In many ways, the human body is like any other machine in that it requires constant refueling and maintenance to keep functioning. Much of this happens without our intervention beyond us selecting what to eat that day. There are however times when due to an accident, physical illness or aging the automatic repair mechanisms of our body become overwhelmed, fail to do their task correctly, or outright fall short in repairing damage.
Most of us know that lizards can regrow tails, some starfish regenerate into as many new starfish as the pieces which they were chopped into, and axolotl can regenerate limbs and even parts of their brain. Yet humans too have an amazing regenerating ability, although for us it is mostly contained within the liver, which can regenerate even when three-quarters are removed.
In the field of regenerative medicine, the goal is to either induce regeneration in damaged tissues, or to replace damaged organs and tissues with externally grown ones, using the patients own genetic material. This could offer us a future in which replacement organs are always available at demand, and many types of injuries are no longer permanent, including paralysis.
Our level of understanding of human physiology and that of animals in general has massively expanded since the beginning of the 20th century when technology allowed us to examine the microscopic world in more detail than ever before. Although empirical medical science saw its beginnings as early as the Sumerian civilization of the 3rd millennium BCE, our generalized understanding of the processes and components that underlie the bodys functioning are significantly more recent.
DNA was first isolated in 1869 by Friedrich Miescher, but its structure was not described until 1953. This discovery laid the foundations for the field of molecular biology, which seeks to understand the molecular basis for biological activity. In a sense this moment can be seen as transformative as for example the transition from classical mechanics to quantum mechanics, in that it changed the focus from macroscopic observations to a more fundamental understanding of these observations.
This allowed us to massively increase our understanding of how exactly the body responds to damage, and the molecular basis for regenerative processes, as well as why humans are normally not able to regrow damaged limbs. Eventually in 1999 the term regenerative medicine was coined by William A. Haseltine, who wrote an article in 2001 on what he envisions the term to include. This would be the addressing of not only injuries and trauma from accidents and disease, but also aging-related conditions, which would address the looming demographic crisis as the average age of the worlds populations keeps increasing.
The state of the art in regenerative medicine back in 2015 was covered by Angelo S. Mao et al. (2015). This covers regenerative methods involving either externally grown tissues and organs, or the stimulating of innate regenerative capabilities. Their paper includes the biomedical discipline of tissue engineering due to the broad overlap with the field of regenerative medicine. Despite the very significant time and monetary requirement to bring a regenerative medicine product to market, Mao et al. list the FDA-approved products at that time:
While these were not miracle products by any stretch of the imagination, they do prove the effectiveness of these approaches, displaying similar or better effectiveness as existing products. While getting cells to the affected area where they can induce repair is part of the strategy, another essential part involves the extracellular matrix (ECM). These are essential structures of many tissues and organs in the body which provide not only support, but also play a role in growth and regeneration.
ECM is however non-cellular, and as such is seen as a medical device. They play a role in e.g. the healing of skin to prevent scar tissue formation, but also in the scaffolding of that other tantalizing aspect of regenerative medicine: growing entire replacement organs and body parts in- or outside of the patients body using their own cells. As an example, Mase Jr, et al. (2010) report on a 19-year old US Marine who had part of his right thigh muscle destroyed by an explosion. Four months after an ECM extracted from porcine (pig) intestinal submucossa was implanted in the area, gradual regrowth of muscle tissue was detected.
An important research area here is the development of synthetic ECM-like scaffolding, as this would make the process faster, easier and more versatile. Synthetic scaffolding makes the process of growing larger structures in vitro significantly easier as well, which is what is required to enable growing organs such as kidneys, hearts and so on. These organs would then ideally be grown from induced pluropotent stem cells (iPS), which are a patients own cells that are reverted back to an earlier state of specialization.
It should come as little surprise that as a field which brings together virtually every field that touches upon (human) biology in some fashion, regenerative medicine is not an easy one. While its one thing to study a working system, its a whole different level to get one to grow from scratch. This is why as great as it would be to have an essentially infinite supply of replacement organs by simply growing new ones from iPS cells, the complexity of a functional organ makes this currently beyond our reach.
