In genetics and developmental biology, somatic cell nuclear transfer (SCNT) is a laboratory strategy for creating a viable embryo from a body cell and an egg cell. The technique consists of taking an enucleated oocyte (egg cell) and implanting a donor nucleus from a somatic (body) cell. It is used in both therapeutic and reproductive cloning. Dolly the Sheep became famous for being the first successful case of the reproductive cloning of a mammal.[1] "Therapeutic cloning" refers to the potential use of SCNT in regenerative medicine; this approach has been championed as an answer to the many issues concerning embryonic stem cells (ESC) and the destruction of viable embryos for medical use, though questions remain on how homologous the two cell types truly are.
The process of somatic cell nuclear transplant involves two different cells. The first being a female gamete, known as the ovum (egg/oocyte). In human SCNT experiments, these eggs are obtained through consenting donors, many times utilizing ovarian stimulation. The second being a somatic cell, referring to the cells of the human body. Skin cells, fat cells, and liver cells are only a few examples. The nucleus of the donor egg cell is removed and discarded, leaving it 'deprogrammed.' The nucleus of the somatic cell is also removed but is kept, the enucleated somatic cell is discarded. What is left is a lone somatic nucleus and an enucleated egg cell. These are then fused by squirting the somatic nucleus into the 'empty' ovum. After being inserted into the egg, the somatic cell nucleus is reprogrammed by its host egg cell. The ovum, now containing the somatic cell's nucleus, is stimulated with a shock and will begin to divide. The egg is now viable and capable of producing an adult organism containing all the necessary genetic information from just one parent. Development will ensue normally and after many mitotic divisions, this single cell forms a blastocyst (an early stage embryo with about 100 cells) with an identical genome to the original organism (i.e. a clone).[2] Stem cells can then be obtained by the destruction of this clone embryo for use in therapeutic cloning or in the case of reproductive cloning the clone embryo is implanted into a host mother for further development and brought to term.
Somatic cell nuclear transplantation has become a focus of study in stem cell research. The aim of carrying out this procedure is to obtain pluripotent cells from a cloned embryo. These cells genetically matched the donor organism from which they came.This gives them the ability to create patient specific pluripotent cells, which could then be used in therapies or disease research.[3]
Embryonic stem cells are undifferentiated cells of an embryo. These cells are deemed to have a pluripotent potential because they have the ability to give rise to all of the tissues found in an adult organism. This ability allows stem cells to create any cell type, which could then be transplanted to replace damaged or destroyed cells. Controversy surrounds human ESC work due to the destruction of viable human embryos. Leading scientists to seek an alternative method of obtaining stem cells, SCNT is one such method.
A potential use of stem cells genetically matched to a patient would be to create cell lines that have genes linked to a patient's particular disease. By doing so, an in vitro model could be created, would be useful for studying that particular disease, potentially discovering its pathophysiology, and discovering therapies.[4] For example, if a person with Parkinson's disease donated his or her somatic cells, the stem cells resulting from SCNT would have genes that contribute to Parkinson's disease. The disease specific stem cell lines could then be studied in order to better understand the condition.[5]
Another application of SCNT stem cell research is using the patient specific stem cell lines to generate tissues or even organs for transplant into the specific patient.[6] The resulting cells would be genetically identical to the somatic cell donor, thus avoiding any complications from immune system rejection.[5][7]
Only a handful of the labs in the world are currently using SCNT techniques in human stem cell research. In the United States, scientists at the Harvard Stem Cell Institute, the University of California San Francisco, the Oregon Health & Science University,[8]Stemagen (La Jolla, CA) and possibly Advanced Cell Technology are currently researching a technique to use somatic cell nuclear transfer to produce embryonic stem cells.[9] In the United Kingdom, the Human Fertilisation and Embryology Authority has granted permission to research groups at the Roslin Institute and the Newcastle Centre for Life.[10] SCNT may also be occurring in China.[11]
In 2005, a South Korean research team led by Professor Hwang Woo-suk, published claims to have derived stem cell lines via SCNT,[12] but supported those claims with fabricated data.[13] Recent evidence has proved that he in fact created a stem cell line from a parthenote.[14][15]
