Summary: Two studies reveal that scientists have misidentified gut stem cells, impacting research and treatments for 15 years. Researchers identified the true stem cells in a different gut region, which could lead to breakthroughs in regenerative medicine.
This discovery highlights the importance of accurate identification for effective treatments. The findings could improve therapies for intestinal diseases and beyond.
Key Facts:
Source: Columbia University
Two independent studies by Columbia scientists suggest that research into the guts stem cells over the past 15 years has been marred by a case of mistaken identity: Scientists have been studying the wrong cell.
Both studies were published online today in the journalCell.
The guts stem cells are some of the hardest-working stem cells in the body. They work continuously throughout our lives to replenish the short-lived cells that line our intestines. About every four days, these cellscovering a surface about the size of a tennis courtare completely replaced.
Understanding these workaholic stem cells could help scientists turn on less productive stem cells in other organs to repair hearts, lungs, brains, and more.
The guts stem cells were supposedly identified more than 15 years ago in a landmark study.
But using new lineage tracing and computational tools, the Columbia teams, led by Timothy Wang and Kelley Yan, found that these cells are descendants of the guts true stem cells. The guts true stem cells are found in a different location, produce different proteins, and respond to different signals.
The new work is controversial and paradigm-shifting but could revitalize the [entire?] field of regenerative medicine, says Timothy Wang, the Dorothy L. and Daniel H. Silberberg Professor of Medicine.
We know were making a lot of waves in the field, but if were going to make progress, we need to identify the true stem cells so we can target these cells for therapies, says Kelley Yan, the Herbert Irving Assistant Professor of Medicine.
We recently spoke with Yan and Wang about the findings and implications.
KY Whats relevant to this story is a tissue called the intestinal epithelium. This is a single layer of cells that lines the gut and its composed of different types of cells that help digest food, absorb nutrients, and fight microbes.
Most of the cells live for only about four days before being replaced, so stem cells must create replacements.
Whats really remarkable about the intestinal lining is how big it is. If we were to fillet open your intestine and lay it flat, it would cover the surface of a tennis court.
The guts stem cells may be the hardest working stem cells in the body.
TW: For the last 17 years, the intestinal stem cell field has assumed that Lgr5, a protein on the cells surface, is a specific marker for intestinal stem cells. In other words, all Lgr5+ cells are assumed to be stem cells, and all stem cells are believed to be Lgr5+. These Lgr5+ cells were located at the very bottom of glands, or crypts, in the intestinal lining.
However, in the last decade, problems with this model began to appear. Deleting the Lgr5+ cells in mice, using a genetic approach, did not seem to bother the intestine very much, and the Lgr5+ stem cells reappeared over the course of a week. In addition, the intestine was able to regenerate after severe injury, such as radiation-induced damage, even though the injury destroyed nearly all Lgr5+ cells.
KY: By their very definition, stem cells are the cells that regenerate tissues, so these findings created a paradox. Many high-profile papers have evoked different mechanisms to explain the paradox: Some suggest that other fully mature intestinal cells can walk backward in developmental time and regain stem cell characteristics. Others suggest theres a dormant population of stem cells that only works when the lining is damaged.
No one has really examined the idea that maybe the Lgr5+ cells really arent truly stem cells, which is the simplest explanation.
TW: My lab collaborated with the former chair of Columbias systems biology department, Andrea Califano, who has developed cutting-edge computational algorithms that can reconstruct the relationships among cells within a tissue. We used single-cell RNA sequencing to characterize all the cells in the crypts, the region of the intestine where the stem cells are known to reside, and then fed that data into the algorithms.
These algorithms revealed the source of stemness in the intestine not in the Lgr5+ cellular pool but in another type of cell higher up in the crypts in a region known as the isthmus. After eliminating Lgr5+ cells with radiation or genetic ablation, we confirmed these isthmus cells were the guts stem cells and able to regenerate the intestinal lining. We didnt find any evidence that other, mature cells could turn back time and become stem cells.
KY: We werent trying to identify the stem cells as much as we were trying to understand the other cells in the intestine involved in regeneration of the lining. No one has been able to define these other progenitor cells in the intestine.