Essentially the rule is that the less complicated the organ or tissue is, the easier it is to grow it in vitro. Ideally it would just consist out of a single type of cell, and happy develop in some growth medium without the need for an ECM. Attractive targets here are for example the cornea, where the number of people on a waiting list for a corneal transplant outnumber donor corneas significantly.
In a review by Mobaraki et al. (2019), the numerous currently approved corneal replacements as well as new methods being studied are considered. Even though artificial corneas have been in use for years, they suffer from a variety of issues, including biocompatibility issues and others that prevent long-term function. Use of donor corneas comes with shortages as the primary concern. Current regenerative research focuses on the stem cells found in the limbus zone (limbal stem cells, LSC). These seem promising for repairing ocular surface defects, which has been studied since 1977.
LSCs play a role in the regular regenerative abilities of the cornea, and provide a starting point for either growing a replacement cornea, or to repair a damaged cornea, along with the addition of an ECM as necessary. This can be done in combination with the inhibiting of the local immune response, which promotes natural wound healing. Even so, there is still a lot more research that needs to be performed before viable treatments for either repairing the cornea in situ, or growing a replacement in vitro can be approved the FDA or national equivalent.
A similar scenario can be seen with the development of artificial skin, where fortunately due to the large availability of skin on a patients body grafts (autografts) are usually possible. Even so, the application of engineered skin substitutes (ESS) would seem to be superior. This approach does not require the removal of skin (epidermis) elsewhere, and limits the amount of scar formation. It involves placing a collagen-based ECM on the wound, which is optionally seeded with keritanocytes (skin precursor cells), which accelerates wound closure.
Here the scaffolding proved to be essential in the regeneration of the skin, as reported by Tzeranis et al. (2015). This supports the evidence from other studies that show the cell adhesion to the ECM to be essential in cell regulation and development. With recent changes, it would seem that both the formation of hair follicles and nerve innervation may be solved problems.
It will likely still be a long time before we can have something like a replacement heart grown from a patients own iPS cells. Recent research has focused mostly on decellularization (leaving only the ECM) of an existing heart, and repopulating it with native cells (e.g. Glvez-Montn et al., 2012). By for example creating a synthetic scaffold and populating it with cells derived from a patients iPS cells, a viable treatment could be devised.
Possibly easier to translate into a standard treatment is the regrowth of nerves in the spinal cord after trauma, with a recent article by lvarez et al, (2021) (press release) covering recent advances in the use of artificial scaffolds that promotes nerve regeneration, reduces scarring and promotes blood vessel formation. This offers hope that one day spinal cord injures may be fully repairable.
If we were to return to the body as a machine comparison, then the human body is less of a car or piece of heavy machinery, and more of a glued-together gadget with complex circuitry and components inside. With this jump in complexity comes the need for a deeper level of understanding, and increasingly more advanced tools so that repairs can be made efficiently and with good outcomes.
Even so, regenerative medicine is already saving the lives of for example burn victims today, and improving the lives of countless others. As further advances in research continue to translate into treatments, we should see a gradual change from youll have to learn to live with that, to a more optimistic give it some time to grow back, as in the case of an injured veteran, or the victim of an accident.