Though there has been numerous successes with cloning animals, questions remain concerning the mechanisms of reprogramming in the ovum. Despite many attempts, success in creating human nuclear transfer embryonic stem cells has been limited. There lies a problem in the human cell's ability to form a blastocyst; the cells fail to progress past the eight cell stage of development. This is thought to be a result from the somatic cell nucleus being unable to turn on embryonic genes crucial for proper development. These earlier experiments used procedures developed in non-primate animals with little success. A research group from the Oregon Health & Science University demonstrated SCNT procedures developed for primates successfully reprogrammed skin cells into stem cells. The key to their success was utilizing oocytes in metaphase II (MII) of the cell cycle. Egg cells in MII contain special factors in the cytoplasm that have a special ability in reprogramming implanted somatic cell nuclei into cells with pluripotent states. When the ovum's nucleus is removed, the cell loses its genetic information. This has been blamed for why enucleated eggs are hampered in their reprogramming ability. It is theorized the critical embryonic genes are physically linked to oocyte chromosomes, enucleation negatively affects these factors. Another possibility is removing the egg nucleus or inserting the somatic nucleus causes damage to the cytoplast, affecting reprogramming ability. Taking this into account the research group applied their new technique in an attempt to produce human SCNT stem cells. In May 2013, the Oregon group reported the successful derivation of human embryonic stem cell lines derived through SCNT, using fetal and infant donor cells. Using MII oocytes from volunteers and their improved SCNT procedure, human clone embryos were successfully produced. These embryos were of poor quality, lacking a substantial inner cell mass and poorly constructed trophectoderm. The imperfect embryos prevented the acquisition of human ESC. The addition of caffeine during the removal of the ovum's nucleus and injection of the somatic nucleus improved blastocyst formation and ESC isolation. The ESC obtain were found to be capable of producing teratomas, expressed pluripotent transcription factors, and expressed a normal 46XX karyotype, indicating these SCNT were in fact ESC-like.[8] This was the first instance of successfully using SCNT to reprogram human somatic cells. This study used fetal and infantile somatic cells to produce their ESC.
In April 2014, an international research team expanded on this break through. There remained the question of whether the same success could be accomplished using adult somatic cells. Epigenetic and age related changes were thought to possibly hinder an adult somatic cells ability to be reprogrammed. Implementing the procedure pioneered by the Oregon research group they indeed were able to grow stem cells generated by SCNT using adult cells from two donors, aged 35 and 75.Indicating age does not impede a cells ability to be reprogrammed[16][17]
Original post:
Somatic cell nuclear transfer - Wikipedia, the free ...
- Human oocytes reprogram adult somatic nuclei of a type 1 ... [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Glossary [Stem Cell Information] - Embryonic stem cell [Last Updated On: May 6th, 2015] [Originally Added On: May 6th, 2015]
- Adult stem cell - ScienceDaily [Last Updated On: May 10th, 2015] [Originally Added On: May 10th, 2015]
- Somatic Cell Nuclear Transfer | Knoepfler Lab Stem Cell Blog [Last Updated On: May 20th, 2015] [Originally Added On: May 20th, 2015]
- somatic stem cells - Science Daily [Last Updated On: May 24th, 2015] [Originally Added On: May 24th, 2015]
- Adult stem cell - Wikipedia, the free encyclopedia [Last Updated On: June 1st, 2015] [Originally Added On: June 1st, 2015]
- Redox Signaling and Stem Cell Function - Dirk Bohmann [Last Updated On: June 2nd, 2015] [Originally Added On: June 2nd, 2015]
- What is the difference between embryonic and somatic stem ... [Last Updated On: June 11th, 2015] [Originally Added On: June 11th, 2015]
- somatic stem cell - Learn Genetics [Last Updated On: July 2nd, 2015] [Originally Added On: July 2nd, 2015]
- Somatic cell - Wikipedia, the free encyclopedia [Last Updated On: July 15th, 2015] [Originally Added On: July 15th, 2015]
- Comparative proteomic analysis of human somatic cells ... [Last Updated On: July 20th, 2015] [Originally Added On: July 20th, 2015]
- Human embryonic stem cells derived by somatic cell nuclear ... [Last Updated On: August 3rd, 2015] [Originally Added On: August 3rd, 2015]
- Glossary | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Stem Cell Basics IV. | stemcells.nih.gov [Last Updated On: September 17th, 2016] [Originally Added On: September 17th, 2016]
- Somatic stem cells in the human endometrium. [Last Updated On: October 7th, 2016] [Originally Added On: October 7th, 2016]
- Adult stem cell - Wikipedia [Last Updated On: October 21st, 2016] [Originally Added On: October 21st, 2016]
