Growth changes of tomato seedlings responding to sodium salt of … – Nature.com


Gebrehiwot, A. A. et al. Using ABM to study the potential of land use change for mitigation of food deserts. Sustainability 14(15), 9715. https://doi.org/10.3390/su14159715 (2022).

Article Google Scholar

Verma, B., Pramanik, P., & Bhaduri, D. Organic fertilizers for sustainable soil and environmental management. in Nutrient Dynamics for Sustainable Crop Production (Meena, R.S. Ed.). 289313 (Springer, 2020).

Droste, N. et al. Soil carbon insures arable crop production against increasing adverse weather due to climate change. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abc5e3 (2020).

Article Google Scholar

Daba, N. et al. Long-term fertilization and lime-induced soil pH changes affect nitrogen use efficiency and grain yields in acidic soil under wheat-maize rotation. Agronomy 11, 2069. https://doi.org/10.3390/agronomy11102069 (2021).

Article CAS Google Scholar

Yan, L. et al. Spatiotemporal distribution of chemical fertilizer application and manure application potential in China. Environ. Eng. Sci. 36, 13371348. https://doi.org/10.1089/ees.2018.0486 (2019).

Article CAS Google Scholar

Gang-Hua, L. I. High quality and high efficiency fertilization of rice. J. Integr. Agric. 20, 14351437. https://doi.org/10.1016/S2095-3119(21)63683-3 (2021).

Article Google Scholar

Warsame, A. A., Mohamed, J. & Mohamed, A. A. The relationship between environmental degradation, agricultural crops, and livestock production in somalia. Environ. Sci. Pollut. Res. Int. 30(3), 78257835. https://doi.org/10.1007/s11356-022-22595-8 (2023).

Article PubMed Google Scholar

Wu, J. et al. More land, less pollution? How land transfer affects fertilizer application. Int. J. Environ. Res. Public Health 18, 11268. https://doi.org/10.3390/ijerph182111268 (2021).

Article PubMed PubMed Central Google Scholar

Ye, L. et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep.-UK 10, 1. https://doi.org/10.1038/s41598-019-56954-2 (2020).

Article CAS Google Scholar

Li, X. Decision-making behavior of fertilizer application of grain growers in Heilongjiang Province from the perspective of risk preference and risk perception. Math. Probl. Eng. https://doi.org/10.1155/2021/6667558 (2021).

Article Google Scholar

Stuart, A. M. et al. Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crops Res. 194, 4356. https://doi.org/10.1016/j.fcr.2016.04.039 (2016).

Article Google Scholar

Yueyue, T. et al. Effects of plant growth regulators on flower abscission and growth of tea plant Camellia sinensis (L.) O. Kuntze. J. Plant Growth Regul. 41(3), 11611173. https://doi.org/10.1007/s00344-021-10365-8 (2022).

Article CAS Google Scholar

Liu, C. et al. Novel plant growth regulator guvermectin from plant growth-promoting rhizobacteria boosts biomass and grain yield in rice. J. Agricult. Food Chem. 70(51), 1622916240. https://doi.org/10.1021/acs.jafc.2c07072 (2022).

Article CAS Google Scholar

Widyastuti, T. The paclobutrazol application and pinching technique on lisianthus plants. Earth Environ. Sci. 752, 1. https://doi.org/10.1088/1755-1315/752/1/012055 (2021).

Article Google Scholar

Hajihashemi, S. Physiological, biochemical, antioxidant and growth characterizations of gibberellin and paclobutrazol-treated sweet leaf herb. J. Plant Biochem. Biotechnol. 27(2), 237240. https://doi.org/10.1007/s13562-017-0428-4 (2018).

Article MathSciNet CAS Google Scholar

Khan, N., Bano, A. & Babar, M. D. A. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE 15(4), 1. https://doi.org/10.1371/journal.pone.0231426 (2020).

Article CAS Google Scholar

Bhalla, K., Singh, S. B. & Agarwal, R. Quantitative determination of gibberellins by high performance liquid chromatography from various gibberellins producing fusarium strains. Environ. Monit. Assess. 167(14), 515520. https://doi.org/10.1007/s10661-009-1068-5 (2010).

Article CAS PubMed Google Scholar

Dos Santos, J. A. et al. Morphophysiological changes by mepiquat chloride application in eucalyptus clones. Trees 35(1), 189198. https://doi.org/10.1007/s00468-020-02021-7 (2021).