We identified a population of cells that were proliferative and marked by a protein called FGFBP1. When we asked how these cells were related to Lgr5+ cells, our computational analysis told us that these FGFBP1 cells give rise to all the intestinal cells, including Lgr5+, the opposite of the accepted model.
My graduate student, Claudia Capdevila, then made a mouse that would allow us to determine which cellsLgr5+ or FGFBP1+were the true stem cells. In this mouse, every time the FGFBP1 gene is turned on in a cell, the cell would express two different fluorescent proteins, red and blue. The red would turn on immediately and turn off immediately, while the blue came on a little later and lingered for days.
That allowed us to track the cells over time, and it clearly showed that the FGFBP1 cells create the Lgr5+ cells, the opposite of what people currently believe. This technique, called time-resolved fate mapping, has only been used a few times before, and getting it to work was a pretty incredible achievement, I thought.
TW: This case of mistaken identity may explain why regenerative medicine has not lived up to its promise. Weve been looking at the wrong cells.
Past studies will need to be reinterpreted in light of the stem cells new identity, but eventually it may lead to therapies that help the intestine regenerate in people with intestinal diseases and possible transplantation of stem cells in the future.
KY: Ultimately, we hope to identify a universal pathway that underlies how stem cells work, so we can then apply the principles we learn about the gut to other tissues like skin, hair, brain, heart, lung, kidney, liver, etc.
Its also thought that some cancers arise from stem cells that have gone awry. So, in understanding the identity of the stem cell, we might be able to also develop novel therapeutics that can prevent the development of cancer.
Thats why its so critical to understand what cell underlies all of this.
Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells, was published June 6 in Cell.
All authors: Claudia Capdevila, Jonathan Miller, Liang Cheng, Adam Kornberg, Joel J. George, Hyeonjeong Lee, Theo Botella, Christine S. Moon, John W. Murray, Stephanie Lam, Ermanno Malagola, Gary Whelan, Chyuan-Sheng Lin, Arnold Han, Timothy C. Wang, Peter A. Sims, & Kelley S. Yan. The authors (all from Columbia) declare no competing financial interests.
Funding: The study was supported by the U.S. National Institutes of Health (though grants DP2DK128801, R01AG067014, P30CA013696, P30DK132710, U01DK103155, T32DK083256, and T32HL105323), a Burroughs Wellcome Fund Career Award for Medical Scientists, the Irma T. Hirschl Trust, an Irving Scholars Award, the Gerstner Foundation, a Damon Runyon-Rachleff Innovation Award, a NYSTEM predoctoral training grant, and the Berrie Foundation.
Isthmus progenitor cells contribute to homeostatic cellular turnover and supportregeneration following intestinal injury, was published June 6 in Cell.
All authors (from Columbia unless noted): Ermanno Malagola, Alessandro Vasciaveo, Yosuke Ochiai, Woosook Kim, Biyun Zheng (Columbia and Fujian Medical University, China), Luca Zanella, Alexander L.E. Wang, Moritz Middelhoff (University Hospital Heidelberg), Henrik Nienhser (University Hospital Heidelberg), Lu Deng (University of Kansas), Feijing Wu, Quin T. Waterbury, Bryana Belin, Jonathan LaBella, Leah B. Zamechek, Melissa H. Wong (Oregon Health & Sciences University), Linheng Li (University of Kansas), Chandan Guha (Albert Einstein College of Medicine), Chia-Wei Cheng, Kelley S. Yan, Andrea Califano (Columbia and Chan Zuckerberg Biohub NY), and Timothy C. Wang.
Funding: This research was funded by the U.S. National Institutes of Health (through grants P30CA013696, P30DK132710, U01DK103155, R35CA210088, R01NK128195, R35CA197745, S10OD012351, S10OD021764, and S10OD032433) and the U.S. Department of Defense (grants W81XWH-465 21-10901 and W81XWH19-1-0337).
Andrea Califano is founder, equity holder, and consultant of DarwinHealth Inc., a companythat has licensed from Columbia University some of the algorithms used in this manuscript. Columbia University is also an equity holder in DarwinHealth Inc. U.S. patent number 10,790,040 has been awarded related to this work, assigned to Columbia University with Andrea Califano as an inventor.
