome.1,2,9,11
Notably, the MDM2 gene is a transcriptional target of p53; thus, a negative feedback loop exists whereby p53 promotes the expression of its own negative regulator. MDM4 does not possess E3 ligase activity but interacts with MDM2 to promote ubiquitination of p53.2
The importance of p53 as a tumor suppressor is reflected in reports that it is mutated in approximately half of all human cancers.2,9,10,12 Its prevalence varies widely across tumor types, reaching up to 95% in high-grade serous ovarian cancer (TABLE 1).13
Somatic TP53 mutations are also extremely common in small cell lung cancer, pancreatic cancer, squamous cell carcinoma of the head and neck, and invasive breast cancer, particularly the triple-negative subtype.14
Meanwhile, germline mutations in TP53 are associated with the rare Li-Fraumeni syndrome, in which individuals have an increased risk of developing cancer over the course of their lifetime.11,12
Although many types of mutation have been identified in TP53, the vast majority occur within the DNA-binding domain, affecting p53s ability to activate its target genes and leading to a loss of tumor- suppressive function.2,12
Interestingly, unlike other tumor suppressor proteins, which are usually affected by deletion or nonsense mutations, most TP53 mutations result in a single amino acid substitution.5 These missense mutations are broadly classified into 1 of 2 types: either contact mutations that directly impede p53s ability to bind target genes DNA or structural mutations that induce a conformational change in the p53 protein that affects its function.2,10,12
Moreover, it is thought that the effect of mutant p53 on carcinogenesis may occur through more than just a passive loss of its tumor-suppressive capabilities. Mutant p53 can also affect wild-type p53 when both forms are present in the same cell. Unlike deletions or nonsense mutations, missense mutations allow the production of full-length (albeit defective) protein. This mutant p53 protein is capable of forming complexes with the wild-type protein that dampen the antitumor functions of the wild-type protein.10,14,15
The mutant form also has been shown to acquire protumorigenic functions through interaction with other proteins that play a role in various cancer hallmarks.2,10,12
Even in the absence of gene mutations, p53 function is often impaired in cancer cells. A major mechanism is through dysregulation of the MDM2 and MDM4 proteins, which are frequently overexpressed in various tumor types. Ultimately, the p53 pathway is thought to be nearly universally dysfunctional in human malignancies, making it an enticing therapeutic target.2,11
For decades, investigators have sought to harness the p53 protein in drug development, but tumor suppressor proteins are notoriously difficult to target and require unconventional therapeutic strategies. A variety of methods are under investigation today, according to a search of ClinicalTrials.gov. These include vaccines and agents with targets that affect p53 functions. One of the most prevalent strategies involves targeting MDM2 protein activity and one of the most innovative seeks to reactivate p53 regulation (TABLE 2).
Among the earliest and most promising approaches to treating tumors without TP53 mutations was the attempt to block the interaction between p53 and its negative regulator MDM2. Targeting protein-protein interactions also holds challenges, but investigators identified a hydrophobic groove on the surface of MDM2 that offered a binding foothold.1,2
The early 2000s saw the emergence of the nutlins, named after the Roche facility in Nutley, New Jersey, where they were discovered.1 The first to advance to clinical trials, RG7112, showed promise in phase 1 studies but was limited by the development of significant gastrointestinal (GI) and hematologic toxicities.1,2,9
Idasanutlin is a more potent and selective nutlin analogue based on a different chemical scaffold.1,3,9 Data from phase 1/2 studies suggested that idasanutlin had clinical activity alone and in combination with other drugs in patients with AML,3 a cancer type in which p53 dysfunction is highly prevalent despite a comparatively low rate of TP53 mutations (5%-8% of newly diagnosed patients; 30%-40% of therapy-related AML).16
Idasanutlin advanced to the phase 3 MIRROS trial, in which it was evaluated in combination with cytarabine compared with cytarabine alone in patients with relapsed/ refractory AML fit for intensive salvage therapy (NCT02545283). However, the MIRROS study was terminated due to futility based on efficacy results at a planned interim analysis, according to an update posted in May 2020 on ClinicalTrials.gov.4
The results of this analysis were presented at the virtual 25th European Hematology Association Congress in June 2020. A total of 447 patients were randomized 2:1 to receive idasanutlin 300 mg (or placebo) twice daily plus cytarabine 1 g/m2 once daily on days 1 to 5 of a single 28-day induction cycle. Responders could follow this with up to 2 optional consolidation cycles of once-daily idasanutlin 300 mg plus cytarabine 1 g/m2.
