Pathogenic Escherichia coli | Nature Reviews Microbiology


Sweeney, N. J. et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine. Infect. Immun. 64, 34973503 (1996).

Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142201 (1998). A comprehensive review of the pathogenesis, epidemiology, diagnosis and clinical aspects of diarrhoeagenic E. coli.

Russo, T. A. & Johnson, J. R. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis. 181, 17531754 (2000).

Whittam, T. S. in Escherichia coli and Salmonella (eds Neidhardt, F. C. et al.) 27082720 (ASM Press, Washington DC, USA, 1996).

Cassels, F. J. & Wolf, M. K. Colonization factors of diarrheagenic E. coli and their intestinal receptors. J. Ind. Microbiol. 15, 214226 (1995).

Keller, R. et al. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli. Infect. Immun. 70, 26812689 (2002).

Tieng, V. et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl Acad. Sci. USA 99, 29772982 (2002).

Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc. Natl Acad. Sci. USA 92, 65726576 (1995).

Tapping, R. I., Akashi, S., Miyake, K., Godowski, P. J. & Tobias, P. S. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 57805787 (2000).

Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 10991103 (2001).

Sears, C. L. & Kaper, J. B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167215 (1996).

Melton-Celsa, A. R. & O'Brien, A. D. in Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains (eds Kaper, J. B. & O'Brien, A. D.) 121128 (ASM Press, Washington DC, USA, 1998).

De Rycke, J. & Oswald, E. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation? FEMS Microbiol Lett. 203, 141148 (2001).

Marches, O. et al. Enteropathogenic and enterohaemorrhagic Eschericha coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol 50, 15531567 (2003).

Lerm, M. et al. Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect. Immun. 67, 496503 (1999).

Kenny, B. et al. Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol. 44, 10951107 (2002).

Tauschek, M., Gorrell, R. J., Strugnell, R. A. & Robins-Browne, R. M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 70667071 (2002).

Henderson, I. R., Navarro-Garcia, F. & Nataro, J. P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370378 (1998).

Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379433 (1998).

Balakrishnan, L., Hughes, C. & Koronakis, V. Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli. J. Mol. Biol. 313, 501510 (2001).

McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. & Kaper, J. B. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl Acad. Sci. USA 92, 16641668 (1995). The first description of a pathogenicity island in enteric E. coli pathotypes.

Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 78397843 (1990).

Higgins, L. M. et al. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285, 588591 (1999).

Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511520 (1997). The first report of a bacterium translocating its receptor into mammalian cells by a type III secretion system.

Muza-Moons, M. M., Koutsouris, A. & Hecht, G. Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 71, 70697078 (2003).

Sinclair, J. F. & O'Brien, A. D. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin- of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277, 28762885 (2002).

Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389391 (1999).

Campellone, K. G. & Leong, J. M. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol. 6, 8290 (2003).

Vallance, B. A. & Finlay, B. B. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 97, 87998806 (2000).

Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surface of infected cells. Cell Motil. Cytoskeleton 34, 279287 (1996).

Crane, J. K., McNamara, B. P. & Donnenberg, M. S. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell Microbiol. 3, 197211 (2001).

McNamara, B. P. et al. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621629 (2001).

Klapproth, J. M. et al. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68, 21482155 (2000).

Nicholls, L., Grant, T. H. & Robins-Browne, R. M. Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol. Microbiol. 35, 275288 (2000).

Tobe, T. et al. Complete DNA sequence and structural analysis of the enteropathogenic Escherichia coli adherence factor plasmid. Infect. Immun. 67, 54555462 (1999).

Girn, J. A., Ho, A. S. Y. & Schoolnik, G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254, 710713 (1991).

Trabulsi, L. R., Keller, R. & Tardelli Gomes, T. A. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8, 508513 (2002).

Hecht, G. Microbes and microbial toxins: paradigms for microbialmucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am. J. Physiol Gastrointest. Liver Physiol. 281, G1G7 (2001).

Frankel, G. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30, 911921 (1998).

Kenny, B. Mechanism of action of EPEC type III effector molecules. Int. J. Med. Microbiol. 291, 469477 (2002).

Hecht, G. et al. Pathogenic Escherichia coli increase Cl secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J. Clin. Invest. 104, 253262 (1999).