- Somatic cell - Wikipedia [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- Embryonic and Somatic Stem Cells, Whats the Difference? [Last Updated On: November 2nd, 2016] [Originally Added On: November 2nd, 2016]
- Somatic cell nuclear transfer - Wikipedia [Last Updated On: November 25th, 2016] [Originally Added On: November 25th, 2016]
- Characterization of Regenerative Phenotype of Unrestricted ... [Last Updated On: December 1st, 2016] [Originally Added On: December 1st, 2016]
- Cloning - Wikipedia [Last Updated On: December 7th, 2016] [Originally Added On: December 7th, 2016]
- Skin graft gene therapy could treat obesity and diabetes - ResearchGate (blog) [Last Updated On: August 3rd, 2017] [Originally Added On: August 3rd, 2017]
- Difference Between Somatic Cells and Gametes ... [Last Updated On: June 19th, 2018] [Originally Added On: June 19th, 2018]
- What Is Another Name for Somatic Stem Cells and What Do ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- Where Do Stem Cells Come From? - verywellhealth.com [Last Updated On: July 2nd, 2018] [Originally Added On: July 2nd, 2018]
- Stem Cell Quick Reference - Learn.Genetics [Last Updated On: September 9th, 2018] [Originally Added On: September 9th, 2018]
- Somatic Cells - Definition and Examples | Biology Dictionary [Last Updated On: November 14th, 2018] [Originally Added On: November 14th, 2018]
- What is the Difference Between Embryonic and Somatic Stem Cells [Last Updated On: February 27th, 2019] [Originally Added On: February 27th, 2019]
- Mosaic (genetics) - Wikipedia [Last Updated On: March 8th, 2019] [Originally Added On: March 8th, 2019]
- Difference Between Embryonic and Somatic Stem Cells ... [Last Updated On: May 3rd, 2019] [Originally Added On: May 3rd, 2019]
- Somatic Stem Cells and Cancer - Stem Cell Centers ... [Last Updated On: May 4th, 2019] [Originally Added On: May 4th, 2019]
- Direct generation of human naive induced pluripotent stem ... [Last Updated On: June 5th, 2019] [Originally Added On: June 5th, 2019]
- Zinc Finger Nuclease Technology Market Estimated to Discern 2X Expansion by 2025 - Commerce Gazette [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Tooth Regeneration Market : Huge Growth Opportunity by Trend, Key Players and Forecast 2026 - TodayTimes [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Blast Off With Rocket Pharmaceuticals - Seeking Alpha [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Significant Growth Foreseen by Stem Cell Therapies Market During 2015 2025 - Rapid News Network [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Markets Gazette [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- Stem cell therapy is for animals too - SciTech Europa [Last Updated On: October 21st, 2019] [Originally Added On: October 21st, 2019]
- Detection of Latent HSCs Fated to Progress to Blast Phase in Myelofibrosis Patients Several Years Before Blast Transformation - DocWire News [Last Updated On: October 25th, 2019] [Originally Added On: October 25th, 2019]
- Cell Therapy Market Forecast to 2025 | Analysis by Regions, Type, Application, and Top Key Players like Dendreon, Mesoblast, Vericel, Antibe... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Stem Cell Therapy Market : Opportunities and Challenges - MENAFN.COM [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Tooth Regeneration Industry 2019 Research on Market Sales, Revenue, Top Companies and Future Development - TheFinanceTime [Last Updated On: November 11th, 2019] [Originally Added On: November 11th, 2019]
- Cereal rust could lead to new wheat threat - Farm Weekly [Last Updated On: November 14th, 2019] [Originally Added On: November 14th, 2019]
- A short guide to regulation for disruptive technologies - Lexology [Last Updated On: November 14th, 2019] [Originally Added On: November 14th, 2019]
- Youngstown State, IBM to offer high-tech training in the Mahoning Valley - Crain's Cleveland Business [Last Updated On: November 15th, 2019] [Originally Added On: November 15th, 2019]
- US Nobel laureates tell us what they think about cancer research, moonshots, the dark side, funding, meritocracy, herd mentality, Trump, and joy - The... [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Osteonecrosis Treatment Market Benefit and Volume with Status and Prospect to 2026 - Crypto Journal [Last Updated On: November 21st, 2019] [Originally Added On: November 21st, 2019]
- Stem Cell Therapies Market research to Witness a Healthy Growth during 2015 2025 - Lake Shore Gazette [Last Updated On: November 25th, 2019] [Originally Added On: November 25th, 2019]
- Brave new world? Why the public might be ready for gene-edited babies - Genetic Literacy Project [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Rocket Pharmaceuticals Announces First Patient Treated in Global Registrational Phase 2 Study of RP-L102 Process B for Fanconi Anemia - BioSpace [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Stem Cell Therapy Industry 2019 Global Market Size, Trends, Revenue, Growth Prospects, Key Companies and Forecast by 2023 - Techi Labs [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Orgenesis and Theracell to launch point-of-care cell and gene therapy centers in HYGEIA Group"s hospitals - Proactive Investors USA & Canada [Last Updated On: December 6th, 2019] [Originally Added On: December 6th, 2019]