Article CAS Google Scholar

Arampatzis, D. A., Karkanis, A. C. & Tsiropoulos, N. G. Impact of plant density and mepiquat chloride on growth, yield, and silymarin content of Silybum marianum grown under Mediterranean semi-arid conditions. Agronomy 9(11), 669. https://doi.org/10.3390/agronomy9110669 (2019).

Article CAS Google Scholar

Anastassiadou, M. et al. Modification of the temporary maximum residue level for mepiquat in oyster mushrooms. EFSA J. 17, 7. https://doi.org/10.2903/j.efsa.2019.5744 (2019).

Article Google Scholar

Dalimunthe, R. H., Setiado, H., Lubis, K. & Damanik, R. I. Effect of paclobutrazol in micro tuberization of potato cultivar Granola Kembang and Repita (IOP Conference Series) (Earth and Environmental Science, 2021). https://doi.org/10.1088/1755-1315/782/4/042058.

Book Google Scholar

Bao, W. et al. A single gene transfer of gibberellin biosynthesis gene cluster increases gibberellin production in a Fusarium fujikuroi strain with gibberellin low producibility. Plant Pathol. 69(5), 901910. https://doi.org/10.1111/ppa.13176 (2020).

Article CAS Google Scholar

Le, V. N. et al. The potential health risks and environmental pollution associated with the application of plant growth regulators in vegetable production in several suburban areas of Hanoi, Vietnam. Biol. Futura 71(3), 323331. https://doi.org/10.1007/s42977-020-00041-5 (2020).

Article CAS Google Scholar

Ricci, M., Tilbury, L., Daridon, B. & Sukalac, K. General principles to justify plant biostimulant claims. Front. Plant Sci. 10, 494. https://doi.org/10.3389/fpls.2019.00494 (2019).

Article PubMed PubMed Central Google Scholar

Essawy, H. A. et al. Potassium fulvate-functionalized graft copolymer of polyacrylic acid from cellulose as a promising selective chelating sorben. RSC Adv. 7, 2017820185. https://doi.org/10.1039/C7RA02646C (2017).

Article ADS CAS Google Scholar

Canellas, L. P. et al. Humic and fulvic acids as biostimulants in horticultureA review. Sci. Hortic. 196, 1527. https://doi.org/10.1016/j.scienta.2015.09.013 (2013).

Article CAS Google Scholar

Ghazy, M. et al. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2016.06.088 (2016).

Article PubMed Google Scholar

Elrys, A. S. et al. Integrative application of licorice root extract or lipoic acid with fulvic acid improves wheat production and defenses under salt stress conditions. Ecotoxicol. Environ. Saf. 190, 110144. https://doi.org/10.1016/j.ecoenv.2019.110144 (2020).

Article CAS PubMed Google Scholar

Cayn Salinas, D. G. et al. Application of naphthalene acetic acid and gibberellic acid favours fruit induction and development in oil palm hybrid (Elaeis oleifera x Elaeis guineensis). Exp. Agric. https://doi.org/10.1017/S001447972200031X (2022).

Article Google Scholar

Ahmad, A. S., Abramov, A. G., Shalamova, A. A. & Antar, M. B. Effect of humic acid and naphthalene acetic acid on vegetative growth and fruit quality of tomato plants lycopersicon esculentum. Vestnik Rossijskogo Univ. Druby Narodov 15(1), 3039. https://doi.org/10.22363/2312-797X-2020-15-1-30-39 (2020).

Article Google Scholar

Xing, X. et al. Improved drought tolerance by -naphthaleneacetic acid-induced ROS accumulation in two soybean cultivars. J. Integr. Agric. https://doi.org/10.1016/S2095-3119(15)61273-4 (2016).

Article Google Scholar

Yang, F. et al. Plant growth regulation enhanced potassium uptake and use efficiency in cotton. Field Crops Res. 163, 109118. https://doi.org/10.1016/j.fcr.2014.03.016 (2014).

Article Google Scholar

Zhang, H. J., Zhang, H. Y. & Yu, J. H. Effects of -naphthalene acetic acid sodium on yield and endogenous hormones of greenhouse grown pepper in desert area. J. Desert Res. 33, 13901399 (2013).

Google Scholar

Ali, M., Mujib, A., Zafar, N. & Tonk, D. Somatic embryogenesis, biochemical alterations and synthetic seed development in two varieties of coriander (Coriandrum sativum L.). Adv. Hortic. Sci. 32(2), 239248. https://doi.org/10.13128/ahs-22287 (2018).

Article Google Scholar

Hesami, M., Daneshvar, M. H. & Yoosefzadeh-Najafabadi, M. An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa. J. For. Res. 30(3), 807815. https://doi.org/10.1007/s11676-018-0647-0 (2019).