The study failed to meet its primary end point of improved overall survival (OS); median OS was 8.3 months in the idasanu-tlin arm and 9.1 months for placebo (HR, 1.08; 95% CI, 0.81-1.45; P = .58). Overall response rate (ORR) was 38.8% versus 22.0% (OR, 2.25; 95% CI, 1.36-3.72), and complete response (CR) was achieved in 20.3% and 17.1% of patients, respectively (OR, 1.23; 95% CI, 0.70-2.18).
The most common adverse events (AEs) were GI toxicities, and there were similar rates of grade 3 to 5 AEs in the 2 arms; most commonly, febrile neutropenia, thrombocytopenia, and anemia.5
Several other clinical trials of idasanutlin are ongoing, including a phase 1b study in which idasanutlin is being tested in combination with the BCL-2 inhibitor venetoclax (Venclexta)a combination that has shown potent synergy in preclinical trials in elderly patients with relapsed/ refractory AML who are ineligible for chemotherapy (NCT02670044).
Among 49 patients, there was a 41% anti-leukemic response rate, a measure that encompasses the rates of CR, CR with incomplete platelet count recovery, CR with incomplete hematologic recovery, partial response (PR), and morphologic leukemia- free state. Median duration of response (DOR) was 4.9 months, and median OS was 4.4 months. The most common AEs were diarrhea and nausea, and grade 3 or 4 AEs included febrile neutropenia, neutropenia, and thrombocytopenia.17
Although some companies have suffered setbacks with MDM2 inhibitors, others are persevering; several new agents in this class have entered clinical trials.1 KRT-232 (AMG 232) was originally developed by Amgen, but Kartos Therapeutics has taken over development. The results of a first-in- human clinical trial were recently published (NCT01723020). A total of 107 patients with various advanced solid tumors or multiple myeloma were enrolled, most of whom had received 3 or more prior lines of therapy.
During dose escalation (n = 39), KRT-232 was administered at doses of 15, 30, 60, 120, 240, 300, 360, and 480 mg. There were 3 dose-limiting toxicities (DLTs): grade 3 neutropenia and grade 3 and 4 thrombocytopenia. The highest tolerated dose, 240 mg, was evaluated in dose expansion (n = 68). The most common treatment-related AEs (TRAEs) in the dose-expansion group were diarrhea, nausea, vomiting, fatigue, decreased appetite, and thrombocytopenia, mostly grade 1 or 2 in severity.
Per central evaluation, 4% of patients had unconfirmed PRs (including patients with well-differentiated liposarcoma, squamous cell carcinoma, and breast cancer), whereas most patients experienced stable disease (SD).18 KRT-232 also recently showed limited clinical activity in a phase 1 clinical trial in patients with relapsed/refractory AML (NCT02016729).19
Ascentage Pharma is developing another MDM2 antagonist, APG-115, and a phase 1 study in patients with advanced solid tumors has been completed (NCT02935907). Among 28 patients, who had received a median of 4 prior lines of therapy and were treated with doses ranging from 10 to 300 mg for 21 days of 28-day cycles, 6 patients experienced SD after 2 cycles. The most common AEs included fatigue, nausea, vomiting, diarrhea, decreased appetite, dehydration, neutropenia, leukopenia, pain in extremity, and thrombocytopenia.20
None of the MDM2 inhibitors under evaluation block MDM4 activity, and tumors overexpressing this protein would likely be resistant to these drugs. A dual inhibitor of both MDM2 and MDM4 is therefore desirable, and Aileron Therapeutics has a first-in-class drug, ALRN-6924, in clinical trials. In p53, a helical region binds to both MDM2 and MDM4, and ALRN-6924 is a stapled peptide, locked in a helical conformation that mimics this region.21,22 It is being evaluated in several ongoing phase 1 clinical trials.
Aileron is also exploring ALRN-6924 as a chemoprotectant. It is anticipated that ALRN-6924 will arrest the cell cycle in normal cells that express wild-type p53, but not in cancer cells with a TP53 mutation. Thus, treatment should limit the off-target toxicity of DNA-damaging chemotherapies that target rapidly proliferating cells.23
One of the most exciting strategies for targeting cells that have TP53 mutations is reactivation of the mutant protein. The most widely investigated drugs are PRIMA-1 (p53 reactivation and induction of massive apoptosis) and its methylated derivative, eprenetapopt.