- Cell Therapy Industry Applications 2019-Size by Type (Allogenic Therapies), by Technique (Stem Cell Therapy), Global Market Growth by Demand Analysis... [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- Stem Cell Therapies Market research Likely to Emerge over a Period of 2015-2025 - PharmiWeb.com [Last Updated On: December 13th, 2019] [Originally Added On: December 13th, 2019]
- Gene Therapy Market 2019-2027 / Trends, Growth, Opportunities And Top Key - Market Research Sheets [Last Updated On: December 27th, 2019] [Originally Added On: December 27th, 2019]
- What a time to be alive: Reproductive breakthroughs of the 2010s that changed life as we know it - FOX 10 News Phoenix [Last Updated On: December 29th, 2019] [Originally Added On: December 29th, 2019]
- Stem Cells Market- What Are The Main Factors That Contributing Towards Industry Growth? - Industry Mirror [Last Updated On: December 31st, 2019] [Originally Added On: December 31st, 2019]
- Duke researchers land $6M in federal grants to advance gene editing - WRAL Tech Wire [Last Updated On: January 5th, 2020] [Originally Added On: January 5th, 2020]
- Allele and Astellas Enter into an Expanded License for the Development of iPSC Lines - Business Wire [Last Updated On: January 20th, 2020] [Originally Added On: January 20th, 2020]
- Going Gray Too Soon? Scientists Say It Really May Be Due to Stress - Genetic Engineering & Biotechnology News [Last Updated On: January 25th, 2020] [Originally Added On: January 25th, 2020]
- Global Gene Therapy Market is Growing to Reach 6892 Million By 2027 - Market Research News 24 [Last Updated On: January 29th, 2020] [Originally Added On: January 29th, 2020]
- Scientists finally find link between stress and grey hair - nation.co.ke [Last Updated On: January 31st, 2020] [Originally Added On: January 31st, 2020]
- Global Gene Therapy Market to Cross USD 6892 Million By 2027 - TheInfobiz [Last Updated On: February 6th, 2020] [Originally Added On: February 6th, 2020]
- New research shows what happens to your lung cells once you quit smoking - Daily Gaming Worlld [Last Updated On: February 9th, 2020] [Originally Added On: February 9th, 2020]
- Global Gene Therapy Market Worth Reach USD 6892 Million By 2027 - TheInfobiz [Last Updated On: February 12th, 2020] [Originally Added On: February 12th, 2020]
- Induced Pluripotent Stem Cells Market Predicted to Witness Surge in the Near Future2018 2028 - TechNews.mobi [Last Updated On: February 15th, 2020] [Originally Added On: February 15th, 2020]
- Global Gene Therapy Market to Cross Around USD 6892 Million By 2027 - Global Newspaper 24 [Last Updated On: February 17th, 2020] [Originally Added On: February 17th, 2020]
- Dental Regenerative Market Size, Share 2020 Regional Trend, Future Growth, Leading Players Updates, Industry Demand, Current and Future Plans by... [Last Updated On: February 28th, 2020] [Originally Added On: February 28th, 2020]
- Researchers ID Protein-Protein Interaction That Promotes Cancer Development - BioSpace [Last Updated On: February 28th, 2020] [Originally Added On: February 28th, 2020]
- Mapping the structure and biological functions within mesenchymal bodies using microfluidics - Science Advances [Last Updated On: March 4th, 2020] [Originally Added On: March 4th, 2020]
- Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia - BioSpace [Last Updated On: March 11th, 2020] [Originally Added On: March 11th, 2020]
- Scientists 'Reset' The Age of Stem Cells From a Supercentenarian Who Lived to 114 - ScienceAlert [Last Updated On: March 25th, 2020] [Originally Added On: March 25th, 2020]
- Global Tooth Regeneration Market: Industry Analysis and Forecast (2020-2027) - Publicist360 [Last Updated On: April 17th, 2020] [Originally Added On: April 17th, 2020]
- Normal human uterus is colonised by clones with cancer-driving mutations that arise early in life, study finds - Cambridge Network [Last Updated On: April 24th, 2020] [Originally Added On: April 24th, 2020]
- Global Zinc Finger Nuclease Technology Market to Generate Lucrative Revenue Prospects for Manufacturers After the End of COVID-19 Crisis and Forecast... [Last Updated On: May 4th, 2020] [Originally Added On: May 4th, 2020]
- Induced Pluripotent Stem Cells Market Latest Trends and Analysis Future Growth Study by 2029 Cole Reports - Cole of Duty [Last Updated On: May 4th, 2020] [Originally Added On: May 4th, 2020]
- What is the Value of iPSC Technology in Cardiac... - The Doctor Weighs In [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Somatic Stem Cells - Methods and Protocols | Shree Ram ... [Last Updated On: May 13th, 2020] [Originally Added On: May 13th, 2020]
- Global Tooth Regeneration Market : Industry Analysis And Forecast (2020-2027) - Azizsalon News [Last Updated On: May 14th, 2020] [Originally Added On: May 14th, 2020]
- A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and C. elegans - Science Advances [Last Updated On: June 1st, 2020] [Originally Added On: June 1st, 2020]