Varma, J. K. et al. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. JAMA 290, 27092712 (2003).

Andreoli, S. P., Trachtman, H., Acheson, D. W., Siegler, R. L. & Obrig, T. G. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr. Nephrol. 17, 293298 (2002).

Jones, N. L. et al. Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G811G819 (2000).

Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 6467 (2000).

Tatsuno, I. et al. toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infect. Immun. 69, 66606669 (2001).

Burland, V. et al. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26, 41964204 (1998).

Lathem, W. W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45, 277288 (2002).

Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529533 (2001). The first reported genome sequence for a pathogenic E. coli strain.

Heimer, S. R. et al. Urease of enterohemorrhagic Escherichia coli: evidence for regulation by fur and a trans-acting factor. Infect. Immun. 70, 10271031 (2002).

Wolf, M. K. Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin. Microbiol. Rev. 10, 569584 (1997).

Spangler, B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 56, 622647 (1992).

Pizza, M. et al. Mucosal vaccines: non-toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 25342541 (2001).

Currie, M. G. et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc. Natl Acad. Sci. USA 89, 947951 (1992). This paper suggests that STa evolved as a molecular mimic of an endogenous ligand. This model is necessary, not only to understand ETEC pathogenesis and evolution, but also to provide a context for future studies of microbial evolution.

Dubreuil, J. D. Escherichia coli STb enterotoxin. Microbiology 143, 17831795 (1997).

Pitari, G. M. et al. Bacterial enterotoxins are associated with resistance to colon cancer. Proc. Natl Acad. Sci. USA 100, 26952699 (2003).

Nataro, J. P., Steiner, T. S. & Guerrant, R. L. Enteroaggregative Escherichia coli. Emerg. Infect. Dis. 4, 251261 (1998).

Hicks, S., Candy, D. C. A. & Phillips, A. D. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect. Immun. 64, 47514760 (1996).

Vial, P. A. et al. Characterization of enteroadherent-aggregative Escherichia coli, a putative agent of diarrheal disease. J. Infect. Dis. 158, 7079 (1988).

Benjamin, P., Federman, M. & Wanke, C. A. Characterization of an invasive phenotype associated with enteroaggregative Escherichia coli. Infect. Immun. 63, 34173421 (1995).

Abe, C. M., Knutton, S., Pedroso, M. Z., Freymuller, E. & Gomes, T. A. An enteroaggregative Escherichia coli strain of serotype O111:H12 damages and invades cultured T84 cells and human colonic mucosa. FEMS Microbiol. Lett. 203, 199205 (2001).

Czeczulin, J. R. et al. Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli. Infect. Immun. 65, 41354145 (1997).

Nataro, J. P. et al. Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect. Immun. 60, 22972304 (1992).

Nataro, J. P., Yikang, D., Yingkang, D. & Walker, K. AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J. Bacteriol. 176, 46914699 (1994). Describes the emergence of AggR as a global regulator of virulence genes in EAEC

Sheikh, J. et al. A novel dispersin protein in enteroaggregative Escherichia coli. J. Clin. Invest. 110, 13291337 (2002).

Steiner, T. S., Nataro, J. P., Poteet-Smith, C. E., Smith, J. A. & Guerrant, R. L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest 105, 17691777 (2000). The pathogenesis of EAEC is not completely understood, but inflammation might be an important component.

Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 55875596 (1999).

Noriega, F. R., Liao, F. M., Formal, S. B., Fasano, A. & Levine, M. M. Prevalence of Shigella enterotoxin 1 among Shigella clinical isolates of diverse serotypes. J. Infect. Dis. 172, 14081410 (1995).

Savarino, S. J. et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc. Natl Acad. Sci. USA 90, 30933097 (1993).

Menard, L. P. & Dubreuil, J. D. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit. Rev. Microbiol. 28, 4360 (2002).

Navarro-Garcia, F. et al. In vitro effects of a high-molecular weight heat-labile enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66, 31493154 (1998).

Jiang, Z. D., Greenberg, D., Nataro, J. P., Steffen, R. & DuPont, H. L. Rate of occurrence and pathogenic effect of enteroaggregative Escherichia coli virulence factors in international travelers. J. Clin. Microbiol. 40, 41854190 (2002).