Author: Helen Garey Source: Columbia University Contact: Helen Garey Columbia University Image: The image is credited to Neuroscience News
Original Research: Open access. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells by Claudia Capdevila et al. Cell
Open access. Isthmus progenitor cells contribute to homeostatic cellular turnover and supportregeneration following intestinal injury by Ermanno Malagola et al. Cell
Abstract
Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells
In the prevailing model,Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates.
Here, we identify a proliferative upper crypt population marked byFgfbp1, in the location of putative TA cells, that is transcriptionally distinct fromLgr5+ cells.
Using a kinetic reporter for time-resolved fate mapping andFgfbp1-CreERT2lineage tracing, we establish thatFgfbp1+ cells are multi-potent and give rise toLgr5+ cells, consistent with their ISC function.Fgfbp1+ cells also sustain epithelial regeneration followingLgr5+ cell depletion.
We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis.
Our findings support a model in which tissue regeneration originates from upper cryptFgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source ofLgr5+ cells in the crypt base.
Abstract
Isthmus progenitor cells contribute to homeostatic cellular turnover and supportregeneration following intestinal injury
The currently accepted intestinal epithelial cell organization model proposes that Lgr5+crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment.
However, previous studies have indicated that Lgr5+cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling.
These studies, combined withinvivolineage tracing, show thatLgr5is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury.
Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.
Read more:
Mistaken Identity: Gut Stem Cell Discovery Could Transform Regenerative Medicine - Neuroscience News
- SIRA: Could Stem Cell Therapy Renew Your Body Cells? - Private ... [Last Updated On: April 23rd, 2011] [Originally Added On: April 23rd, 2011]
- Stem Cell Series: Part 1 [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Huntington's Disease: Stem Cell Treatment Strategies at UC Davis [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Tianjin heart hospital the largest in Asia with stem cell treatment as well.mp4 [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Researchers hope stem cell treatment can improve heart healing [Last Updated On: August 4th, 2011] [Originally Added On: August 4th, 2011]
- Testimonial for Fetal Stem Cell Treatment of Duchenne Muscular Dystrophy [Last Updated On: August 5th, 2011] [Originally Added On: August 5th, 2011]
- MS Views and News Podcast - Stem Cell Treatment [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- Duchenne's Muscular Dystrophy Stem Cell Treatment - Reelabs India [Last Updated On: August 7th, 2011] [Originally Added On: August 7th, 2011]
- Stem cell treatment for Macular Degeneration - Graham Leach [Last Updated On: August 7th, 2011] [Originally Added On: August 7th, 2011]
- The New World of Medicine: Stem Cell Therapy [Last Updated On: August 8th, 2011] [Originally Added On: August 8th, 2011]
- Stem Cell Treatment for Cerebral Palsy (Periventricular Leukomalacia) [Last Updated On: August 8th, 2011] [Originally Added On: August 8th, 2011]
- Medra Inc - Breakthrough Stem Cell Treatment [Last Updated On: August 9th, 2011] [Originally Added On: August 9th, 2011]
- Patricia VS Autism: Adult Stem Cell Treatment Part 1 [Last Updated On: August 10th, 2011] [Originally Added On: August 10th, 2011]
- Stem Cell Treatment for Multiple Sclerosis - Community Outreach San Diego: Xenia C. [Last Updated On: August 10th, 2011] [Originally Added On: August 10th, 2011]
- Stem Cell Treatment for Cerebral Palsy at the XCell-Center in Germany [Last Updated On: August 11th, 2011] [Originally Added On: August 11th, 2011]
- Bone Marrow Aspiration - Stem Cell Therapy [Last Updated On: August 13th, 2011] [Originally Added On: August 13th, 2011]
- Dr. William Rader - Breakthrough Stem Cell Treatment [Last Updated On: August 13th, 2011] [Originally Added On: August 13th, 2011]