Both are prodrugs that are converted into an active metabolite, methylene quinuclidinone, which binds covalently to thiol groups in the core of the mutant p53 protein and causes it to undergo a conformational change, restoring wild-type activity.9,12
Eprenetapopt is more potent and has improved membrane permeability compared with PRIMA-1, and it has become the focus of ongoing clinical trials.2,12 It demonstrated anticancer activity and had a favorable safety profile in a range of preclinical cancer models, which led to the commencement of early-stage clinical testing.2,12 In a first-in-human study, eprenetapopt was reported to be safe and showed some activity in patients with hematologic malignancies (NCT00900614).24
Patients with TP53-mutant MDS have a particularly poor prognosis, and new treatment options are needed.25 In a phase 1/2 study (NCT03072043), eprenetapopt was evaluated in combination with the hypomethylating agent azacitidine in patients with TP53-mutant higher-risk MDS or oligoblastic ( 30% blasts) AML.26
Phase 1b results demonstrated that eprenetapopt treatment led to transcriptional activation of p53 target genes. Additionally, patients experienced predominantly grade 1 or 2 AEs, and there were no DLTs. Among 11 evaluable patients, there were 9 CRs and 2 bone marrow CRs.26
Results from the phase 2 portion of the trial were presented at the 2019 ASH meeting. A total of 49 patients had been enrolled and treated with the recommended phase 2 dose of 4500 mg administered intravenously on days 1 to 4 in combination with azacitidine 75 mg/m2 for 7 days (days 4-10 or days 4-5 and 8-12) in 28-day cycles. The median age of patients was 66 years, and most patients had MDS, all higher risk.
The ORR was 87%, including a 53% CR rate and 18% bone marrow CR with hematologic improvement. An additional 4 patients had SD, and just 2 had progressive disease. Median DOR was 6.5 months.
Having TP53 as the sole gene mutation was predictive of a higher CR rate (69% vs 25%; P = .006), and there was a nonsignificant trend toward higher ORR in these patients (93% vs 75%; P = .17). In the overall cohort, the median OS was 11.6 months. The 18 patients who discontinued study treatment to proceed to stem cell transplant had better median OS than those who did not (16.1 months vs 9.2 months). TRAEs included nausea, vomiting, dizziness, constipation, neuropathy, leukopenia, and thrombocytopenia.7
Based on these findings, the FDA granted fast track and orphan drug designations to eprenetapopt for MDS treatment.6 A phase 3 clinical trial of eprenetapopt in combination with azacitidine in patients with TP53mutated MDS is ongoing (NCT03745716),7 and Aprea Therapeutics recently reported that enrollment was complete, with topline results expected in late 2020.27
Interim results of a French trial were also presented at the 2019 ASH meeting. Fifty-three patients (34 with MDS and 19 with AML, all higher risk and harboring TP53 mutations) were treated with 4500 mg of eprenetapopt on days 1 to 4 and azacitidine 75 mg/m2 on days 4 to 10 of 28-day cyclesAmong 16 patients evaluable for response, The ORR was 75%, including 56% CR and 19% bone marrow CR or SD with hematologic improvement. Common TRAEs were febrile neutropenia and neurological toxicities, the latter including ataxia, cognitive impairment, acute confusion, isolated dizziness, and facial paresthesia.28
Eprenetapopt also demonstrated activity in combination with carboplatin and pegylated liposomal doxorubicin in patients with high-grade serous ovarian cancer, a cancer type with a high prevalence of TP53 mutations, in the phase 1/2 PiSARRO trial (NCT02098343).29
See more here:
Novel Strategies for Targeting the Guardian of the Genome Emerge - OncLive
- Human oocytes reprogram adult somatic nuclei of a type 1 ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Glossary [Stem Cell Information] - Embryonic stem cell [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Somatic cell nuclear transfer - Wikipedia, the free ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Adult stem cell - ScienceDaily [Last Updated On: May 10th, 2015] [Originally Added On: May 10th, 2015]
- Somatic Cell Nuclear Transfer | Knoepfler Lab Stem Cell Blog [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- somatic stem cells - Science Daily [Last Updated On: May 24th, 2015] [Originally Added On: May 24th, 2015]
- Adult stem cell - Wikipedia, the free encyclopedia [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- Redox Signaling and Stem Cell Function - Dirk Bohmann [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- What is the difference between embryonic and somatic stem ... [Last Updated On: June 11th, 2015] [Originally Added On: June 11th, 2015]
- somatic stem cell - Learn Genetics [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Somatic cell - Wikipedia, the free encyclopedia [Last Updated On: July 15th, 2015] [Originally Added On: July 15th, 2015]