See the original post:
Regenerative Medicine: The Promise Of Undoing The Ravages Of Time - Hackaday
- Congress Gives Stem Cells Another Shot -ASK THE EXPERT- ... [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Stem Cell Game 3- Grow with the Flow [Last Updated On: August 5th, 2011] [Originally Added On: August 5th, 2011]
- PROSTATE CANCER and stem cells [Last Updated On: August 13th, 2011] [Originally Added On: August 13th, 2011]
- Preview: 21st Century Snake Oil [Last Updated On: September 2nd, 2011] [Originally Added On: September 2nd, 2011]
- Stem cells: the future of medicine? [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cells: Politics vs. Medicine [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Mesenchymal Stem Cells in Regenerative Medicine: Of Hopes and Challenges [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- An amazing story of stem cells, regenerative medicine and healing power: [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Preserving Stem Cells: Regenerative Medicine [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- TEDxPhoenix - Jane Maienschein - Stem Cells, Regenerative Medicine and Us [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- Personalized Medicine: Stem Cells 1/2 [Last Updated On: September 14th, 2011] [Originally Added On: September 14th, 2011]
- A Century of Stem Cells - Johns Hopkins Medicine [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- What are stem cells? How can they be used for medical benefit? [Last Updated On: September 17th, 2011] [Originally Added On: September 17th, 2011]
- STEM CELLS TRANSLATIONAL MEDICINE Official Announcement [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- Turning Adult Stem Cells into Medicine - Zannos Grekos, MD [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- A New Era in Regenerative Medicine [Last Updated On: September 24th, 2011] [Originally Added On: September 24th, 2011]
- Bruce Conklin: Drug screening with stem cells [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- Professors Chandran and ffrench-constant - Are stem cells the future of regenerative medicine? [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- Hormone Myths vs. Medical Literature and How to Grow Your Own Stem Cells - Ronald Rothenberg, MD [Last Updated On: September 28th, 2011] [Originally Added On: September 28th, 2011]
- Cardiovascular Derivatives of Embryonic Stem Cells in Cardiac Repair and Drug Discovery [Last Updated On: September 29th, 2011] [Originally Added On: September 29th, 2011]
- Jackson Laboratory symposium: What's vital for effective stem cell therapies? [Last Updated On: September 30th, 2011] [Originally Added On: September 30th, 2011]
- Alzheimer's Disease: Spotlight on Stem Cell Research - Rod Shankle [Last Updated On: October 3rd, 2011] [Originally Added On: October 3rd, 2011]
- "StemEnhance" the Biggest Scientific [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Stem cell medical breakthrough? [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- The Future of Stem Cells and Regenerative Medicine [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Stem Cell Clinical Trials : University of Miami Miller School of Medicine [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Medical tourism in Croatia - Regenerative medicine-Stem cells in reconstructive surgery [Last Updated On: October 4th, 2011] [Originally Added On: October 4th, 2011]
- Bioethics Stem Cells and the New Biology [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- Stem Cells: The Hope The Hype and the Science [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- Skin Stem Cells: Their Biology [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Spotlight on Cancer Stem Cell Research [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Lou Gehrig's Disease (ALS): UCSD Team's Stem Cell Therapy Rationale [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Sickle Cell Anemia: Stem Cell Gene Therapy - Donald Kohn [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Stem Cells and Parkinson's Disease [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Stem Cell Research: Macular Degeneration [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- An amazing story of stem cells and regenerative medicine [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Stem Cell City - Lisa Ray [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Stem Cell Therapy: Healing Force of the future [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Adult Stem Cells in Drug Discovery and Therapeutics [Last Updated On: October 7th, 2011] [Originally Added On: October 7th, 2011]
- Medical Breakthrough: First Stem Cell Procedure [Last Updated On: October 7th, 2011] [Originally Added On: October 7th, 2011]
- Dr. Judith Oppenheim, Chicago on Dental Stem Cells on WGN-TV's Medical Watch. [Last Updated On: October 9th, 2011] [Originally Added On: October 9th, 2011]