Article CAS Google Scholar

Ren, M. et al. Assessing the genetic improvement in inbred late rice against chilling stress: Consequences for spikelet fertility, pollen viability and anther characteristics. Agronomy 12, 1894. https://doi.org/10.3390/agronomy12081894 (2022).

Article Google Scholar

Rahimi, A., Mohammadi, M. M., Siavash Moghaddam, S., Heydarzadeh, S. & Gitari, H. Effects of stress modifier biostimulants on vegetative growth, nutrients, and antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. J. Plant Growth Regul. 41(5), 20592072. https://doi.org/10.1007/s00344-022-10604-6 (2022).

Article CAS Google Scholar

Noh, E., Fallen, B., Payero, J. & Narayanan, S. Parsimonious root systems and better root distribution can improve biomass production and yield of soybean. PLoS ONE https://doi.org/10.1371/journal.pone.0270109 (2022).

Article PubMed PubMed Central Google Scholar

Halpern, M. et al. Chapter two: The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 130, 141174. https://doi.org/10.1016/bs.agron.2014.10.001 (2015).

Article Google Scholar

Liu, L. et al. Direct evidence of drought stress memory in mulberry from a physiological perspective: Antioxidative, osmotic and phytohormonal regulations. Plant Physiol. Biochem. (PPB) 186, 7687. https://doi.org/10.1016/j.plaphy.2022.07.001 (2022).

Article CAS PubMed Google Scholar

Liang, J. et al. Dualistic effects of bisphenol A on growth, photosynthetic and oxidative stress of duckweed (Lemna minor). Environ. Sci. Pollut. Res. Int. 29(58), 8771787729. https://doi.org/10.1007/s11356-022-21785-8 (2022).

Article CAS PubMed Google Scholar

Lixiao, N. et al. Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-mediated -amylase expression. Rice https://doi.org/10.1186/s12284-022-00567-3 (2022).

Article Google Scholar

Gu, K. et al. The physiological response of different tobacco varieties to chilling stress during the vigorous growing period. Sci. Rep. 11(1), 22136. https://doi.org/10.1038/s41598-021-01703-7 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Li, F. et al. Application of enzymatic hydrolysate of Ulva clathrata as biostimulant improved physiological and metabolic adaptation to salt-alkaline stress in wheat. J. Appl. Phycol. 34(3), 17791789. https://doi.org/10.1007/s10811-022-02684-4 (2022).

Article CAS Google Scholar

Wang, W. et al. Animal-derived plant biostimulant alleviates drought stress by regulating photosynthesis, osmotic adjustment, and antioxidant systems in tomato plants. Sci. Hortic. https://doi.org/10.1016/j.scienta.2022.111365 (2022).

Article Google Scholar

Chi, Y. et al. Utilization of Durvillaea antarctica (Chamisso) Hariot extract as a biostimulant to enhance the growth of cucumber (Cucumis sativus L.) seedlings. J. Plant Growth Regul. 41(8), 32083217. https://doi.org/10.1007/s00344-021-10506-z (2022).

Article CAS Google Scholar

Duan, R., Ma, Y., & Yang, L. Effects of shading on photosynthetic pigments and photosynthetic parameters of Lespedeza buergeri seedlings. in IOP Conference Series. Materials Science and Engineering Vol. 452(2). https://doi.org/10.1088/1757-899X/452/2/022158 (2018).

Li, J. et al. Seasonal changes of leaf chlorophyll content as a proxy of photosynthetic capacity in winter wheat and paddy rice. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2022.109018 (2022).

Article Google Scholar

Mozhgan, A., Kazemeini, S. A., Mozhgan, S. & Ali, D. Simultaneous application of rhizobium strain and melatonin improves the photosynthetic capacity and induces antioxidant defense system in common bean (Phaseolus vulgaris L.) under salinity stress. J. Plant Growth Regul. 41(3), 13671381. https://doi.org/10.1007/s00344-021-10386-3 (2022).

Article CAS Google Scholar

Sun, M. et al. Effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album under simulated rainfall conditionss. PLoS ONE https://doi.org/10.1371/journal.pone.0267649 (2022).

Article PubMed PubMed Central Google Scholar

Singh, H., Kumar, D. & Soni, V. Performance of chlorophyll a fluorescence parameters in lemna minor under heavy metal stress induced by various concentration of copper. Sci. Rep. 12(1), 10620. https://doi.org/10.1038/s41598-022-14985-2 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Read more:
Growth changes of tomato seedlings responding to sodium salt of ... - Nature.com

Related Posts