- Comparative proteomic analysis of human somatic cells ... [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Human embryonic stem cells derived by somatic cell nuclear ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics IV. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Somatic stem cells in the human endometrium. [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Adult stem cell - Wikipedia [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Somatic cell - Wikipedia [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- Embryonic and Somatic Stem Cells, Whats the Difference? [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- Somatic cell nuclear transfer - Wikipedia [Last Updated On: November 25th, 2016] [Originally Added On: November 25th, 2016]
- Characterization of Regenerative Phenotype of Unrestricted ... [Last Updated On: December 1st, 2016] [Originally Added On: December 1st, 2016]
- Cloning - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- Skin graft gene therapy could treat obesity and diabetes - ResearchGate (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- Difference Between Somatic Cells and Gametes ... [Last Updated On: June 19th, 2018] [Originally Added On: June 19th, 2018]
- What Is Another Name for Somatic Stem Cells and What Do ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- Where Do Stem Cells Come From? - verywellhealth.com [Last Updated On: July 2nd, 2018] [Originally Added On: July 2nd, 2018]
- Stem Cell Quick Reference - Learn.Genetics [Last Updated On: September 9th, 2018] [Originally Added On: September 9th, 2018]
- Somatic Cells - Definition and Examples | Biology Dictionary [Last Updated On: November 14th, 2018] [Originally Added On: November 14th, 2018]
- What is the Difference Between Embryonic and Somatic Stem Cells [Last Updated On: February 27th, 2019] [Originally Added On: February 27th, 2019]
- Mosaic (genetics) - Wikipedia [Last Updated On: March 8th, 2019] [Originally Added On: March 8th, 2019]
- Difference Between Embryonic and Somatic Stem Cells ... [Last Updated On: May 3rd, 2019] [Originally Added On: May 3rd, 2019]
- Somatic Stem Cells and Cancer - Stem Cell Centers ... [Last Updated On: May 4th, 2019] [Originally Added On: May 4th, 2019]
- Direct generation of human naive induced pluripotent stem ... [Last Updated On: June 5th, 2019] [Originally Added On: June 5th, 2019]
- Zinc Finger Nuclease Technology Market Estimated to Discern 2X Expansion by 2025 - Commerce Gazette [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Tooth Regeneration Market : Huge Growth Opportunity by Trend, Key Players and Forecast 2026 - TodayTimes [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Blast Off With Rocket Pharmaceuticals - Seeking Alpha [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Significant Growth Foreseen by Stem Cell Therapies Market During 2015 2025 - Rapid News Network [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Markets Gazette [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- Stem cell therapy is for animals too - SciTech Europa [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Detection of Latent HSCs Fated to Progress to Blast Phase in Myelofibrosis Patients Several Years Before Blast Transformation - DocWire News [Last Updated On: October 25th, 2019] [Originally Added On: October 25th, 2019]
- Cell Therapy Market Forecast to 2025 | Analysis by Regions, Type, Application, and Top Key Players like Dendreon, Mesoblast, Vericel, Antibe... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Stem Cell Therapy Market : Opportunities and Challenges - MENAFN.COM [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Tooth Regeneration Industry 2019 Research on Market Sales, Revenue, Top Companies and Future Development - TheFinanceTime [Last Updated On: November 11th, 2019] [Originally Added On: November 11th, 2019]
- Cereal rust could lead to new wheat threat - Farm Weekly [Last Updated On: November 14th, 2019] [Originally Added On: November 14th, 2019]
- A short guide to regulation for disruptive technologies - Lexology [Last Updated On: November 14th, 2019] [Originally Added On: November 14th, 2019]
- Youngstown State, IBM to offer high-tech training in the Mahoning Valley - Crain's Cleveland Business [Last Updated On: November 15th, 2019] [Originally Added On: November 15th, 2019]
- US Nobel laureates tell us what they think about cancer research, moonshots, the dark side, funding, meritocracy, herd mentality, Trump, and joy - The... [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Osteonecrosis Treatment Market Benefit and Volume with Status and Prospect to 2026 - Crypto Journal [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Stem Cell Therapies Market research to Witness a Healthy Growth during 2015 2025 - Lake Shore Gazette [Last Updated On: November 25th, 2019] [Originally Added On: November 25th, 2019]