Wei, J. et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71, 27752786 (2003).

Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl Acad. Sci. USA 97, 1056710572 (2000). This paper suggests that Shigella should be considered within the species Escherichia coli , and that their evolution represents adaptation to a specific pathogenetic niche, a phenomenon that has occurred on several occasions over many years.

Sansonetti, P. Hostpathogen interactions: the seduction of molecular cross talk. Gut 50, Suppl. 3 S2S8 (2002).

Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167169 (1992).

Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760771 (2000).

Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin- based motility. J. Cell Biol. 146, 13191332 (1999).

Sansonetti, P. J. et al. Caspase-1 activation of IL-1 and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity. 12, 581590 (2000). The pathogenesis of Shigella infection represents a complex manipulation of the immune response, in ways that are beneficial to both pathogen and host.

Tran Van Nhieu, G., Bourdet-Sicard, R., Dumenil, G., Blocker, A. & Sansonetti, P. J. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2, 187193 (2000).

Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns5P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 50695078 (2002).

Scaletsky, I. C. et al. Diffusely adherent Escherichia coli as a cause of acute diarrhea in young children in northeast Brazil: a case-control study. J. Clin. Microbiol. 40, 645648 (2002).

Bilge, S. S., Clausen, C. R., Lau, W. & Moseley, S. L. Molecular characterization of a fimbrial adhesin, F1845, mediating diffuse adherence of diarrhea-associated Escherichia coli to HEp-2 cells. J. Bacteriol. 171, 42814289 (1989).

Hasan, R. J. et al. Structurefunction analysis of decayaccelerating factor: identification of residues important for binding of the Escherichia coli Dr adhesin and complement regulation. Infect. Immun. 70, 44854493 (2002).

Bernet-Camard, M. F., Coconnier, M. H., Hudault, S. & Servin, A. L. Pathogenicity of the diffusely adhering strain Escherichia coli C1845: F1845 adhesin-decay accelerating factor interaction, brush border microvillus injury, and actin disassembly in cultured human intestinal epithelial cells. Infect. Immun. 64, 19181928 (1996).

Peiffer, I., Servin, A. L. & Bernet-Camard, M. F. Piracy of decay-accelerating factor (CD55) signal transduction by the diffusely adhering strain Escherichia coli C1845 promotes cytoskeletal F-actin rearrangements in cultured human intestinal INT407 cells. Infect. Immun. 66, 40364042 (1998). DAEC exhibits a unique pathogenetic scheme that includes cytoskeletal sabotage.

Peiffer, I., Bernet-Camard, M. F., Rousset, M. & Servin, A. L. Impairments in enzyme activity and biosynthesis of brush border-associated hydrolases in human intestinal Caco-2/TC7 cells infected by members of the Afa/Dr family of diffusely adhering Escherichia coli. Cell. Microbiol. 3, 341357 (2001).

Phillips, I. et al. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1, 10381041 (1988).

Manges, A. R. et al. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345, 10071013 (2001). This work identified specific clonal groups of E. coli that cause widespread antibiotic resistant bacteria.

Nowicki, B., Svanborg-Eden, C., Hull, R. & Hull, S. Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli. Infect. Immun. 57, 446451 (1989).

Johnson, J. R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4, 80128 (1991).

Johnson, J. R. & Stell, A. L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181, 261272 (2000).

Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 1702017024 (2002). The first complete nucleotide sequence of a representative uropathogenic strain of E. coli and shows that EHEC, UPEC and E. coli K-12 share only 39.2% of the combined set of predicted proteins.

Bahrani-Mougeot, F. K. et al. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45, 10791093 (2002).

Gunther, N. W., Lockatell, V., Johnson, D. E. & Mobley, H. L. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect. Immun. 69, 28382846 (2001).

Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA 93, 98279832 (1996). Demonstrates that type 1 fimbriae satisfies molecular Koch's postulates.

Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 14941497 (1998).

Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105107 (2003).

Svanborg-Eden, C. & Hansson, H. A. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect. Immun. 21, 229237 (1978).

Korhonen, T. K., Virkola, R. & Holthofer, H. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect. Immun. 54, 328332 (1986).

Continue reading here:
Pathogenic Escherichia coli | Nature Reviews Microbiology

Related Posts