Nano-Improvements to Rheumatoid Arthritis Stem Cell Therapy Show Success – AZoNano


An article published in the journal Biomaterials shows that [emailprotected]2 nanoparticles (NPs) synthesized with a short bacteriophage-selected mesenchymal stem cell(MSC) targeting peptide allowed the MSCs to take up these NPs. NP-modified MSCs produced greatly improved therapy of Rheumatoid Arthritis(RA) using stem cells.

Study:Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Image Credit:Emily frost/Shutterstock.com

RA, which is marked by progressive joint degeneration andsynovial inflammation, is one ofthe primary widespread inflammatory arthritis thataffectsaround 1 % of the global population, however, it currently lacks an effective treatment.

Glucocorticoids (GCs), disease-modifying anti-rheumatic drugs (DMARDs) and non-steroidal anti-inflammatory drugs (NSAIDs)are the three maintypes of medicationscurrently used in clinical practice.

GCs and NSAIDscan help with joint pain and stiffness, but they may cause side effects such asheart problems, osteoporosis, infections andgastric ulcers.

Standard DMARDs, like methotrexate (MTX), can lessen swelling by inhibiting the synthesis of pro-inflammatory cytokines and have little effect on cartilage degeneration. MTX, on the other hand, has a short plasma half-lifeand a poor concentration of the drug in the inflammatory region of the body.

Other side effects may also include liver and kidney damage, bone marrow depletion, and gastrointestinal problems. Biological DMARDs have been rapidly developed in recent years, thoughtheir action slows the progression of structural damage by reducing inflammation and have issues including drug resistance and the potential to cause significant infections and malignant tumors.

Multilineage differentiation, inflammatory site and immunomodulationhoming are all features of MSCs. These distinctivecharacteristicsallowMSCs to become apotential treatmentfora variety ofinflammatory and degenerativediseases, including the treatment of RA,through cell therapy. Unfortunately, over 50 % of patients do not react to MSC treatment, and the therapeutic benefit of MSCs is only temporary.

Firstly, MSCs are susceptible to the inflammatory milieu and so lose their functions of immune-regulationwhen disclosed in an inflamed joint. Reactive oxygen species (ROS) are thought to be engaged in the inflammation development of RA and hence damaging to MSCs, as seen by the gradualdecline in the quantity of MSCs in RA patients' synovial fluid.

Secondly, while the direct impacts of MSCs on tissue regeneration in RA are unknown, an evidentclinical experiment found that MSC injections increased hyaline cartilage regeneration in RA patients. Nevertheless, the unregulated distinction of MSCs can alsoresult in the development of tumors andthe inability of cartilage repair.

As a result, it is important for an optimal stem cell strategy to include MSCs that have the ability to preserve their bio functions and chondrogenically develop to regenerate cartilage under the oxidative stress caused by RA.

According to thisstudy, RA therapy could be enhanced byshort targeting peptide-promoted nanomodification of MSCs. To begin with, [emailprotected]2 NPs wereproduced due to some of theirelements' appealing features. Mn and Cu both are critical trace components in the human body, and they play a keyrole in the production of natural Mnsuperoxide dismutase (SOD) and Cu-ZnSOD, respectively.

Cu and Mn can also encourage stem cell chondrogenesis. The study further explains the modification of [emailprotected]2 NPs with MSC-targeting peptides to increase the passage of the nanoparticles into MSCs since transporting nanomaterials into modifications of MSCs is still a difficult task.

To make [emailprotected]2/MET NPs, [emailprotected]2 NPs were injected with metformin. Lastly, MSCs were allowedto take up these NPs and utilizethem to effectively limit synovial inflammation and maintain cartilage structure, alleviating arthritic symptoms greatly.

This study demonstrates that VCMM-MCSs werecreated by engineering MSCs with catalase (CAT) and superoxide dismutase (SOD)- like activity using dynamically MSC-targeting [emailprotected]2/MET NPs.

The biological features of these cells required in stem cell treatment, such as chondrogenesis, anti-inflammation, cell migration, and increased survival under oxidative stress, were improved by VCMM-MCSs.

Consequently, the VCMM-MSCs injections reduced cartilage damage andsynovial hyperplasiain adjuvant-induced arthritis (AIA) as well as collagen-induced arthritis (CIA) models, substantially reducing arthritic symptoms. Since oxidative stress is present in numerous degenerative and inflammatory disorders, this strategy of altering MSCs with NPs could be applied to treat a number of other disorders as well as to achieve faster tissue healing using stem cell therapy.

Lu, Y., Li, Z. et al. (2022). Highly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells. Biomaterials. Available at: https://www.sciencedirect.com/science/article/pii/S0142961222001132?via%3Dihub

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Visit link:
Nano-Improvements to Rheumatoid Arthritis Stem Cell Therapy Show Success - AZoNano

Related Posts