- Brave new world? Why the public might be ready for gene-edited babies - Genetic Literacy Project [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Rocket Pharmaceuticals Announces First Patient Treated in Global Registrational Phase 2 Study of RP-L102 Process B for Fanconi Anemia - BioSpace [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Techi Labs [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Orgenesis and Theracell to launch point-of-care cell and gene therapy centers in HYGEIA Group"s hospitals - Proactive Investors USA & Canada [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Cell Therapy Industry Applications 2019-Size by Type (Allogenic Therapies), by Technique (Stem Cell Therapy), Global Market Growth by Demand Analysis... [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 - PharmiWeb.com [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- Gene Therapy Market 2019-2027 / Trends, Growth, Opportunities And Top Key - Market Research Sheets [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- What a time to be alive: Reproductive breakthroughs of the 2010s that changed life as we know it - FOX 10 News Phoenix [Last Updated On: December 29th, 2019] [Originally Added On: December 29th, 2019]
- Stem Cells Market- What Are The Main Factors That Contributing Towards Industry Growth? - Industry Mirror [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Duke researchers land $6M in federal grants to advance gene editing - WRAL Tech Wire [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Allele and Astellas Enter into an Expanded License for the Development of iPSC Lines - Business Wire [Last Updated On: January 20th, 2020] [Originally Added On: January 20th, 2020]
- Going Gray Too Soon? Scientists Say It Really May Be Due to Stress - Genetic Engineering & Biotechnology News [Last Updated On: January 25th, 2020] [Originally Added On: January 25th, 2020]
- Global Gene Therapy Market is Growing to Reach 6892 Million By 2027 - Market Research News 24 [Last Updated On: January 29th, 2020] [Originally Added On: January 29th, 2020]
- Scientists finally find link between stress and grey hair - nation.co.ke [Last Updated On: January 31st, 2020] [Originally Added On: January 31st, 2020]
- Global Gene Therapy Market to Cross USD 6892 Million By 2027 - TheInfobiz [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- New research shows what happens to your lung cells once you quit smoking - Daily Gaming Worlld [Last Updated On: February 9th, 2020] [Originally Added On: February 9th, 2020]
- Global Gene Therapy Market Worth Reach USD 6892 Million By 2027 - TheInfobiz [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 - TechNews.mobi [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- Global Gene Therapy Market to Cross Around USD 6892 Million By 2027 - Global Newspaper 24 [Last Updated On: February 17th, 2020] [Originally Added On: February 17th, 2020]
- Dental Regenerative Market Size, Share 2020 Regional Trend, Future Growth, Leading Players Updates, Industry Demand, Current and Future Plans by... [Last Updated On: February 28th, 2020] [Originally Added On: February 28th, 2020]
- Researchers ID Protein-Protein Interaction That Promotes Cancer Development - BioSpace [Last Updated On: February 28th, 2020] [Originally Added On: February 28th, 2020]
- Mapping the structure and biological functions within mesenchymal bodies using microfluidics - Science Advances [Last Updated On: March 4th, 2020] [Originally Added On: March 4th, 2020]
- Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia - BioSpace [Last Updated On: March 11th, 2020] [Originally Added On: March 11th, 2020]
- Scientists 'Reset' The Age of Stem Cells From a Supercentenarian Who Lived to 114 - ScienceAlert [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Global Tooth Regeneration Market: Industry Analysis and Forecast (2020-2027) - Publicist360 [Last Updated On: April 17th, 2020] [Originally Added On: April 17th, 2020]
- Normal human uterus is colonised by clones with cancer-driving mutations that arise early in life, study finds - Cambridge Network [Last Updated On: April 24th, 2020] [Originally Added On: April 24th, 2020]
- Global Zinc Finger Nuclease Technology Market to Generate Lucrative Revenue Prospects for Manufacturers After the End of COVID-19 Crisis and Forecast... [Last Updated On: May 4th, 2020] [Originally Added On: May 4th, 2020]
- Induced Pluripotent Stem Cells Market Latest Trends and Analysis Future Growth Study by 2029 Cole Reports - Cole of Duty [Last Updated On: May 4th, 2020] [Originally Added On: May 4th, 2020]
- What is the Value of iPSC Technology in Cardiac... - The Doctor Weighs In [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Somatic Stem Cells - Methods and Protocols | Shree Ram ... [Last Updated On: May 13th, 2020] [Originally Added On: May 13th, 2020]
- Global Tooth Regeneration Market : Industry Analysis And Forecast (2020-2027) - Azizsalon News [Last Updated On: May 14th, 2020] [Originally Added On: May 14th, 2020]