- Clinical Advances in Adult Stem Cell Therapy - Dr. Jorge Paz Rodriguez (Miami) [Last Updated On: August 14th, 2011] [Originally Added On: August 14th, 2011]
- Stem cell treatment on horse a success, vet says [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Patricia VS Autism: Adult Stem Cell Treatment Part 2 [Last Updated On: August 15th, 2011] [Originally Added On: August 15th, 2011]
- Adult Stem Cell Therapy Clinical Advances - Dr. Jorge Paz in San Diego, CA March 2011 [Last Updated On: August 17th, 2011] [Originally Added On: August 17th, 2011]
- Dr. Ulrich Friedrichson, Geneticist, and Stem Cell Therapy pioneer [Last Updated On: August 19th, 2011] [Originally Added On: August 19th, 2011]
- Bone Marrow Stem Cells/Gene Therapy [Last Updated On: August 19th, 2011] [Originally Added On: August 19th, 2011]
- Regenerative Medicine With Stem Cell Therapy Injections at an Arizona pain clinic (602) 507-6550 [Last Updated On: August 19th, 2011] [Originally Added On: August 19th, 2011]
- Diabetes - Stem Cell Treatment [Last Updated On: August 21st, 2011] [Originally Added On: August 21st, 2011]
- Stem Cell Treatments for Autism: Community Outreach Miami, Florida - Juliana Ubinas [Last Updated On: August 22nd, 2011] [Originally Added On: August 22nd, 2011]
- Post Stem Cell Therapy Testimony of Cerebral Palsy [Last Updated On: August 26th, 2011] [Originally Added On: August 26th, 2011]
- VetCell's StemRegen - the original and best stem cell therapy for equine tendon injuries [Last Updated On: August 26th, 2011] [Originally Added On: August 26th, 2011]
- Stem cell treatment cures blind girl. More at http://www.stemcellfusion.com [Last Updated On: August 30th, 2011] [Originally Added On: August 30th, 2011]
- ALS Patient Interview, Stem Cell Treatments and ALS www.stemcellregenmed.com [Last Updated On: September 1st, 2011] [Originally Added On: September 1st, 2011]
- Stem Cell Treatment for Rheumatoid Arthritis - "I got my life back" [Last Updated On: September 1st, 2011] [Originally Added On: September 1st, 2011]
- Stem Cell Treatment for Autism: Community Outreach Miami, Florida - May 2011 [Last Updated On: September 2nd, 2011] [Originally Added On: September 2nd, 2011]
- Rylea returns home after stem cell treatment in China [Last Updated On: September 3rd, 2011] [Originally Added On: September 3rd, 2011]
- Stem Cell Treatments and ALS - www.StemCellRegenMed.com [Last Updated On: September 4th, 2011] [Originally Added On: September 4th, 2011]
- Patient with ALS Receiving Stem Cell Treatment - www.StemCellRegenMed.com [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- Stem Cell Therapy Success [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- Lisa Ray Opens Up About Her Stem Cell Treatment Experience [Last Updated On: September 17th, 2011] [Originally Added On: September 17th, 2011]
- Repair Your Joint Injuries With Stem Cell Therapy | Los Angeles | Beverly Hills | Hollywood [Last Updated On: September 18th, 2011] [Originally Added On: September 18th, 2011]
- What could stem cell therapy do for Peyton? [Last Updated On: September 21st, 2011] [Originally Added On: September 21st, 2011]
- Peyton Manning Stem Cell Therapy: Some Doctors Cry Foul Over European Treatment [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- Adickes: Stem cell therapy [Last Updated On: September 27th, 2011] [Originally Added On: September 27th, 2011]
- Webinar 1, Stem cell therapy basics, what is available today? [Last Updated On: September 30th, 2011] [Originally Added On: September 30th, 2011]
- Stem Cell Treatment for Leukemia at UCH [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- Testimonial 4 of Duchenne Muscular Dystrophy after Stem Cell Therapy [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- The Spinal Cord Journey - Stem cell therapy stories from three spinal cord injury patients [Last Updated On: October 6th, 2011] [Originally Added On: October 6th, 2011]
- Parkinson Stem Cell Treatment [Last Updated On: October 7th, 2011] [Originally Added On: October 7th, 2011]
- " Embryonic" and "Adult" Stem Cell Research explained by David Kupelian [Last Updated On: October 11th, 2011] [Originally Added On: October 11th, 2011]
- Stem Cell Treatment for Heart Failure [Last Updated On: October 12th, 2011] [Originally Added On: October 12th, 2011]