- Jerome Zack: Creating iPS Cells - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Sight for sore eyes - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Regenerative Medicine Update: Stem Cells and Functional Testing - Mitchell J. Ghen, DO, PhD - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Stem cells as the future of medicine - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- Neural Stem Cells Reverse Alzheimer's-Like Symptoms - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- Deafness: Spotlight on Stem Cell Research - Ebenezer Yamoah - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- Leukemia: Spotlight on Stem Cell Research - Patient Stories - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- Epidermolysis Bullosa: Corrected iPS Stem Cell-Based Therapy - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- iPS Stem Cell-Based Treatment of Epidermolysis Bullosa - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- Parkinson's Disease: Spotlight on Stem Cell Research - Arnold Kriegstein - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- Closing Remarks, Screening Stem Cells 2009: From Reprogramming to Regenerative Medicine - Video [Last Updated On: October 23rd, 2011] [Originally Added On: October 23rd, 2011]
- The Sue and Bill Gross Stem Cell Regenerative Medicine Center at UCI - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- Stem Cell Institute - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- StemCellTV Special Report - Stem Cell Therapy a "Medical Game Changer" - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Adult Stem Cells and Regeneration - Video [Last Updated On: November 8th, 2011] [Originally Added On: November 8th, 2011]
- Cloned Embryonic Stem Cells, FIRST (Brainstorm Ep26) - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- Beating Heart Stem Cells - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- Stem Cell Research In Toronto - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- Stem Cells and Their Amazing Potential 2011 trailer - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- Stemcell Research and Aging - Panel 1 - Video [Last Updated On: December 13th, 2011] [Originally Added On: December 13th, 2011]
- Austin Forum - Nov 1st (Part 4 of 4) - Video [Last Updated On: December 13th, 2011] [Originally Added On: December 13th, 2011]
- Vet-Stem Medistem Cellmedicine Rheumatoid Arthritis Stem Cell Video - Video [Last Updated On: December 19th, 2011] [Originally Added On: December 19th, 2011]
- Stem Cell Clinical Trial for Heart Failure: Eduardo Marban - CIRM Spotlight on Disease - Video [Last Updated On: December 26th, 2011] [Originally Added On: December 26th, 2011]
- Stem Cell-Derived Heart Cells: Bruce Conklin - CIRM Science Writer's Seminar - Video [Last Updated On: January 5th, 2012] [Originally Added On: January 5th, 2012]
- Pope gives support to adult stem cells and asks for ethics in scientific research - Video [Last Updated On: January 5th, 2012] [Originally Added On: January 5th, 2012]
- Stem Cell Treatment for Rheumatoid Arthritis - Darnell Morris - Video [Last Updated On: January 5th, 2012] [Originally Added On: January 5th, 2012]
- Personalized Medicine: Stem Cells 2/2 - Video [Last Updated On: January 13th, 2012] [Originally Added On: January 13th, 2012]
- Utilizing Stem Cell-derived Cardiomyocytes for Early Safety Screening - Webinar Presentation - Video [Last Updated On: January 22nd, 2012] [Originally Added On: January 22nd, 2012]
- Stem Cell Stage Bypassed in Skin Cell to Brain Cell Transformation [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- Encouraging Results with Stem Cell Transplant for Brain Injury [Last Updated On: February 1st, 2012] [Originally Added On: February 1st, 2012]
- Stem cell injection successfully treats urinary incontinence [Last Updated On: February 13th, 2012] [Originally Added On: February 13th, 2012]
- ImmunoCellular Therapeutics To Present at Targeting Stem Cells Symposium during 19th Annual Molecular Medicine Tri ... [Last Updated On: February 17th, 2012] [Originally Added On: February 17th, 2012]
- Adult Stem Cell Success Stories - Barry Goudy - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- Stem Cell Treatment for T-6 Spinal Cord Injury - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- Stem Cells China-Switzerland.wmv - Video [Last Updated On: February 21st, 2012] [Originally Added On: February 21st, 2012]
- Stem cell find offers hope for infertility [Last Updated On: February 27th, 2012] [Originally Added On: February 27th, 2012]
- Stem cell fertility treatments could be risky for older women [Last Updated On: February 28th, 2012] [Originally Added On: February 28th, 2012]
- A*STAR Scientists Make Groundbreaking Discovery on Stem Cell Regulation [Last Updated On: March 1st, 2012] [Originally Added On: March 1st, 2012]
- UGA study reveals basic molecular 'wiring' of stem cells [Last Updated On: March 1st, 2012] [Originally Added On: March 1st, 2012]