The Long Game of Coronavirus Research – The New Yorker


Last month, Anthony Fauci, the director of the National Institute of Allergy and Infectious Diseases, spoke at a biotech conference, where he emphasized how much is still unknown about the coronavirus. I thought H.I.V. was a complicated disease, he said. Its really simple compared to whats going on with COVID-19. To anyone who knows the history of AIDS researchFauci has spent much of his career studying the diseasethis was a dismaying thing to hear. In 1984, President Reagans Health and Human Services Secretary, Margaret Heckler, said, We hope to have a vaccine ready for testing in about two years. Almost four decades later, there is still no vaccine. If Hecklers words now seem like wishful thinking, the Trump Administration has worried scientists and physicians with what may prove to be a similar overpromise. In May, it unveiled a plan to deliver hundreds of millions of doses of a COVID-19 vaccine by the end of this year. The plans nameOperation Warp Speedis meant to spark hope. But, in science, true hope is clear-eyed and brings a tight focus on the barriers and potential setbacks that exist along the path to desired results.

Read The New Yorkers complete news coverage and analysis of the coronavirus pandemic.

In the face of a crisis as urgent as COVID-19, speed is desirable, and the worldwide mobilization to conquer the virus has been inspiring. But what Fauci said illustrates why its a grave mistake to favor speed at the cost of rigor. Quite simply, this is a disease that weare only beginning to understand: since the outbreak began, it has become evident that its effects are, like those of AIDS, astonishingly diverse and complex. Still largely thought of as a respiratory diseaseit can indeed inflict devastating damage to the lungsit is actually, as Fauci noted, capable of roving throughout the body. There are cases in which it causes kidney failure, stroke, or a so-called cytokine storm, an overreaction of the bodys immune system that can lead to multiple organ failure. In children, infection can lead to multisystem inflammatory syndrome, a condition that can damage the heart and other vital organs. COVID-19 has a startling spectrum of severityfrom no symptoms to deathdepending on a host of poorly understood factors. Fauci also pointed out another unknown: whether some survivors, especially those with the severest symptoms, would end up dealing with lifelong debilitating effects. Currently, we are not even sure how to assess protective immunity if we had a vaccine in handwhether protection would be broad among all age groups and encompass the healthy as well as those whose clinical conditions, such as diabetes, heart disease, and obesity, predispose them to COVID-19. Even more worrying, for those who imagine a vaccine might end the pandemic like turning off a light switch, a number of recent studies suggest that people whove had the disease may not emerge with robust, lasting immunity. If so, its possible that the initial protection offered by a successful vaccine would similarly wane, and people could be infected again.

Its understandable how desperate we all are for quick solutions, with the number of infections and deaths skyrocketing. Some twelve hundred clinical studies have been designed since January, but many are too small to have much chance of producing clear results. Researchers have been publishing their papers online before they have undergone peer review. In May, the biotech company Moderna published initial results of an early trial of their vaccine in a press release. Modernas vaccine dominated research news again last week, afterfuller results of that trial were published in The New England Journal of Medicine. That work is still a preliminary achievement, since there were only fifteen healthy volunteers in each of three vaccine dose groups, and, in the moderate- and high-dose groups, almost every volunteer had side effects. An accompanying editorial from Penny Heaton, of the Gates Foundation, cautioned that we wont really know about the safety of Modernas vaccine until many thousands receive it, nor whether the reported immune response in volunteers is actually protective against the virus. There are clear risks with proceeding to human trials in haste. As Kenneth Frazier, the C.E.O. of Merck, pointed out last week, there have been cases, in the past, in which trial vaccines not only didnt confer protection, but actually helped the virus invade the cell, because it was incomplete in terms of its immunogenic properties. Promises to have a vaccine ready by the end of the year, he said, did a grave disservice to the public.

Producing a vaccine that is able to confer immunity on disparate age groups with varying levels of vulnerability is an enormous task, especially because COVID-19 is a brand new disease in humans, and therefore one to which we have no natural immunity. (Even a vaccine as comparatively simple as the annual flu shot reduces the risk of flu sickness for only about forty to sixty per cent of recipients.) All this means that a first vaccine, while a welcome tool in fighting COVID-19, may well turn out to be of limited use. The lesson learned from AIDS is the value of building a protective scientific infrastructure beyond a vaccine, something that requires legions of scientists working carefully and in concert to understand the numerous ways that a virus causes disease.

In early June, I visited the National Emerging Infectious Diseases Laboratories (NEIDL), to interview researchers there who are working on COVID-19. Part of Boston University, NEIDL (pronounced like needle) is one of two academically-affiliated institutions in the U.S. with laboratories that are certified to handle the deadliest pathogens known to man, like the Ebola and Marburg viruses and yellow fever. NEIDLs origins date to the period after 9/11, when Fauci warned that the country needed a better system to defend against possible bioterrorism attacks, and the government earmarked billions of dollars to prepare for such an event. NEIDL received its funding in 2003, but getting a facility ready to handle such pathogens takes years: the building itself was completed in 2008; acquiring the necessary environmental approvals from local government and community representatives took almost a decade. It wasnt until 2017, that NEIDL was fully approved to undertake all the work for which it was created.

The facility, which is on B.U.s medical campus, in Bostons South End, stands seven stories high, a modern structure of glass and concrete. Barriers surround the site at a distance of a hundred and fifty feet from the building; they are fitted with motion-detection sensors and are strong enough to stop a fifteen-thousand-pound truck going fifty miles an hour. Inside, there are around a dozen containment laboratories for dangerous microbes, which hold specialized microscopic equipment and robotic devices, and secure environmental facilities designed for pathogen vectors, like mosquitos and ticks, and animals, which researchers use to model human diseases. NEIDLs Biosafety Level 4 facilitythe part of the building that is licensed to handle the most dangerous microbesis constructed as a building within the larger building. That nested structure has twelve-inch-thick concrete walls coated with multiple layers of epoxy resin. While NEIDL itself is built on piling that go into bedrock, the B.S.L.-4 floors are flexible, and can move at a different frequency from the main structure in case of an earthquake. Researchers work in sealed suits, resembling those of astronauts, with a large transparent bubble over the head, supplied with filtered air via a hose connected to the ceiling. If there is a spill, the space is typically decontaminated with chlorine dioxide, and low air pressure maintained in the lab insures that air rushes in rather than out, so that no airborne virus can escape.

Go here to see the original:
The Long Game of Coronavirus Research - The New Yorker

Related Posts