- Stem Cell Therapy for Sickle Cell Anemia - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Stem Cell Therapy Skin Repair and Anti-Wrinkle Cream - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- Stem Cell Treatment for Multiple Sclerosis - Community Outreach, San Diego: David Oliver - Video [Last Updated On: October 15th, 2011] [Originally Added On: October 15th, 2011]
- Spinal Cord Injury Patient after Stem Cell Treatment - Juan Carlos Murillo - Video [Last Updated On: October 16th, 2011] [Originally Added On: October 16th, 2011]
- Macular degeneration - Stem Cell therapy (English subtitles) - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- stem cell research - Video [Last Updated On: October 18th, 2011] [Originally Added On: October 18th, 2011]
- Diabetes- Stem cell therapy (english) - Video [Last Updated On: October 19th, 2011] [Originally Added On: October 19th, 2011]
- First Spinal-Cord Surgery With Stem Cells - Video [Last Updated On: October 21st, 2011] [Originally Added On: October 21st, 2011]
- The Skin Gun - Video [Last Updated On: October 23rd, 2011] [Originally Added On: October 23rd, 2011]
- Heart Congestion Failure- stem cell therapy (english) - Video [Last Updated On: October 24th, 2011] [Originally Added On: October 24th, 2011]
- Improvement seen in Duchenne Muscular Dystrophy after Stem Cell Therapy - Video [Last Updated On: October 24th, 2011] [Originally Added On: October 24th, 2011]
- Joseph, Friedreich's Ataxia, before stem cell treatment at Tiantan Puhua Hospital Beijing - Video [Last Updated On: October 25th, 2011] [Originally Added On: October 25th, 2011]
- Ataxia - Stem Cell Treatment TV Special (Part 1) - Video [Last Updated On: October 25th, 2011] [Originally Added On: October 25th, 2011]
- COPD and Stem Cell Treatments - www.StemCellRegenMed.com - Video [Last Updated On: October 26th, 2011] [Originally Added On: October 26th, 2011]
- Rheumatoid Arthritis Stem Cell Treatment - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- Stem Cells Repair Joint Cartilage - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- Soon stem cell cure for hearing loss - Video [Last Updated On: October 27th, 2011] [Originally Added On: October 27th, 2011]
- Extra: The Promise of Stem Cell Treatment - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Batten Disease: Spotlight on Stem Cell Research - A Father's Story - Video [Last Updated On: October 28th, 2011] [Originally Added On: October 28th, 2011]
- Stem cell treatment by Adiva Health Care India after Spinal Cord Injury - Video [Last Updated On: October 29th, 2011] [Originally Added On: October 29th, 2011]
- Macular Degeneration: Spotlight on Stem Cell Research - Mark Humayun - Video [Last Updated On: October 29th, 2011] [Originally Added On: October 29th, 2011]
- Stem Cells to Treat Acne Scarring | Los Angeles | Hollywood | Beverly Hills - Video [Last Updated On: October 30th, 2011] [Originally Added On: October 30th, 2011]
- Stem Cell Treatment Kidney Failure - Video [Last Updated On: November 5th, 2011] [Originally Added On: November 5th, 2011]
- Stem Cell Miracle From Cord Blood - Video [Last Updated On: November 7th, 2011] [Originally Added On: November 7th, 2011]
- Stem Cell Therapy: Psoriatic Arthritis Treatment - Video [Last Updated On: November 8th, 2011] [Originally Added On: November 8th, 2011]
- Deafness: Spotlight on Stem Cell Research - Karen Doyle - Video [Last Updated On: November 9th, 2011] [Originally Added On: November 9th, 2011]
- Daniel Deeter Testimonial for Fetal Stem Cell Treatment at Kyiv, Ukraine - Video [Last Updated On: November 12th, 2011] [Originally Added On: November 12th, 2011]
- Stem Cell Treatment Fibromyalgia - Video [Last Updated On: November 13th, 2011] [Originally Added On: November 13th, 2011]
- Stem Cell Treatment Kidney Disease - Video [Last Updated On: November 14th, 2011] [Originally Added On: November 14th, 2011]
- Heart patient sees results in stem cell study - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- Heart health: Patient's own stem cells repaired damage - Video [Last Updated On: November 15th, 2011] [Originally Added On: November 15th, 2011]
- StemCellTV Daily Report-November 15, 2011 - Video [Last Updated On: November 16th, 2011] [Originally Added On: November 16th, 2011]